坐标系变换推导(欧拉角、方向余弦矩阵、四元数)+代码解析

2023-05-16

一、为什么选择四元数

描述两个坐标系之间的变换关系主要有几个方法

1、欧拉角法(存在奇异性和万向锁而且三个轴旋转的顺序不好定)

2、方向余弦矩阵法(翻译为Directional cosine matrix,简称DCM,也称为旋转矩阵,看了很多博客写的是C11-C33的那个矩阵,没明白为什么也称之为一个方法,有知道的指导一下,这里就不深入去看了)

3、四元数法(不容易理解,多一个维度)

动态欧拉角指的是旋转的过程当中,坐标轴跟着变化,静态的则是旋转的时候坐标轴不变。我个人理解为,当世界坐标系为参考系的情况下,物体三维旋转,是静态欧拉角,自身为参考系的情况下,是动态欧拉角,这种情况下旋转某个轴,另外的轴会改变方向。

选择四元数方法表示姿态(表示角度旋转变换的状态),是由于动态欧拉角,在旋转的过程中存在万向锁的情况,不适合随意旋转,并且有奇异性,不能够灵活的表示姿态,并且四元数更适合插值。(不过要注意的是,每次四元数插值结果都要进行规范化!!)

动态与静态欧拉角视角下的万向节死锁(Gimbal Lock)问题

四元数法比欧拉角法和余弦向量法相比有哪些优势?

gimbal lock到底是个什么东西?

四元数和欧拉角优缺点

万向锁(Gimbal lock)问题的理解及解决 RobotSlam

万向节死锁的本质 Gimbal Lock

<此处结论是就用四元数来表征计算旋转关系以及坐标系变换计算>

图片地址

二、旋转矩阵推导

以下两篇文章中写的特别详细,欧拉角和旋转矩阵的推导,尤其是其中先看绕一个轴进行旋转得到的旋转关系矩阵,然后根据三个轴的推导出任意的旋转关系矩阵(Z-Y-X旋转顺序)。

姿态解算(五)四元数、欧拉角、方向余弦矩阵

四元数、欧拉角和方向余弦的定义及关系

惯性组合导航原理—[1] 方向余弦矩阵

导航坐标系(参考坐标系,地理坐标系)n,选取东北天右手直角坐标系作为导航坐标系n、载体坐标系(机体坐标系)b,绕Z轴旋转偏航角(YAW)、绕Y轴旋转横滚角(ROLL)、绕X轴旋转俯仰角(PITCH)

选取右手直角坐标系定义:四轴向右为X正方向,向前为Y轴正方向,向上为Z轴正方向。

下面公式为一个坐标系绕着其本身的XYZ轴旋转的矩阵,单轴旋转的矩阵。

X轴:

Y轴:

Z轴:

对应矩阵也叫做givens矩阵(是正交矩阵,秩为1),[矩阵的QR分解系列二] 吉文斯(Givens)变换

绕着Z-X-Y轴旋转得到如果公式(先旋转的先左乘,矩阵更贴近[X Y Z]):

为坐标系n到坐标系b的变换矩阵,我们平常定义的欧拉角形式的方向余弦矩阵为

这两个图中公式就是欧拉角形式的坐标系变换矩阵,旋转矩阵一定注意是从哪个坐标系到哪个坐标系的旋转。

点击查看欧拉角旋转矩阵图

欧拉角旋转矩阵公式图

四元数

我们想要使用四元数表征旋转,既然四元数可以灵活的表示姿态,那么可以我们可以先用四元数表征两个状态,继而通过两个姿态状态的变化推导出坐标系变换矩阵,达到和欧拉角表示的相通的目的。

