在浏览器地址栏输入一个URL后回车,背后会进行哪些技术步骤?

2023-05-16

转载于:小林的图解网络系列

关键是要有个上帝视角,先要有个网络模型的概念,也就是TCP/IP 四层网络模型,然后针对每一层的协议进行深入。

img

学习计算机网络一定要抓主一个点,就是「输入URL,期间发生的过程」,你按这个思路去学,你就能把每一层的协议的作用都梳理清楚了,也能把各个协议知识点串起来。

img

关于「输入URL,期间发生的过程」我在知乎也回答过一个很详细的回答,现在已经超2000赞了,有兴趣的同学可以去看看:

我将以 30 多张图,并以「数据包」这个主人公,带大家一探究竟「键入网址后,期间发生了什么?」,相信我,你看完后,你就会发现计算机网络的奇妙之处!(末尾会聊我学习计算机网络的心得哦)

接下来以下图较简单的网络拓扑模型作为例子,探究探究其间发生了什么?

img

01 孤单小弟 —— HTTP

浏览器做的第一步工作是解析 URL

首先浏览器做的第一步工作就是要对 URL 进行解析,从而生发送给 Web 服务器的请求信息。

让我们看看一条长长的 URL 里的各个元素的代表什么,见下图:

img

所以图中的长长的 URL 实际上是请求服务器里的文件资源。

要是上图中的蓝色部分 URL 元素都省略了,哪应该是请求哪个文件呢?

当没有路径名时,就代表访问根目录下事先设置的默认文件,也就是 /index.html 或者 /default.html 这些文件,这样就不会发生混乱了。

生产 HTTP 请求信息

URL 进行解析之后,浏览器确定了 Web 服务器和文件名,接下来就是根据这些信息来生成 HTTP 请求消息了。

img

一个孤单 HTTP 数据包表示:“我这么一个小小的数据包,没亲没友,直接发到浩瀚的网络,谁会知道我呢?谁能载我一层呢?谁能保护我呢?我的目的地在哪呢?”。充满各种疑问的它,没有停滞不前,依然踏上了征途!

02 真实地址查询 —— DNS

通过浏览器解析 URL 并生成 HTTP 消息后,需要委托操作系统将消息发送给 Web 服务器。

但在发送之前,还有一项工作需要完成,那就是查询服务器域名对于的 IP 地址,因为委托操作系统发送消息时,必须提供通信对象的 IP 地址。

比如我们打电话的时候,必须要知道对方的电话号码,但由于电话号码难以记忆,所以通常我们会将对方电话号 + 姓名保存在通讯录里。

所以,有一种服务器就专门保存了 Web 服务器域名与 IP 的对应关系,它就是 DNS 服务器。

域名的层级关系

DNS 中的域名都是用句点来分隔的,比如 www.server.com,这里的句点代表了不同层次之间的界限

在域名中,越靠右的位置表示其层级越高

毕竟域名是外国人发明,所以思维和中国人相反,比如说一个城市地点的时候,外国喜欢从小到大的方式顺序说起(如 XX 街道 XX 区 XX 市 XX 省),而中国则喜欢从大到小的顺序(如 XX 省 XX 市 XX 区 XX 街道)。

根域是在最顶层,它的下一层就是 com 顶级域,再下面是 http://server.com。

所以域名的层级关系类似一个树状结构:

  • 根 DNS 服务器
  • 顶级域 DNS 服务器(com)
  • 权威 DNS 服务器(http://server.com)

img

根域的 DNS 服务器信息保存在互联网中所有的 DNS 服务器中。

这样一来,任何 DNS 服务器就都可以找到并访问根域 DNS 服务器了。

因此,客户端只要能够找到任意一台 DNS 服务器,就可以通过它找到根域 DNS 服务器,然后再一路顺藤摸瓜找到位于下层的某台目标 DNS 服务器。

域名解析的工作流程

  1. 客户端首先会发出一个 DNS 请求,问 http://www.server.com 的 IP 是啥,并发给本地 DNS 服务器(也就是客户端的 TCP/IP 设置中填写的 DNS 服务器地址)。
  2. 本地域名服务器收到客户端的请求后,如果缓存里的表格能找到 http://www.server.com,则它直接返回 IP 地址。如果没有,本地 DNS 会去问它的根域名服务器:“老大, 能告诉我 http://www.server.com 的 IP 地址吗?” 根域名服务器是最高层次的,它不直接用于域名解析,但能指明一条道路。
  3. 根 DNS 收到来自本地 DNS 的请求后,发现后置是 .com,说:“http://www.server.com 这个域名归 .com 区域管理”,我给你 .com 顶级域名服务器地址给你,你去问问它吧。”
  4. 本地 DNS 收到顶级域名服务器的地址后,发起请求问“老二, 你能告诉我 http://www.server.com 的 IP 地址吗?”
  5. 顶级域名服务器说:“我给你负责 http://www.server.com 区域的权威 DNS 服务器的地址,你去问它应该能问到”。
  6. 本地 DNS 于是转向问权威 DNS 服务器:“老三,http://www.server.com对应的IP是啥呀?” http://server.com的权威 DNS 服务器,它是域名解析结果的原出处。为啥叫权威呢?就是我的域名我做主。
  7. 权威 DNS 服务器查询后将对应的 IP 地址 X.X.X.X 告诉本地 DNS。
  8. 本地 DNS 再将 IP 地址返回客户端,客户端和目标建立连接。

