设计模式-五大创建型模式概念与实现

2023-05-16

设计模式(Design pattern)代表了最佳的实践方案,可以说它是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结,通常被有经验的面向对象的软件开发人员所采用。

《Design Patterns - Elements of Reusable Object-Oriented Software 》书中提及23种设计模式,大致可分为三类:创建型模式(Creational Patterns)、结构型模式(Structural Patterns)、行为型模式(Behavioral Patterns)

创建型模式

创建型设计模式提供了一种在创建对象的同时隐藏创建逻辑的方式,而不是使用 new 运算符直接实例化对象,这使得程序在判断针对某个给定实例需要创建哪些对象时更加灵活,主要包含无种设计模式:

  • 工厂模式(Factory Pattern)
  • 抽象工厂模式(Abstract Factory Pattern)
  • 单例模式(Singleton Pattern)
  • 建造者模式(Builder Pattern)
  • 原型模式(Prototype Pattern)

工厂模式(Factory Pattern)

定义

在创建对象时不会对客户端暴露创建逻辑,也就是说不直接采用new创建对象,而是通过使用一个共同的接口来指向新创建的对象,具体来说定义一个创建对象的接口,让其子类自己决定实例化哪一个工厂类,工厂模式使其创建过程延迟到子类进行,之后让其子类实现工厂接口,返回的是一个抽象的产品。

应用实例

1、您需要一辆汽车,可以直接从工厂里面提货,而不用去管这辆汽车是怎么做出来的,以及这个汽车里面的具体实现。

2、Hibernate 换数据库只需换方言和驱动就可以。

优点

1、一个调用者想创建一个对象,只要知道其名称就可以了。

2、扩展性高,如果想增加一个产品,只要扩展一个工厂类就可以。

3、屏蔽产品的具体实现,调用者只关心产品的接口。

缺点

每次增加一个产品时,都需要增加一个具体类和对象实现工厂,使得系统中类的个数成倍增加,在一定程度上增加了系统的复杂度,同时也增加了系统具体类的依赖。这并不是什么好事。

使用场景

1、日志记录器:记录可能记录到本地硬盘、系统事件、远程服务器等,用户可以选择记录日志到什么地方。

2、数据库访问,当用户不知道最后系统采用哪一类数据库,以及数据库可能有变化时。

3、设计一个连接服务器的框架,需要三个协议,"POP3"、"IMAP"、"HTTP",可以把这三个作为产品类,共同实现一个接口。

工厂模式实现样例

首先通过定义一个Eat接口

public interface Eat {
    void eat();
}

之后定义两个子类去实现Eat接口。 

public class dogEat implements Eat{

    @Override
    public void eat() {
        System.out.println("小狗准备吃饭!");
    }
}

public class catEat implements Eat{

    @Override
    public void eat() {
        System.out.println("小猫准备吃饭!");
    }
}

通过一个工厂类,将类的创建过程延迟到工厂类进行创建,而不是直接用new方法创建dogEat,catEat对象。

public class EatFactory {
    public Eat getEat(String obj){
        if (obj == null) {
            return null;
        }
        if(obj.equalsIgnoreCase("cat")){
            return new catEat();
        }
        else if(obj.equalsIgnoreCase("dog")){
            return new dogEat();
        }
        return null;
    }
}

 创建测试用例,通过工厂模式来获取到两个类的对象,并调用了实现Eat接口后根据实际需求重写的eat方法。

public class FactoryPattern {

    public static void main(String[] args) {
        EatFactory eatFactory = new EatFactory();
        Eat obj1 = eatFactory.getEat("cat");
        obj1.eat();

        Eat obj2 = eatFactory.getEat("dog");
        obj2.eat();
    }
}

 注意事项:作为一种创建类模式,在任何需要生成复杂对象的地方,都可以使用工厂方法模式。有一点需要注意的地方就是复杂对象适合使用工厂模式,而简单对象,特别是只需要通过 new 就可以完成创建的对象,无需使用工厂模式。如果使用工厂模式,就需要引入一个工厂类,反而会增加系统的复杂度。

抽象工厂模式(Abstract Factory Pattern)

抽象工厂模式(Abstract Factory Pattern)是围绕一个超级工厂创建其他工厂。该超级工厂又称为其他工厂的工厂。在抽象工厂模式中,接口是负责创建一个相关对象的工厂,不需要显式指定它们的类。每个生成的工厂都能按照工厂模式提供对象。