惯性组合导航原理—[2] 用四元数表征旋转

四元数旋转矩阵公式图

四元数对应的旋转矩阵有了,欧拉角形式的旋转矩阵也有了,对应旋转方向统一,两者关系就可以求出来了。

四元数表示三个旋转角的公式

反对称阵

当三维坐标点发生旋转时,如果采用矩阵运算就会需要考虑“左乘”和“右乘”。若绕静坐标系(世界坐标系)旋转,则左乘,也是变换矩阵*坐标矩阵;若是绕动坐标系旋转(自身建立一个坐标系),则右乘,也就是坐标矩阵*变换矩阵。但现实中,我们只是对一个图像、点云进行旋转,则均是左乘实现

这里我的理解是和静欧拉角和动欧拉角能够对应的,基本的旋转形态对应,即参考系为静坐标系还是自身的坐标系。 三维变换矩阵左乘和右乘分析 旋转的左乘与右乘

我从此文学习了反对称矩阵的作用,此文通过对两个向量叉乘,推导出外积可以用反对称矩阵计算的例子。惯性组合导航原理—[2] 用四元数表征旋转 -- csdn zytjasper

反对称阵可以用点乘运算代替叉乘运算,V1和V2的外积,等于V1的反对称阵和V2做内积(叉乘变点乘)

三、姿态解算部分

借用王尼莫前辈博客里面的一句话,四旋翼飞行器的姿态解算小知识点 王尼莫

姿态的数据来源有5个:重力、地磁、陀螺仪、加速度计、电子罗盘。其中前两个来自“地理”坐标系,后三个来自“载体”坐标系。

我们的目的是计算四元数来表征我们的姿态,在二中我们已经得到了通过四元数表征角度的公式,接下来只需要每次得到准确的四元数即可。

然而需要对误差校正以及补偿,要进行补偿计算,首先要将补偿值和被补偿值都换算到同一坐标系下。

[0 0 1] 为n系中的重力加速度,

读取到的加速度计测量值是ax,ay,az,陀螺仪的测量值是wx,wy,wz,磁力计的测量值是mx,my,mz。

将三个测量值都转化为单位向量(加速度计值转换为单位向量容易和b系下的[0 0 1]运算)。

参考资料:

为什么选择四元数:

动态与静态欧拉角视角下的万向节死锁(Gimbal Lock)问题

四元数法比欧拉角法和余弦向量法相比有哪些优势?

gimbal lock到底是个什么东西?

四元数和欧拉角优缺点

万向锁(Gimbal lock)问题的理解及解决 RobotSlam

万向节死锁的本质 Gimbal Lock

四元数和其他两种表示方式的相互推导关系:

姿态解算(五)四元数、欧拉角、方向余弦矩阵

四元数、欧拉角和方向余弦的定义及关系 wust_fly_high

欧拉角到方向余弦矩阵 darcsdn

反对称矩阵作用(计算中的数学知识以及为什么使用四元数和什么是四元数):

惯性组合导航原理—[2] 用四元数表征旋转 -- csdn zytjasper

有问题表述不清请多交流,有错误请务必指出,侵删联系,随意引用,谢谢(立个Flag,把大学和研究生期间的数据捡一捡,发现工作后接触到的数学都是以前学过的,某些知识细节可以再刷刷深入理解下)。

int mx,my,mz;
int ax,ay,az;

//互补滤波是这样的:陀螺积分角度+=角速度*dt;
//融合角度=陀螺权值*陀螺积分角度+(1-陀螺权值)*加速度角度;还有一种叫最大梯度法的,就是你发的这段代码

//大概是这样的: 陀螺积分角度+=角速度*dt;角度偏差=加速度角度-陀螺积分角度;
//融合角度=陀螺角度+衰减系数*角度偏差;用来矫正陀螺本身的静态漂移:角度偏差积分+=角度偏差;角速度=角速度+衰减系数*角度偏差积分;
//这个就可以一定程度上矫正陀螺的零漂。

 //下面这幅图才是准确的阐述了互补滤波的过程。正常情况下用陀螺仪的数据就可以进行姿态的更新,
 //但是由于陀螺仪的积分误差,这里用acc和mag去校正,求出他们的误差用PI去弥补。
 //注意看看pid的公式和作用,pid是作用于误差(实际个期望之间的差值),最终反复调节,让实际值=期望值。