至此,我们完成了 DNS 的解析过程。现在总结一下,整个过程我画成了一个图。

img

DNS 域名解析的过程蛮有意思的,整个过程就和我们日常生活中找人问路的过程类似,只指路不带路

数据包表示:“DNS 老大哥厉害呀,找到了目的地了!我还是很迷茫呀,我要发出去,接下来我需要谁的帮助呢?”

03 指南好帮手 —— 协议栈

通过 DNS 获取到 IP 后,就可以把 HTTP 的传输工作交给操作系统中的**协议栈**。

协议栈的内部分为几个部分,分别承担不同的工作。上下关系是有一定的规则的,上面的部分会向下面的部分委托工作,下面的部分收到委托的工作并执行。

img

应用程序(浏览器)通过调用 Socket 库,来委托协议栈工作。协议栈的上半部分有两块,分别是负责收发数据的 TCP 和 UDP 协议,它们两会接受应用层的委托执行收发数据的操作。

协议栈的下面一半是用 IP 协议控制网络包收发操作,在互联网上传数据时,数据刽被切分成一块块的网络包,而将网络包发送给对方的操作就是由 IP 负责的。

此外 IP 中还包括 ICMP 协议和 ARP 协议。

  • ICMP 用于告知网络包传送过程中产生的错误以及各种控制信息。
  • ARP 用于根据 IP 地址查询相应的以太网 MAC 地址。

IP 下面的网卡驱动程序负责控制网卡硬件,而最下面的网卡则负责完成实际的收发操作,也就是对网线中的信号执行发送和接收操作。

数据包看了这份指南表示:“原来我需要那么多大佬的协助啊,那我先去找找 TCP 大佬!“

04 可靠传输 —— TCP

HTTP 是基于 TCP 协议传输的,所以在这我们先了解下 TCP 协议。

TCP 包头格式

我们先看看 TCP 报文头部的格式:

img

首先,源端口号目标端口号是不可少的,如果没有这两个端口号,数据就不知道应该发给哪个应用。

接下来有包的号,这个是为了解决包乱序的问题。

还有应该有的是确认号,目的是确认发出去对方是否有收到。如果没有收到就应该重新发送,直到送达,这个是为了解决不丢包的问题。

接下来还有一些状态位。例如 SYN 是发起一个连接,ACK 是回复,RST 是重新连接,FIN是结束连接等。TCP 是面向连接的,因而双方要维护连接的状态,这些带状态位的包的发送,会引起双方的状态变更。

还有一个重要的就是窗口大小。TCP 要做流量控制,通信双方各声明一个窗口(缓存大小),标识自己当前能够的处理能力,别发送的太快,撑死我,也别发的太慢,饿死我。

除了做流量控制以外,TCP还会做拥塞控制,对于真正的通路堵车不堵车,它无能为力,唯一能做的就是控制自己,也即控制发送的速度。不能改变世界,就改变自己嘛。

TCP 传输数据之前,要先三次握手建立连接

在 HTTP 传输数据之前,首先需要 TCP 建立连接,TCP 连接的建立,通常称为三次握手

这个所谓的「连接」,只是双方计算机里维护一个状态机,在连接建立的过程中,双方的状态变化时序图就像这样。

img

  • 一开始,客户端和服务端都处于 CLOSED 状态。先是服务端主动监听某个端口,处于 LISTEN 状态。
  • 然后客户端主动发起连接 SYN,之后处于 SYN-SENT 状态。
  • 服务端收到发起的连接,返回 SYN,并且 ACK 客户端的 SYN,之后处于 SYN-RCVD 状态。
  • 客户端收到服务端发送的 SYNACK 之后,发送 ACKACK,之后处于 ESTABLISHED状态,因为它一发一收成功了。
  • 服务端收到 ACKACK 之后,处于 ESTABLISHED 状态,因为它也一发一收了。

所以三次握手目的是保证双方都有发送和接收的能力

如何查看 TCP 的连接状态?