定义

抽象工厂模式(Abstract Factory Pattern)是围绕一个超级工厂创建其他工厂,该超级工厂又称为其他工厂的工厂。在抽象工厂模式中,接口是负责创建一个相关对象的工厂,不需要显式指定它们的类,每个生成的工厂都能按照工厂模式提供对象。

应用实例

现有A型机器人卡布达、金龟次郎等,B型机器人鲨鱼辣椒、蟑螂恶霸等,辅助型机器人车轮滚滚等,每一类机器人只能居住在对应的仓库,比如A型机器人住在A号仓库,而A号仓库、B号仓库等都是属于总仓库类的,由总仓库这个超级工厂去创建,以后如果有C号仓库,也是通过总仓库这个超级工厂去创建新的工厂(C号仓库),同时C号仓库下的机器人也都是C类机器人(抽象产品)。

优点:当一个产品族中的多个对象被设计成一起工作时,它能保证客户端始终只使用同一个产品族中的对象。

缺点:产品族扩展非常困难,要增加一个系列的某一产品,既要在抽象的 Creator 里加代码,又要在具体的里面加代码。

抽象工厂模式实现样例

在工厂模式Eat接口的基础上创建一个新的工厂通过Drink接口去实现,具体方法与工厂类相同。

public interface Drink {
    void drink();
}
public class catDrink implements Drink {

    @Override
    public void drink() {
        System.out.println("小猫准备喝水!");
    }
}
public class dogDrink implements Drink {

    @Override
    public void drink() {
        System.out.println("小狗准备喝水!");
    }
}

接下来创建一个抽象工厂,将每一个具体的工厂的创建交给抽象工厂来实现 

public abstract class AbstractFactory {
    public abstract Eat getEat(String eatObj);
    public abstract Drink getDrink(String drinkObj);
}

接下来让Eat接口与Drink接口继承抽象工厂类,基于给定的信息生成实体类的对象

public class EatAbstractFactory extends AbstractFactory{

    @Override
    public Eat getEat(String eatObj) {
        if (eatObj == null) {
            return null;
        }
        if(eatObj.equalsIgnoreCase("cat")){
            return new catEat();
        }
        else if(eatObj.equalsIgnoreCase("dog")){
            return new dogEat();
        }
        return null;
    }

    @Override
    public Drink getDrink(String drinkObj) {
        return null;
    }
}
public class DrinkAbstractFactory extends AbstractFactory{

    @Override
    public Eat getEat(String eatObj) {
        return null;
    }

    @Override
    public Drink getDrink(String drinkObj) {
        if (drinkObj == null) {
            return null;
        }
        if(drinkObj.equalsIgnoreCase("cat")){
            return new catDrink();
        }
        else if(drinkObj.equalsIgnoreCase("dog")){
            return new dogDrink();
        }
        return null;
    }
}

接下来通过一个工厂创造类通过传递动作对象来获取工厂,降低耦合度 

public class FactoryProducer {
    public static AbstractFactory getFactory(String choice){
        if(choice.equalsIgnoreCase("eat")){
            return new EatAbstractFactory();
        }else if(choice.equalsIgnoreCase("drink")){
            return new DrinkAbstractFactory();
        }
        return null;
    }
}

使用测试用例,分别创建Eat和Drink的工厂,并通过工厂来创建对象,实现相应的eat和drink方法。

package com.company.AbstractFactoryPatternDemo;

import com.company.FactoryPatternDemo.Eat;

/**
 * Description :
 * Created by Resumebb
 * Date :2022/4/1
 */
public class AbstractFactoryDemo {
    public static void main(String[] args) {
        AbstractFactory abstractFactory = FactoryProducer.getFactory("eat");
        Eat obj1 = abstractFactory.getEat("cat");
        obj1.eat();
        Eat obj2 = abstractFactory.getEat("dog");
        obj2.eat();

        AbstractFactory abstractFactory2 = FactoryProducer.getFactory("drink");
        Drink obj3 = abstractFactory2.getDrink("cat");
        obj3.drink();
        Drink obj4 = abstractFactory2.getDrink("dog");
        obj4.drink();
    }
}

 

单例模式(Singleton Pattern)

定义

单例模式仅使用一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象,其特点可以总结为:

  • 1、单例类只能有一个实例。
  • 2、单例类必须自己创建自己的唯一实例。
  • 3、单例类必须给所有其他对象提供这一实例。

应用实例:

  • 1、一个班级只有一个班主任。
  • 2、Windows 是多进程多线程的,在操作一个文件的时候,就不可避免地出现多个进程或线程同时操作一个文件的现象,所以所有文件的处理必须通过唯一的实例来进行。
  • 3、一些设备管理器常常设计为单例模式,比如一个电脑有两台打印机,在输出的时候就要处理不能两台打印机打印同一个文件。

优点:

  • 1、在内存里只有一个实例,减少了内存的开销,尤其是频繁的创建和销毁实例(比如管理学院首页页面缓存)。
  • 2、避免对资源的多重占用(比如写文件操作)。

缺点:没有接口,不能继承,与单一职责原则冲突,一个类应该只关心内部逻辑,而不关心外面怎么样来实例化。

使用场景:

  • 1、要求生产唯一序列号。
  • 2、WEB 中的计数器,不用每次刷新都在数据库里加一次,用单例先缓存起来。
  • 3、创建的一个对象需要消耗的资源过多,比如 I/O 与数据库的连接等。

注意事项:getInstance() 方法中需要使用同步锁 synchronized (Singleton.class) 防止多线程同时进入造成 instance 被多次实例化。

单例模式实现样例

首先创建一个Singleton类,在类中创建一个instance对象,满足第二条,创建自己的唯一实例;之后通过私有化构造函数,保证了这个类不会在外部被实例化,满足第一条,只有一个实例;最后通过getInstance方法满足第三条,为其他类提供这一实例。

public class Singleton {
    private static Singleton instance = new Singleton();
    private Singleton(){};
    public static Singleton getInstance(){
        return instance;
    }
    public void show(){
        System.out.println("Typing Something!");
    }
}
public class SingletonDemo {
    public static void main(String[] args) {
        Singleton obj = Singleton.getInstance();
        obj.show();
    }
}

 通过getInstance方法可以获取到这个唯一实例,调用show方法也成功打印出了预期信息

 如果不通过getInstance方法想要创建一个新的实例对象时编译就会报错,满足了单例模式的要求。

 单例模式的实现方法

1.懒汉式加载(线程不安全)

最基本的实现方式,这种实现最大的问题就是不支持多线程。因为没有加锁 synchronized,所以严格意义上它并不算单例模式。这种方式 lazy loading 很明显,不要求线程安全,在多线程不能正常工作。

所谓懒汉式加载就是请求获取实例时,判断对象是否已经创建,如果已经创建就直接返回instance,只有未创建为null时才会创建对象。

public class Singleton {  
    private static Singleton instance;  
    private Singleton (){}  
  
    public static Singleton getInstance() {  
        if (instance == null) {  
            instance = new Singleton();  
        }  
        return instance;  
    }  
}

2.懒汉式加载(线程安全)

这种方式具备很好的 lazy loading,能够在多线程中很好的工作,但是,效率很低,99% 情况下不需要同步。

优点:第一次调用才初始化,避免内存浪费。
缺点:必须加锁 synchronized 才能保证单例,但加锁会影响效率。
getInstance() 的性能对应用程序不是很关键(该方法使用不太频繁)。

public class Singleton {  
    private static Singleton instance;  
    private Singleton (){}  
    public static synchronized Singleton getInstance() {  
        if (instance == null) {  
            instance = new Singleton();  
        }  
        return instance;  
    }  
}

3.饿汉式加载

它基于 classloader 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,虽然导致类装载的原因有很多种,在单例模式中大多数都是调用 getInstance 方法, 但是也不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 显然没有达到 lazy loading 的效果。

饿汉式加载与懒汉式不同的就是不会判断instance是否为null,只要你申请实例我就会创建一个instance并返回给你。优点是没有加锁,执行效率会提高,但缺点也很明显类加载时就初始化,浪费内存。饿汉式是线程安全的。

public class Singleton {  
    private static Singleton instance = new Singleton();  
    private Singleton (){}  
    public static Singleton getInstance() {  
    return instance;  
    }  
}

4.双重校验锁DLC

JDK1.5以后出现的方式,采用双锁方式,线程安全且在多线程下能保持高性能,volatile能保证实例能实时同步至主存,且只有实例为null准备创建时才会对加锁。

public class Singleton {  
    private volatile static Singleton singleton;  
    private Singleton (){}  
    public static Singleton getSingleton() {  
    if (singleton == null) {  
        synchronized (Singleton.class) {  
            if (singleton == null) {  
                singleton = new Singleton();  
            }  
        }  
    }  
    return singleton;  
    }  
}