// 加速度计、地磁计、陀螺仪数据融合,更新四元数
/*
   [gx,gy,gz]为陀螺仪的测量值
   [ax,at,az]为加速度的测量值
   [mx,my,mz]为地磁计的测量值 
*/

   /*
    *AHRS
   */
   // AHRS.c
   // Quaternion implementation of the 'DCM filter' [Mayhony et al]. Incorporates the magnetic distortion
   // compensation algorithms from my filter [Madgwick] which eliminatesthe need for a reference
   // direction of flux (bx bz) to be predefined and limits the effect ofmagnetic distortions to yaw
   // axis only.
   // User must define 'halfT' as the (sample period / 2), and the filtergains 'Kp' and 'Ki'.
   // Global variables 'q0', 'q1', 'q2', 'q3' are the quaternion elementsrepresenting the estimated
   // orientation.  See my report foran overview of the use of quaternions in this application.
   // User must call 'AHRSupdate()' every sample period and parsecalibrated gyroscope ('gx', 'gy', 'gz'),
   // accelerometer ('ax', 'ay', 'ay') and magnetometer ('mx', 'my', 'mz')data.  Gyroscope units are
   // radians/second, accelerometer and magnetometer units are irrelevantas the vector is normalised.                                
   #include "AHRS.h"
   #include <math.h>
   #include <stdio.h>
/* Private define------------------------------------------------------------*/
   #define Kp 2.0f                       // proportional gain governs rate of convergence toaccelerometer/magnetometer
    #define Ki 0.005f          // integral gain governs rate of convergenceof gyroscope biases
    #define halfT 0.0025f      // half the sample period  
   #define ACCEL_1G 1000    //theacceleration of gravity is: 1000 mg
/* Private variables---------------------------------------------------------*/
   static float q0 = 1, q1 = 0, q2 = 0, q3 = 0;        // quaternion elements representing theestimated orientation
   static float exInt = 0, eyInt = 0, ezInt = 0;        // scaled integral error
/* Public variables----------------------------------------------------------*/
   EulerAngle_Type EulerAngle;       //unit: radian
    u8InitEulerAngle_Finished = 0;
   float Magnetoresistor_mGauss_X = 0, Magnetoresistor_mGauss_Y = 0,Magnetoresistor_mGauss_Z = 0;//unit: milli-Gauss                                                                                                                                                                                                      
   float Accelerate_mg_X, Accelerate_mg_Y, Accelerate_mg_Z;//unit: mg                                                              
   float AngularRate_dps_X, AngularRate_dps_Y, AngularRate_dps_Z;//unit:dps: degree per second       
   int16_t Magnetoresistor_X, Magnetoresistor_Y, Magnetoresistor_Z;                                                                                                                                                                                                      
   uint16_t Accelerate_X = 0, Accelerate_Y = 0, Accelerate_Z = 0;                                                                                                                                                                                              
   uint16_t AngularRate_X = 0, AngularRate_Y = 0, AngularRate_Z = 0;
   u8 Quaternion_Calibration_ok = 0;
   /* Private macro-------------------------------------------------------------*/
   /* Private typedef-----------------------------------------------------------*/
   /* Private function prototypes -----------------------------------------------*/

//版权声明:本文为CSDN博主「_Summer__」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
//原文链接:https://blog.csdn.net/qq_21842557/article/details/50993809

//导航坐标系(参考坐标系)n,选取东北天右手直角坐标系作为导航坐标系n、载体坐标系(机体坐标系)b,
//选取右手直角坐标系定义:四轴向右为X正方向,向前为Y轴正方向,向上为Z轴正方向。
void AHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) 
{  
            float norm;               
            float hx, hy, hz, bx, bz;
            float vx, vy, vz, wx, wy, wz; 
            float ex, ey, ez;  
  