TCP 的连接状态查看,在 Linux 可以通过 netstat -napt 命令查看。

img

TCP 分割数据

如果 HTTP 请求消息比较长,超过了 MSS 的长度,这时 TCP 就需要把 HTTP 的数据拆解一块块的数据发送,而不是一次性发送所有数据。

img

  • MTU:一个网络包的最大长度,以太网中一般为 1500 字节。
  • MSS:除去 IP 和 TCP 头部之后,一个网络包所能容纳的 TCP 数据的最大长度。

数据会被以 MSS 的长度为单位进行拆分,拆分出来的每一块数据都会被放进单独的网络包中。也就是在每个被拆分的数据加上 TCP 头信息,然后交给 IP 模块来发送数据。

img

TCP 报文生成

TCP 协议里面会有两个端口,一个是浏览器监听的端口(通常是随机生成的),一个是 Web 服务器监听的端口(HTTP 默认端口号是 80, HTTPS 默认端口号是 443)。

在双方建立了连接后,TCP 报文中的数据部分就是存放 HTTP 头部 + 数据,组装好 TCP 报文之后,就需交给下面的网络层处理。

至此,网络包的报文如下图。

img

此时,遇上了 TCP 的 数据包激动表示:“太好了,碰到了可靠传输的 TCP 传输,它给我加上 TCP 头部,我不在孤单了,安全感十足啊!有大佬可以保护我的可靠送达!但我应该往哪走呢?”

05 远程定位 —— IP

TCP 模块在执行连接、收发、断开等各阶段操作时,都需要委托 IP 模块将数据封装成网络包发送给通信对象。

IP 包头格式

我们先看看 IP 报文头部的格式:

img

在 IP 协议里面需要有**源地址 IP **和 目标地址 IP

  • 源地址IP,即是客户端输出的 IP 地址;
  • 目标地址,即通过 DNS 域名解析得到的 Web 服务器 IP。

因为 HTTP 是经过 TCP 传输的,所以在 IP 包头的协议号,要填写为 06(十六进制),表示协议为 TCP。

假设客户端有多个网卡,就会有多个 IP 地址,那 IP 头部的源地址应该选择哪个 IP 呢?

当存在多个网卡时,在填写源地址 IP 时,就需要判断到底应该填写哪个地址。这个判断相当于在多块网卡中判断应该使用哪个一块网卡来发送包。

这个时候就需要根据路由表规则,来判断哪一个网卡作为源地址 IP。

在 Linux 操作系统,我们可以使用 route -n 命令查看当前系统的路由表。

img

举个例子,根据上面的路由表,我们假设 Web 服务器的目标地址是 192.168.10.200

img

  1. 首先先和第一条条目的子网掩码(Genmask)进行 与运算,得到结果为 192.168.10.0,但是第一个条目的 Destination192.168.3.0,两者不一致所以匹配失败。
  2. 再与第二条目的子网掩码进行 与运算,得到的结果为 192.168.10.0,与第二条目的 Destination 192.168.10.0 匹配成功,所以将使用 eth1 网卡的 IP 地址作为 IP 包头的源地址。

那么假设 Web 服务器的目标地址是 10.100.20.100,那么依然依照上面的路由表规则判断,判断后的结果是和第三条目匹配。

第三条目比较特殊,它目标地址和子网掩码都是 0.0.0.0,这表示默认网关,如果其他所有条目都无法匹配,就会自动匹配这一行。并且后续就把包发给路由器,Gateway 即是路由器的 IP 地址。

IP 报文生成

至此,网络包的报文如下图。

img

此时,加上了 IP 头部的数据包表示 :“有 IP 大佬给我指路了,感谢 IP 层给我加上了 IP 包头,让我有了远程定位的能力!不会害怕在浩瀚的互联网迷茫了!可是目的地好远啊,我下一站应该去哪呢?”

06 两点传输 —— MAC

生成了 IP 头部之后,接下来网络包还需要在 IP 头部的前面加上 MAC 头部

MAC 包头格式

MAC 头部是以太网使用的头部,它包含了接收方和发送方的 MAC 地址等信息。

img

在 MAC 包头里需要发送方 MAC 地址接收方目标 MAC 地址,用于两点之间的传输

一般在 TCP/IP 通信里,MAC 包头的协议类型只使用:

  • 0800 : IP 协议
  • 0806 : ARP 协议

MAC 发送方和接收方如何确认?

发送方的 MAC 地址获取就比较简单了,MAC 地址是在网卡生产时写入到 ROM 里的,只要将这个值读取出来写入到 MAC 头部就可以了。

接收方的 MAC 地址就有点复杂了,只要告诉以太网对方的 MAC 的地址,以太网就会帮我们把包发送过去,那么很显然这里应该填写对方的 MAC 地址。

所以先得搞清楚应该把包发给谁,这个只要查一下路由表就知道了。在路由表中找到相匹配的条目,然后把包发给 Gateway 列中的 IP 地址就可以了。

既然知道要发给谁,按如何获取对方的 MAC 地址呢?

不知道对方 MAC 地址?不知道就喊呗。

此时就需要 ARP 协议帮我们找到路由器的 MAC 地址。

img

ARP 协议会在以太网中以广播的形式,对以太网所有的设备喊出:“这个 IP 地址是谁的?请把你的 MAC 地址告诉我”。

然后就会有人回答:“这个 IP 地址是我的,我的 MAC 地址是 XXXX”。

如果对方和自己处于同一个子网中,那么通过上面的操作就可以得到对方的 MAC 地址。然后,我们将这个 MAC 地址写入 MAC 头部,MAC 头部就完成了。

好像每次都要广播获取,这不是很麻烦吗?