建造者模式(Builder Pattern)

定义

建造者模式(Builder Pattern)使用多个简单的对象一步一步构建成一个复杂的对象,一个 Builder 类会一步一步构造最终的对象,该 Builder 类是独立于其他对象的,其将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示。

应用实例

 去KFC,汉堡、可乐、薯条、炸鸡翅等是不变的,而其组合是经常变化的,生成出所谓的"套餐"。

优点

1、建造者独立,易扩展。

2、便于控制细节风险。

缺点

1、产品必须有共同点,范围有限制。

2、如内部变化复杂,会有很多的建造类。

使用场景

1、需要生成的对象具有复杂的内部结构。

2、需要生成的对象内部属性本身相互依赖。

注意事项:与工厂模式的区别是:建造者模式更加关注与零件装配的顺序。

建造者模式实现样例

首先创建一个接口,包含事物的种类,包装,价格。

public interface Item {
   public String name();
   public Packing packing();
   public float price();    
}

public interface Packing {
   public String pack();
}

创建实现Packing接口的实现类 

public class Wrapper implements Packing {
 
   @Override
   public String pack() {
      return "Wrapper";
   }
}
public class Bottle implements Packing {
 
   @Override
   public String pack() {
      return "Bottle";
   }
}

创建实现 Item 接口的抽象类,该类提供了默认的功能。

public abstract class Burger implements Item {
 
   @Override
   public Packing packing() {
      return new Wrapper();
   }
 
   @Override
   public abstract float price();
}
public abstract class ColdDrink implements Item {
 
    @Override
    public Packing packing() {
       return new Bottle();
    }
 
    @Override
    public abstract float price();
}

 创建扩展了 Burger 和 ColdDrink 的实体类。

public class VegBurger extends Burger {
 
   @Override
   public float price() {
      return 25.0f;
   }
 
   @Override
   public String name() {
      return "Veg Burger";
   }
}

public class ChickenBurger extends Burger {
 
   @Override
   public float price() {
      return 50.5f;
   }
 
   @Override
   public String name() {
      return "Chicken Burger";
   }
}
public class Coke extends ColdDrink {
 
   @Override
   public float price() {
      return 30.0f;
   }
 
   @Override
   public String name() {
      return "Coke";
   }
}

public class Pepsi extends ColdDrink {
 
   @Override
   public float price() {
      return 35.0f;
   }
 
   @Override
   public String name() {
      return "Pepsi";
   }
}

 创建一个 Meal 类,带有上面定义的 Item 对象。

import java.util.ArrayList;
import java.util.List;
 
public class Meal {
   private List<Item> items = new ArrayList<Item>();    
 
   public void addItem(Item item){
      items.add(item);
   }
 
   public float getCost(){
      float cost = 0.0f;
      for (Item item : items) {
         cost += item.price();
      }        
      return cost;
   }
 
   public void showItems(){
      for (Item item : items) {
         System.out.print("Item : "+item.name());
         System.out.print(", Packing : "+item.packing().pack());
         System.out.println(", Price : "+item.price());
      }        
   }    
}

创建一个 MealBuilder 类,实际的 builder 类负责创建 Meal 对象。

public class MealBuilder {
 
   public Meal prepareVegMeal (){
      Meal meal = new Meal();
      meal.addItem(new VegBurger());
      meal.addItem(new Coke());
      return meal;
   }   
 
   public Meal prepareNonVegMeal (){
      Meal meal = new Meal();
      meal.addItem(new ChickenBurger());
      meal.addItem(new Pepsi());
      return meal;
   }
}

最后测试,可以看出建造者模式很关注装配顺序,每一步都是循序渐进,逐步扩展,同时Builder是一个独立组件。

public class BuilderPatternDemo {
   public static void main(String[] args) {
      MealBuilder mealBuilder = new MealBuilder();
 
      Meal vegMeal = mealBuilder.prepareVegMeal();
      System.out.println("Veg Meal");
      vegMeal.showItems();
      System.out.println("Total Cost: " +vegMeal.getCost());
 
      Meal nonVegMeal = mealBuilder.prepareNonVegMeal();
      System.out.println("\n\nNon-Veg Meal");
      nonVegMeal.showItems();
      System.out.println("Total Cost: " +nonVegMeal.getCost());
   }
}