放心,在后续操作系统会把本次查询结果放到一块叫做 ARP 缓存的内存空间留着以后用,不过缓存的时间就几分钟。

也就是说,在发包时:

  • 先查询 ARP 缓存,如果其中已经保存了对方的 MAC 地址,就不需要发送 ARP 查询,直接使用 ARP 缓存中的地址。
  • 而当 ARP 缓存中不存在对方 MAC 地址时,则发送 ARP 广播查询。

查看 ARP 缓存内容

在 Linux 系统中,我们可以使用 arp -a 命令来查看 ARP 缓存的内容。

img

MAC 报文生成

至此,网络包的报文如下图。

img

此时,加上了 MAC 头部的数据包万分感谢,说道 :“感谢 MAC 大佬,我知道我下一步要去了哪了!我现在有很多头部兄弟,相信我可以到达最终的目的地!”。 带着众多头部兄弟的数据包,终于准备要出门了。

07 出口 —— 网卡

IP 生成的网络包只是存放在内存中的一串二进制数字信息,没有办法直接发送给对方。因此,我们需要将数字信息转换为电信号,才能在网线上传输,也就是说,这才是真正的数据发送过程。

负责执行这一操作的是网卡,要控制网卡还需要靠网卡驱动程序

网卡驱动从 IP 模块获取到包之后,会将其复制到网卡内的缓存区中,接着会其开头加上报头和起始帧分界符,在末尾加上用于检测错误的帧校验序列

img

  • 起始帧分界符是一个用来表示包起始位置的标记
  • 末尾的 FCS(帧校验序列)用来检查包传输过程是否有损坏

最后网卡会将包转为电信号,通过网线发送出去。

唉,真是不容易,发一个包,真是历经历经千辛万苦。致此,一个带有许多头部的数据终于踏上寻找目的地的征途了!

08 送别者 —— 交换机

下面来看一下包是如何通过交换机的。交换机的设计是将网络包原样转发到目的地。交换机工作在 MAC 层,也称为二层网络设备

交换机的包接收操作

首先,电信号到达网线接口,交换机里的模块进行接收,接下来交换机里的模块将电信号转换为数字信号。

然后通过包末尾的 FCS 校验错误,如果没问题则放到缓冲区。这部分操作基本和计算机的网卡相同,但交换机的工作方式和网卡不同。

计算机的网卡本身具有 MAC 地址,并通过核对收到的包的接收方 MAC 地址判断是不是发给自己的,如果不是发给自己的则丢弃;相对地,交换机的端口不核对接收方 MAC 地址,而是直接接收所有的包并存放到缓冲区中。因此,和网卡不同,交换机的端口不具有 MAC 地址

将包存入缓冲区后,接下来需要查询一下这个包的接收方 MAC 地址是否已经在 MAC 地址表中有记录了。

交换机的 MAC 地址表主要包含两个信息:

  • 一个是设备的 MAC 地址,
  • 另一个是该设备连接在交换机的哪个端口上。

img

举个例子,如果收到的包的接收方 MAC 地址为 00-02-B3-1C-9C-F9,则与图中表中的第 3 行匹配,根据端口列的信息,可知这个地址位于 3 号端口上,然后就可以通过交换电路将包发送到相应的端口了。

所以,交换机根据 MAC 地址表查找 MAC 地址,然后将信号发送到相应的端口

当 MAC 地址表找不到指定的 MAC 地址会怎么样?

地址表中找不到指定的 MAC 地址。这可能是因为具有该地址的设备还没有向交换机发送过包,或者这个设备一段时间没有工作导致地址被从地址表中删除了。

这种情况下,交换机无法判断应该把包转发到哪个端口,只能将包转发到除了源端口之外的所有端口上,无论该设备连接在哪个端口上都能收到这个包。

这样做不会产生什么问题,因为以太网的设计本来就是将包发送到整个网络的,然后只有相应的接收者才接收包,而其他设备则会忽略这个包

有人会说:“这样做会发送多余的包,会不会造成网络拥塞呢?”

其实完全不用过于担心,因为发送了包之后目标设备会作出响应,只要返回了响应包,交换机就可以将它的地址写入 MAC 地址表,下次也就不需要把包发到所有端口了。

局域网中每秒可以传输上千个包,多出一两个包并无大碍。

此外,如果接收方 MAC 地址是一个广播地址,那么交换机会将包发送到除源端口之外的所有端口。

以下两个属于广播地址:

  • MAC 地址中的 FF:FF:FF:FF:FF:FF
  • IP 地址中的 255.255.255.255

数据包通过交换机转发抵达了路由器,准备要离开土生土长的子网了。此时,数据包和交换机离别时说道:“感谢交换机兄弟,帮我转发到出境的大门,我要出远门啦!”

09 出境大门 —— 路由器

路由器与交换机的区别

网络包经过交换机之后,现在到达了路由器,并在此被转发到下一个路由器或目标设备。

这一步转发的工作原理和交换机类似,也是通过查表判断包转发的目标。

不过在具体的操作过程上,路由器和交换机是有区别的。

  • 因为路由器是基于 IP 设计的,俗称三层网络设备,路由器的各个端口都具有 MAC 地址和 IP 地址;
  • 交换机是基于以太网设计的,俗称二层网络设备,交换机的端口不具有 IP 地址。

路由器基本原理

路由器的端口具有 MAC 地址,因此它就能够成为以太网的发送方和接收方;同时还具有 IP 地址,从这个意义上来说,它和计算机的网卡是一样的。

当转发包时,首先路由器端口会接收发给自己的以太网包,然后路由表查询转发目标,再由相应的端口作为发送方将以太网包发送出去。

路由器的包接收操作

首先,电信号到达网线接口部分,路由器中的模块会将电信号转成数字信号,然后通过包末尾的 FCS 进行错误校验。

如果没问题则检查 MAC 头部中的接收方 MAC 地址,看看是不是发给自己的包,如果是就放到接收缓冲区中,否则就丢弃这个包。

总的来说,路由器的端口都具有 MAC 地址,只接收与自身地址匹配的包,遇到不匹配的包则直接丢弃。

查询路由表确定输出端口

完成包接收操作之后,路由器就会去掉包开头的 MAC 头部。

MAC 头部的作用就是将包送达路由器,其中的接收方 MAC 地址就是路由器端口的 MAC 地址。因此,当包到达路由器之后,MAC 头部的任务就完成了,于是 MAC 头部就会被丢弃

接下来,路由器会根据 MAC 头部后方的 IP 头部中的内容进行包的转发操作。

转发操作分为几个阶段,首先是查询路由表判断转发目标。

img

具体的工作流程根据上图,举个例子。

假设地址为 10.10.1.101 的计算机要向地址为 192.168.1.100 的服务器发送一个包,这个包先到达图中的路由器。

判断转发目标的第一步,就是根据包的接收方 IP 地址查询路由表中的目标地址栏,以找到相匹配的记录。

路由匹配和前面讲的一样,每个条目的子网掩码和 192.168.1.100 IP 做 & 与运算后,得到的结果与对应条目的目标地址进行匹配,如果匹配就会作为候选转发目标,如果不匹配就继续与下个条目进行路由匹配。

如第二条目的子网掩码 255.255.255.0192.168.1.100 IP 做 & 与运算后,得到结果是 192.168.1.0 ,这与第二条目的目标地址 192.168.1.0 匹配,该第二条目记录就会被作为转发目标。

实在找不到匹配路由时,就会选择**默认路由**,路由表中子网掩码为 0.0.0.0 的记录表示「默认路由」。

路由器的发送操作

接下来就会进入包的发送操作

首先,我们需要根据路由表的网关列判断对方的地址。

  • 如果网关是一个 IP 地址,则这个IP 地址就是我们要转发到的目标地址,还未抵达终点,还需继续需要路由器转发。
  • 如果网关为空,则 IP 头部中的接收方 IP 地址就是要转发到的目标地址,也是就终于找到 IP 包头里的目标地址了,说明已抵达终点

知道对方的 IP 地址之后,接下来需要通过 ARP 协议根据 IP 地址查询 MAC 地址,并将查询的结果作为接收方 MAC 地址。

路由器也有 ARP 缓存,因此首先会在 ARP 缓存中查询,如果找不到则发送 ARP 查询请求。

接下来是发送方 MAC 地址字段,这里填写输出端口的 MAC 地址。还有一个以太类型字段,填写 0080 (十六进制)表示 IP 协议。

网络包完成后,接下来会将其转换成电信号并通过端口发送出去。这一步的工作过程和计算机也是相同的。

发送出去的网络包会通过交换机到达下一个路由器。由于接收方 MAC 地址就是下一个路由器的地址,所以交换机会根据这一地址将包传输到下一个路由器。

接下来,下一个路由器会将包转发给再下一个路由器,经过层层转发之后,网络包就到达了最终的目的地。

不知你发现了没有,在网络包传输的过程中,源 IP 和目标 IP 始终是不会变的,一直变化的是 MAC 地址,因为需要 MAC 地址在以太网内进行两个设备之间的包传输。

数据包通过多个路由器道友的帮助,在网络世界途径了很多路程,最终抵达了目的地的城门!城门值守的路由器,发现了这个小兄弟数据包原来是找城内的人,于是它就将数据包送进了城内,再经由城内的交换机帮助下,最终转发到了目的地了。数据包感慨万千的说道:“多谢这一路上,各路大侠的相助!”

10 互相扒皮 —— 服务器 与 客户端

数据包抵达了服务器,服务器肯定高兴呀,正所谓有朋自远方来,不亦乐乎?