原型模式(Prototype Pattern)

定义

原型模式是实现了一个原型接口,该接口用于创建当前对象的克隆。当直接创建对象的代价比较大时,则采用这种模式。例如,一个对象需要在一个高代价的数据库操作之后被创建。我们可以缓存该对象,在下一个请求时返回它的克隆,在需要的时候更新数据库,以此来减少数据库调用。

意图:用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。

主要解决:在运行期建立和删除原型。

何时使用

1、当一个系统应该独立于它的产品创建,构成和表示时。

2、当要实例化的类是在运行时刻指定时,例如,通过动态装载。

3、为了避免创建一个与产品类层次平行的工厂类层次时。

4、当一个类的实例只能有几个不同状态组合中的一种时。建立相应数目的原型并克隆它们可能比每次用合适的状态手工实例化该类更方便一些。

关键代码

1、实现克隆操作,在 JAVA 继承 Cloneable,重写 clone(),在 .NET 中可以使用 Object 类的 MemberwiseClone() 方法来实现对象的浅拷贝或通过序列化的方式来实现深拷贝。

2、原型模式同样用于隔离类对象的使用者和具体类型(易变类)之间的耦合关系,它同样要求这些"易变类"拥有稳定的接口。

应用实例: 1、细胞分裂。 2、JAVA 中的 Object clone() 方法。

优点: 

1、性能提高。

2、逃避构造函数的约束。

缺点: 

1、配备克隆方法需要对类的功能进行通盘考虑,这对于全新的类不是很难,但对于已有的类不一定很容易,特别当一个类引用不支持串行化的间接对象,或者引用含有循环结构的时候。

2、必须实现 Cloneable 接口。

使用场景 

1、资源优化场景。

2、类初始化需要消化非常多的资源,这个资源包括数据、硬件资源等。

3、性能和安全要求的场景。

4、通过 new 产生一个对象需要非常繁琐的数据准备或访问权限,则可以使用原型模式。

5、一个对象多个修改者的场景。

6、一个对象需要提供给其他对象访问,而且各个调用者可能都需要修改其值时,可以考虑使用原型模式拷贝多个对象供调用者使用。

7、在实际项目中,原型模式很少单独出现,一般是和工厂方法模式一起出现,通过 clone 的方法创建一个对象,然后由工厂方法提供给调用者。原型模式已经与 Java 融为浑然一体,大家可以随手拿来使用。

注意事项:与通过对一个类进行实例化来构造新对象不同的是,原型模式是通过拷贝一个现有对象生成新对象的。浅拷贝实现 Cloneable,重写,深拷贝是通过实现 Serializable 读取二进制流。

原型模式实现样例

首先创建一个User类作为实现Cloneable接口的一个抽象类

public abstract class User implements Cloneable{
    private String name;
    protected String type;
    abstract void set();

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getType() {
        return type;
    }

    public void setType(String type) {
        this.type = type;
    }

    @Override
    public Object clone(){
        Object clone = null;
        try {
            clone = super.clone();
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }
        return clone;
    }
}

 创建学生类和教师类扩展为抽象类的实体类

public class Student extends User{
    public Student(){
        type = "班长";
    }

    @Override
    void set() {
        System.out.println("Inside Student set method");
    }
}

public class Teacher extends User{

    public Teacher(){
        type = "班主任";
    }

    @Override
    void set() {
        System.out.println("Inner Teacher set method");
    }
}

 创建一个新类,将数据存储在Hashtable中

public class UserCache {
    private static Hashtable<String, User> userHashtable = new Hashtable<>();

    public static User getUser(String username){
        User user = userHashtable.get(username);
        return (User) user.clone();
    }

    public static void loadCache(){
        Student student = new Student();
        student.setName("张三");
        userHashtable.put(student.getName(), student);

        Teacher teacher = new Teacher();
        teacher.setName("李老师");
        userHashtable.put(teacher.getName(), teacher);
    }
}

创建测试类,通过UserCache类来获取存在Hashtable中的人员类型的克隆

public class PrototypePatternDemo {
    public static void main(String[] args) {
        UserCache.loadCache();

        Student student = (Student) UserCache.getUser("张三");
        System.out.println("学生:"+student.getName()+", 职位:"+student.getType());