服务器高兴的不得了,于是开始扒数据包的皮!就好像你收到快递,能不兴奋吗?

img

数据包抵达服务器后,服务器会先扒开数据包的 MAC 头部,查看是否和服务器自己的 MAC 地址符合,符合就将包收起来。

接着继续扒开数据包的 IP 头,发现 IP 地址符合,根据 IP 头中协议项,知道自己上层是 TCP 协议。

于是,扒开 TCP 的头,里面有序列号,需要看一看这个序列包是不是我想要的,如果是就放入缓存中然后返回一个 ACK,如果不是就丢弃。TCP头部里面还有端口号, HTTP 的服务器正在监听这个端口号。

于是,服务器自然就知道是 HTTP 进程想要这个包,于是就将包发给 HTTP 进程。

服务器的 HTTP 进程看到,原来这个请求是要访问一个页面,于是就把这个网页封装在 HTTP 响应报文里。

HTTP 响应报文也需要穿上 TCP、IP、MAC 头部,不过这次是源地址是服务器 IP 地址,目的地址是客户端 IP 地址。

穿好头部衣服后,从网卡出去,交由交换机转发到出城的路由器,路由器就把响应数据包发到了下一个路由器,就这样跳啊跳。

最后跳到了客户端的城门把手的路由器,路由器扒开 IP 头部发现是要找城内的人,与是又把包发给了城内的交换机,再由交换机转发到客户端。

客户端收到了服务器的响应数据包后,同样也非常的高兴,客户能拆快递了!

于是,客户端开始扒皮,把收到的数据包的皮扒剩 HTTP 响应报文后,交给浏览器去渲染页面,一份特别的数据包快递,就这样显示出来了!

最后,客户端要离开了,向服务器发起了 TCP 四次挥手,至此双方的连接就断开了。

一个数据包臭不要脸的感受

下面内容的 「我」,代表「臭美的数据包角色」。 (括号的内容)代表我的吐槽,三连呸!

我一开始我虽然孤单、不知所措,但没有停滞不前。我依然满怀信心和勇气开始了征途。(你当然有勇气,你是应用层数据,后面有底层兄弟当靠山,我呸!

我很庆幸遇到了各路神通广大的大佬,有可靠传输的 TCP、有远程定位功能的 IP、有指明下一站位置的 MAC 等(你当然会遇到,因为都被计算机安排好的,我呸!)。

这些大佬都给我前面加上了头部,使得我能在交换机和路由器的转发下,抵达到了目的地!(哎,你也不容易,不吐槽了,放过你!

这一路上的经历,让我认识到了网络世界中各路大侠协作的重要性,是他们维护了网络世界的秩序,感谢他们!(我呸,你应该感谢众多计算机科学家!

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

在浏览器地址栏输入一个URL后回车,背后会进行哪些技术步骤? 的相关文章

  • 嵌入式为何钟爱SourceInsight,主要因为这个功能~

    已剪辑自 https mp weixin qq com s F gafwbZswpnY8EaCz8HxQ 不管是玩单片机还是嵌入式linux xff0c 只要是与硬件结合比较紧密的部分目前基本上还是C语言 xff0c 当然了 xff0c 不
  • 华科师兄最近的六条感悟

    已剪辑自 https mp weixin qq com s P6vz2zDTnCNli0GdyKX98Q 孤独之前是迷茫 孤独之后便是成长 曾经我是一个无法承受孤独的人 xff0c 无法和自己独处 xff0c 喜欢喧嚣的感觉 慢慢我发现这种
  • 一个优秀的程序员应该养成哪些好的习惯?

    文章目录 一 写代码前先想好思路 xff0c 先规划框架 xff0c 再到局部实现二 注重代码风格三 注重代码执行效率四 掌握一些编码原则五 解决问题时 xff0c 对于原理性的问题 xff0c 不要面向搜索引擎编程 六 注重基础知识的学习
  • 嵌入式开发中的防御性C语言编程

    嵌入式产品的可靠性自然与硬件密不可分 xff0c 但在硬件确定 并且没有第三方测试的前提下 xff0c 使用防御性编程思想写出的代码 xff0c 往往具有更高的稳定性 防御性编程首先需要认清C语言的种种缺陷和陷阱 xff0c C语言对于运行
  • PPT 最后一页写什么结束语既得体又能瞬间提升格调?

    谢邀 xff01 我只分享一个现下最流行的方法 xff0c 绝对让尾页逼格满满 xff01 罗永浩雷军都在用的 金句法 提到这份方法 xff0c 你可能会觉得很陌生 xff0c 但你一定见过这样的页面 xff1a 这样的页面还有很多 xff
  • Qt控件和事件

    文章目录 什么是 Qt 控件什么是Qt事件总结 已剪辑自 http c biancheng net view vip 9651 html Qt 是一个著名的 GUI 框架 xff0c 用来开发和用户交互的图形界面 作为 GUI 框架 xff
  • Qt信号和槽机制详解

    文章目录 信号和槽connect 函数实现信号和槽实例演示信号和槽机制 已剪辑自 http c biancheng net view vip 9652 html 信号和槽是 Qt 特有的消息传输机制 xff0c 它能将相互独立的控件关联起来
  • Qt QLabel文本框的使用

    文章目录 QLabel文本框的使用QLabel文本框的信号和槽实例演示QLabel文本框的用法 已剪辑自 http c biancheng net view vip 9653 html QLabel 是 Qt 帮我们写好的一个控件类 xff
  • Qt QPushButton按钮用法详解

    文章目录 QPushButton按钮的创建QPushButton按钮的使用QPushButton按钮的信号和槽实例演示QPushButton按钮用法 已剪辑自 http c biancheng net view vip 9654 html
  • Qt QLineEdit单行输入框用法详解

    已剪辑自 http c biancheng net view vip 9655 html QLineEdit 是 Qt 提供的一个控件类 xff0c 它直接继承自 QWdiget 类 xff0c 专门用来创建单行输入框 xff0c 如下图所
  • 使用python开发json、csv数据格式转换工具

    使用python开发json csv数据格式转换工具 json和xml是业界常用的数据格式 xff0c 而游戏行业经常使用csv配表 xff0c 包括本地化文本和数值 本文介绍csv和json序列化 逆序列化相关的python库 xff0c
  • 【学习QT必备的C++基础】C++类和对象

    文章目录 C 43 43 类的定义和对象的创建详解类的定义创建对象访问类的成员使用对象 指针 http c biancheng net c 80 总结 C 43 43 类的成员变量和成员函数详解在类体中和类体外定义成员函数的区别 C 43
  • 【学习QT必备的C++基础】C++引用精讲,C++ &用法全面剖析

    文章目录 C 43 43 引用10分钟入门教程C 43 43 引用作为函数参数C 43 43 引用作为函数返回值 C 43 43 引用在本质上是什么 xff0c 它和指针到底有什么区别 xff1f 引用和指针的其他区别 C 43 43 引用
  • 【学习QT必备的C++基础】C++继承、派生与多态

    文章目录 C 43 43 继承和派生简明教程C 43 43 三种继承方式public protected private 修饰类的成员public protected private 指定继承方式改变访问权限 C 43 43 继承时的名字遮
  • QT中组件/控件类的关系

    一 常见类继承关系 二 窗口类继承关系 Qt中窗口类的继承关系 说明 xff1a QWidge继承自QObject和QPaintDevice类 QObject是支持QT对象模型的基类 Qt Object Model QPaintDevice
  • Qt QListWidget列表框用法详解

    文章目录 QListWidget列表框的创建QListWidgetItem列表项 QListWidget列表框的使用QListWidget列表框的信号和槽实例演示QListWidget列表框的用法 已剪辑自 http c biancheng
  • Qt QTreeWidget树形控件用法详解

    文章目录 QTreeWidget控件的创建QTreeWidget QTreeView的关系和区别QTreeWidgetItem类 QTreeWidget的实际应用1 添加结点2 给结点添加图标3 给结点添加复选框4 多列树形控件5 QTre
  • Qt QMessageBox用法详解

    文章目录 通用的QMessageBox消息框1 information消息对话框2 critical消息对话框3 question消息对话框4 warning消息对话框5 about和aboutQt对话框 自定义QMessageBox对话框
  • Qt pro文件详解

    文章目录 pro文件中的配置信息QT配置项 已剪辑自 http c biancheng net view vip 9661 html 默认情况下 xff0c 每个 Qt 项目都包含一个后缀名为 pro 名称和项目名相同的文件 xff0c 我
  • mac上用qt创建应用 运行后为什么不显示窗体

    mac上安装了qt xff0c 新建mainwindow窗体应用 xff0c 运行后在程序坞出现了一个图标 xff0c 但是无法显示窗体 解决方法 xff1a 软件配置的SDK远大于电脑配置的SDK xff0c 下个低的版就好了

随机推荐

  • Qt Designer基础控件介绍

    已剪辑自 https blog csdn net qq 37631516 article details 104786627 1 布局类 xff08 4种 xff09 2 固定弹簧类 2种 xff08 不随布局变化 xff09 3 按钮类
  • python开发环境管理:pip和virtualenv

    python开发环境管理 xff1a pip和virtualenv 不同的python软件需要不同的开发环境 xff0c 互相之间甚至可能有冲突 xff0c 怎么处理 xff1f 使用pip virtualenv和virtualenvwra
  • Qt QFile文件操作详解

    文章目录 QFile文件操作QFile 43 QTextStreamQFile 43 QDataStream 文件操作是非常重要的 xff0c 是数据持久化的方法 通过文件操作 xff0c 我们可以把在软件中设置的数据保存起来 已剪辑自 h
  • Qt布局管理详解(5种布局控件)

    文章目录 QVBoxLayout垂直布局QHBoxLayout水平布局QGridLayout网格布局QFormLayout表单布局QStackedLayout分组布局 已剪辑自 http c biancheng net view vip 9
  • 基于优先级的时间片轮转调度算法(C语言实现)