        Teacher teacher = (Teacher) UserCache.getUser("李老师");
        System.out.println("老师:"+teacher.getName()+", 职位:"+teacher.getType());
    }
}

 此处效果不明显,但当复杂情况下,创建对象代价较大,通过将其缓存在本地,这里是通过存储在Hashtable中来充当缓存,在请求创建时,直接返回它的克隆,这样就减少了资源消耗。

 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

设计模式-五大创建型模式概念与实现 的相关文章

  • Java复习-25-单例设计模式

    单例设计模式 目的 使用场景 在实际开发下 会存在一种情况 某一种类在程序的整个生命周期中 只需要实例化一次就足够了 例如 系统数据类 由于操作系统只有一个 因此在程序初始化时该类只需要实例化一次 之后的系统数据更改都是在这一个实例化对象中
  • c++享元模式

    享元模式 1 享元模式简介 享元模式在 设计模式 可复用面向对象软件的基础 一书中是这样说的 运用共享技术有效地支持大量细粒度的对象 本质就是对大量细粒度的对象进行共享 不是每个对象都要通过new的方式去创建 而是通过区分对象的内部状态和外
  • 设计模式——Visitor(访问者)模式

    目录 前言 1 定义 2 适用性 3 结构 3 1 结构图 3 2 参与者 4 Java实际应用举例 以ASM技术为例 4 1 被访问对象 ClassReader 4 2 Visitor ClassVisitor 4 3 具体visitor
  • 行为型模式-策略模式

    package per mjn pattern strategy 抽象策略类 public interface Strategy void show package per mjn pattern strategy 具体策略类 用来封装算法
  • C++设计模式(二)观察者模式

    1 观察者模式知识点 1 定义 定义对象间的一种一对多的依赖关系 当一个对象的状态发生改变的时候 所有依赖它的对象都得到通知并自动更新 2 动机 将一个系统分割成一系列相互协作的类有一个常见的副作用 需要维护相关对象间的一致性 我们不希望为
  • 小谈设计模式(1)—总序

    小谈设计模式 1 总序 专栏地址 开始操作 设计模式总论 设计模式是什么 组成要素 模式名称 问题描述 解决方案 效果描述 设计模式有什么作用 提供可重用的解决方案 提高代码的可读性和可维护性 促进代码的可扩展性 提高代码的灵活性和可重用性
  • Java设计模式:装饰者模式(Decorator Pattern)

    装饰者模式 涉及的重要设计原则 类应该对扩展开放 对修改关闭 装饰者模式定义 装饰者模式动态地将责任附加到对象上 若要扩展功能 装饰者提供了比继承更有弹性的替代方案 UML类图 装饰者模式事例 咖啡店 咖啡种类 1 深焙咖啡 DarkRoa
  • 设计模式之享元模式

    一 背景 在面向对象程序设计过程中 有时会面临要创建大量相同或相似对象实例的问题 创建那么多的对象将会耗费很多的系统资源 它是系统性能提高的一个瓶颈 例如 围棋和五子棋中的黑白棋子 图像中的坐标点或颜色 局域网中的路由器 交换机和集线器 教
  • java需会(转载)

    一 基础篇 1 1 Java基础 面向对象的特征 继承 封装和多态 final finally finalize 的区别 Exception Error 运行时异常与一般异常有何异同 请写出5种常见到的runtime exception i
  • 六大设计原则--开闭原则

    定义 software entities like classes modules and functions should be open for extension but closed for modifications 一个软件实体
  • 设计模式一之简单工厂模式

    生活示例 刻板印刷 gt 活字印刷举例 喝酒唱歌 人生真爽 gt 对酒当歌 人生几何 可维护 需要修改 则只需要改需要改的字即可 可复用 字体可在后来的印刷复用 可扩展 需要加字 只需要加入相应的刻字即可 灵活性好 字的排列可能竖排或横排
  • 设计模式七大原则

    1 设计模式的目的 编写软件过程中 程序员面临着来自耦合性 内聚性以及可维护性 可扩展性 重用性 灵活性 等多方面的挑战 设计模式是为了让程序 软件 具有更好 1 代码重用性 即 相同功能的代码 不用多次编写 2 可读性 即 编程规范性 便
  • 设计模式-2--工厂模式(Factory Pattern)

    一 什么是工厂模式 工厂模式 Factory Pattern 是一种创建型设计模式 它提供了一种创建对象的接口 但是将对象的实例化过程推迟到子类中 工厂模式允许通过调用一个共同的接口方法来创建不同类型的对象 而无需暴露对象的实例化逻辑 工厂
  • 每日一问:你想如何破坏单例模式?

    前言 1 单例是什么 单例模式 是一种创建型设计模式 目的是保证全局一个类只有一个实例对象 分为懒汉式和饿汉式 所谓懒汉式 类似于懒加载 需要的时候才会触发初始化实例对象 而饿汉式正好相反 项目启动 类加载的时候 就会创建初始化单例对象 1
  • HeadFirst 设计模式学习笔记10——MVC分析

    1 M V C Model View Controller 模式 视图 控制器 这是一种范型 模型对象正是应用系统存在的理由 你设计的对象 包含了数据 逻辑和其他在你的应用领域创建定制的类 视图通常是控件 用来显示和编辑 控制器位于二者中间
  • Tomcat 系统架构与设计模式之工作原理篇

    本文以 Tomcat 5 为基础 也兼顾最新的 Tomcat 6 和 Tomcat 4 Tomcat 的基本设计思路和架构是具有一定连续性的 Tomcat 总体结构 Tomcat 的结构很复杂 但是 Tomcat 也非常的模块化 找到了 T
  • 设计模式——State(状态)模式

    目录 前言 1 定义 2 适用性 3 结构 3 1 结构图 3 2 参与者 4 应用举例 4 1 State TcpState 4 2 Context TcpConnection 4 3 ConcreteState ListeningTcp
  • DDD专家张逸:构建领域驱动设计知识体系

    张逸 读完需要 5分钟 速读仅需 2 分钟 领域驱动设计专家 曾就职于 ThoughtWorks 作为 Lead Consultant 为客户提供架构设计 大数据分析 持续交付 代码质量 敏捷管理等咨询服务 著译作包括 软件设计精要与模式
  • 设计模式-享元模式

    一 概念 如果在一个系统中存在多个相同的对象 那么只需要共享一份对象的拷贝 而不必为每一次使用都创建新的对象 目的是提高系统性能 上面的概念乍一听好像单例模式其实不是 单例模式只保存一个对象 但是这里可以有很多个不同对象 但是每个对象只有一
  • 设计模式 原型模式 与 Spring 原型模式源码解析(包含Bean的创建过程)

    原创 疯狂的狮子Li 狮子领域 程序圈 2023 12 19 10 30 发表于辽宁 原型模式 原型模式 Prototype模式 是指 用原型实例指定创建对象的种类 并且通过拷贝这些原型 创建新的对象 原型模式是一种创建型设计模式 允许一个

随机推荐

  • Package cmake is not available, but is referred to by another package.

    inux环境下安装Cmake报错 xff1a Package cmake is not available but is referred to by another package This may mean that the packa
  • 完美数问题

    题目描述 对于一个十进制正整数 xff0c 如果z的每一位数字只可能是1 2 3中的其中一个 xff0c 则称 是完美数 如 123 1 3321都是完美数而5 1234则不是 牛牛想写一个函数f n xff0c 使得其返回最大的不大于n的
  • 围圈抽牌报数问题

    问题描述 米免参加公司司建 xff0c 100个同事围坐圈 xff0c 裁判开始顺时针从头发牌 xff0c 每发3张白牌就会发出1张黑 牌 xff0c 抽到黑牌的人出局 xff0c 每局第N个抽到黑牌的将获得奖励 问如果米免想获得奖品 xf
  • RTX30系列-Ubuntu系统配置与深度学习环境Pytorch配置

    本文完成RTX3090Windows 43 Ubuntu双系统配置 xff0c 并配置深度学习环境 硬件环境为RTX3090 43 Z590主板 xff0c 64GB RAM xff0c 2TB固态 xff0c 8TB存储 Ubuntu系统
  • 【rotors】多旋翼无人机仿真(一)——搭建rotors仿真环境

    rotors 多旋翼无人机仿真 xff08 一 xff09 搭建rotors仿真环境 rotors 多旋翼无人机仿真 xff08 二 xff09 设置飞行轨迹 rotors 多旋翼无人机仿真 xff08 三 xff09 SE3控制 roto
  • JVM内存管理

    JVM内存管理 Java 虚拟机在执行 Java 程序的过程中会把它管理的内存划分成若干个不同的数据区域 xff0c JDK 1 8 和之前的版本的数据区域有所差异 xff0c JDK1 6如下图所示 图片来源 xff1a JavaGuid
  • AQS、Semaphore、CountDownLatch与CyclicBarrier原理及使用方法