    已剪辑自 http www demodashi com demo 15341 html 基于优先级的时间片轮转调度算法 1 PCB结构 xff08 Block xff09 由此定义如下结构体 xff1a span class token k
  • Qt自定义信号和槽函数

    文章目录 自定义信号函数自定义槽函数自定义信号和槽的完整实例 已剪辑自 http c biancheng net view vip 9662 html 实际开发中 xff0c 如果仅使用 Qt 提供的信号函数和槽函数 xff0c 会经常遇到
  • QT中信号和槽之间的参数传递和参数匹配

    已剪辑自 https blog csdn net lyc daniel article details 12047819 信号槽如何传递参数 xff08 或带参数的信号槽 xff09 利用Qt进行程序开发时 xff0c 有时需要信号槽来完成
  • QT使用信号与槽时编译错误“no matching function for call to connect“

    转转于 xff1a http t csdn cn K3aYh 初学QT xff0c 在尝试用connect手动关联一个按钮和QlineEdit的时候编译报错 xff0c 如下 xff1a 然后贴上主要代码块 xff1a span class
  • QT-QTableWidget中的cell和item的区别

    文章目录 QTableWidget中单击一个单元格响应不同的函数 xff1a cell和item的区别 xff1a 单击单元格响应自定义函数我的错误思路 xff1a 已剪辑自 https blog csdn net CCLasdfg art
  • QT开发网络调试助手项目总结

    之前整理了一些使用QT开发串口调试助手的项目 博客地址 xff1a 上位机总结 这次继续整理一些使用QT开发网络调试助手的项目 Qt开源作品41 网络调试助手增强版V2022 我的QT学习之路 xff0c 编写UDP 43 tcp网络调试助
  • QT开源项目总结-总有一款适合你

    Qt Open Source Project 开源项目推荐 xff1a 本人收集的有关Qt的GitHub Gitee开源项目 精品收藏 我的Qt作品 Github上的一些高分Qt开源项目 Qt编写项目作品大全 Qt 开源作品
  • Qt 打印调试信息-怎样获取QTableWidget的行数和列数-读取QTableWidget表格中的数据

    文章目录 Qt 打印调试信息怎样获取QTableWidget的行数和列数Qt怎么把QTableWidget表格中的数据读取出来 Qt 打印调试信息 打印当前目录代码如下 xff0c 别忘了头文件 include include lt QtD
  • VR游戏交互开发的一些体验

    VR游戏交互开发的一些体验 本文主要写Unity开发手游过程中VR交互输入控制的一些浅薄的经验交互方面 xff0c 头控和视线按钮依然较为主流 xff0c 可以获得传感器数据来获得输入除了实体按钮输入之外还可以探索其他交互方式 xff0c
  • 一篇文章快速搞懂Qt文件读写操作

    已剪辑自 https www cnblogs com jfzhu p 13546886 html 导读 xff1a Qt当中使用QFile类对文件进行读写操作 xff0c 对文本文件也可以与QTextStream一起使用 xff0c 这样读
  • 完整的PRD文档包含哪些内容?

    完整的PRD文档包含哪些内容 xff1f 千万 xff0c 千万 xff0c 千万别再套模板写需求文档了 xff0c 要想写好需求文档重要的不是包含哪些内容 xff0c 而是为什么包含这些内容 xff01 话不多说 xff0c 直接上干货
  • 分享一个开源的QT的串口示波器

    已剪辑自 https mp weixin qq com s XHELtvZ Wk2hNzsWD52D1w 直接来源 果果小师弟 逛github时看到这个QT的串口示波器 xff0c 完全开源 xff0c 支持串口 TCP 波形显示 通信协议
  • C 语言函数返回值,竟也有潜规则~

    已剪辑自 https mp weixin qq com s WNHx1zhna8iGaYIj6 3 fg 基本上 xff0c 没有人会将大段的C语言代码全部塞入 main 函数 更好的做法是按照复用率高 耦合性低的原则 xff0c 尽可能的
  • 模型在物理学发展中的作用

    已剪辑自 https mp weixin qq com s txS CQAIXPtY6kb2tHukUQ 模型是物理学认识由唯象理论过渡到动力学理论重要的环节 开普勒的行星运行模型 气体的分子运动模型 爱因斯坦的光子模型 卢瑟福 玻尔的原子
  • 第一性原理谈安全性和可靠性

    已剪辑自 https mp weixin qq com s jttd dhv9PmNu25Z zyd5Q 最近从各个行业对系统的安全性的关注度越来越高 xff0c 10月28日 xff0c 工信部公开征求的 道路机动车辆生产准入许可管理条例
  • 在浏览器地址栏输入一个URL后回车,背后会进行哪些技术步骤?

    转载于 xff1a 小林的图解网络系列 关键是要有个上帝视角 xff0c 先要有个网络模型的概念 xff0c 也就是TCP IP 四层网络模型 xff0c 然后针对每一层的协议进行深入 学习计算机网络一定要抓主一个点 xff0c 就是 输入