    AQS AQS 的全称为 AbstractQueuedSynchronizer xff0c 翻译过来的意思就是抽象队列同步器 这个类在 java util concurrent locks 包下面 xff0c AQS 就是一个抽象类 xff
  • 滑动窗口框架算法

    最长覆盖子串 xff0c 异位词 xff0c 最长无重复子串等等许多子串问题用常规暴力法费时费力 xff0c 一些大佬的解法虽然很强效率很高 xff0c 但是太难想到了 xff0c 这类问题用滑动窗口算法解决非常的快捷简便 滑动窗口算法思想
  • Python-深度学习常用脚本

    记录一些因为在网络训练 xff0c 测试过程中经常用到的一些脚本 1 视频按帧提取 可以从一段视频中截取不同帧的图片 xff0c 并保存至文件夹 需要自己更改视频路径和图片保存路径 import os import cv2 import s
  • Java面试基础(一)

    1 重载与重写 重载就是同样的一个方法能够根据输入数据的不同 xff0c 做出不同的处理 重写就是当子类继承自父类的相同方法 xff0c 输入数据一样 xff0c 但要做出有别于父类的响应时 xff0c 你就要覆盖父类方法不同类型的对象 x
  • 网络篇-传输控制协议TCP

    TCP协议 传输控制协议 xff08 TCP xff0c Transmission Control Protocol xff09 用一句话概括的话 xff0c 它是一种面向连接的 可靠的 基于字节流的传输层通信协议 TCP xff08 传输
  • 阻塞队列-BlockingQueue

    对于Queue而言 xff0c BlockingQueue是主要的线程安全的版本 xff0c 具有阻塞功能 xff0c 可以允许添加 删除元素被阻塞 xff0c 直到成功为止 xff0c blockingqueue相对于Queue而言增加了
  • 线程池-ThreadPoolExecutor

    如果并发的线程数量很多 xff0c 并且每个线程都是执行一个时间很短的任务就结束了 xff0c 这样频繁创建线程就会大大降低系统的效率 xff0c 因为频繁创建线程和销毁线程需要时间 那么有没有一种办法使得线程可以复用 xff0c 就是执行
  • MySQL索引

    基础知识 索引是创建在表上的 xff0c 对数据库表中一列或多列的值进行排序的一种结构 xff0c 可以提高查询的速度 通俗的来说 xff0c 数据库中存储的数据比作字典的话 xff0c 索引就相当于是字典中的目录 如果没有索引 xff0c
  • ThreadPoolExecutor任务提交与停止流程及底层实现

    ThreadPoolExecutor任务提交 executor任务提交流程 通过查看源码可知 xff0c JUC下的Excutor接口仅提供了一个可执行方法executor public interface Executor Execute
  • RoboMaster步兵机器人简介

    RoboMaster步兵机器人简介 湖北工业大学 蔡饶 如下图所示 xff0c 设计的是一个基于麦克纳姆轮的四轮全向越障平台 xff0c 纵臂式独立悬挂 xff0c 搭载两轴云台和弹丸发射机构 xff0c 是大疆承办的RoboMaster机
  • makefile 完美教程

    简介 Makefile 是和 make 命令一起配合使用的 xff0c 很多大型项目的编译都是通过 Makefile 来组织的 我建立工程的方法有以下三点 xff1a 1 makefile xff1a 优点 xff1a 使用非常广泛 xff
  • Arrays与Collection中自定义Comparator接口配合lambda实现自定义sort

    问题 刷到一个算法题需要拼接数字组成一个最大数 xff0c 基本思想是高位比较 xff0c 相等比较下一位 xff0c 然后根据大小先拼接大的 xff0c 再拼接小的 xff0c 但是发现当存在多个数字高位相同时面临一个问题 xff0c 比
  • SpringBoot2常见问题总结帖

    1 启动Springboot主程序类后报错This application has no explicit mapping for error so you are seeing this as a fallback 解决办法 xff1a
  • 设计模式-五大创建型模式概念与实现

    设计模式 xff08 Design pattern xff09 代表了最佳的实践方案 xff0c 可以说它是一套被反复使用的 多数人知晓的 经过分类编目的 代码设计经验的总结 xff0c 通常被有经验的面向对象的软件开发人员所采用 Desi