            // 定义一些辅助变量用于转换矩阵
            float q0q0 = q0*q0;  
            float q0q1 = q0*q1;  
            float q0q2 = q0*q2;  
            float q0q3 = q0*q3;  
            float q1q1 = q1*q1;  
            float q1q2 = q1*q2;  
            float q1q3 = q1*q3;  
            float q2q2 = q2*q2;  
            float q2q3 = q2*q3;  
            float q3q3 = q3*q3;  
             
            // 归一化加速度计和地磁计的度数 
            norm = sqrt(ax*ax + ay*ay + az*az);   
            ax = ax / norm;  
            ay = ay / norm;  
            az = az / norm;  
            norm = sqrt(mx*mx + my*my + mz*mz);   
            mx = mx / norm;  
            my = my / norm;  
            mz = mz / norm;  
             
            //将b系中的地磁计分量[mx,my,mz]转换到n系,得到[hx,hy,hz]  
            hx = 2*mx*(0.5 - q2q2 - q3q3) + 2*my*(q1q2 - q0q3) + 2*mz*(q1q3 + q0q2);  
            hy = 2*mx*(q1q2 + q0q3) + 2*my*(0.5 - q1q1 - q3q3) + 2*mz*(q2q3 - q0q1);  
            hz = 2*mx*(q1q3 - q0q2) + 2*my*(q2q3 + q0q1) + 2*mz*(0.5 - q1q1 - q2q2);        
 
            //得到n系中的地磁向量的真实值[bx,bz,by],其中by=0   
            bx = sqrt((hx*hx) + (hy*hy));  
            bz = hz;     
 
            //n系中的地磁向量[bx,by,bz]转换到b系中,得到[wx,wy,wz]
            wx = 2*bx*(0.5 - q2q2 - q3q3) + 2*bz*(q1q3 - q0q2);  
            wy = 2*bx*(q1q2 - q0q3) + 2*bz*(q0q1 + q2q3);  
            wz = 2*bx*(q0q2 + q1q3) + 2*bz*(0.5 - q1q1 - q2q2);                        
 
            //n系中重力加速度[0,0,1]转换到b系中得到三个分量[vx,vy,vz]        
            vx = 2*(q1q3 - q0q2);  
            vy = 2*(q0q1 + q2q3);  
            vz = q0q0 - q1q1 - q2q2 + q3q3;    
             
            //计算[wx,wy,wz] X [mx,my,mz],[ax,at,az] X [vx,vy,vz],得到两个误差后求和
            ex = (ay*vz - az*vy) + (my*wz - mz*wy);  
            ey = (az*vx - ax*vz) + (mz*wx - mx*wz);  
            ez = (ax*vy - ay*vx) + (mx*wy - my*wx);  
             
            //PI控制器中的积分部分
            exInt = exInt + ex*Ki* (1.0f / sampleFreq);  
            eyInt = eyInt + ey*Ki* (1.0f / sampleFreq);  
            ezInt = ezInt + ez*Ki* (1.0f / sampleFreq);  
            
            //误差经过PI控制器后输出,然后补偿到角速度的三个分量,Kp、Ki是需要调节的参数
            gx = gx + Kp*ex + exInt;  
            gy = gy + Kp*ey + eyInt;  
            gz = gz + Kp*ez + ezInt;               
            
            //一阶龙格库塔法更新四元数  
            q0 = q0 + (-q1*gx - q2*gy - q3*gz)*halfT;  
            q1 = q1 + (q0*gx + q2*gz - q3*gy)*halfT;  
            q2 = q2 + (q0*gy - q1*gz + q3*gx)*halfT;  
            q3 = q3 + (q0*gz + q1*gy - q2*gx)*halfT;    
             
            // 归一化四元数
            norm = sqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3);  
            q0 = q0 / norm;  
            q1 = q1 / norm;  
            q2 = q2 / norm;  
            q3 = q3 / norm;  
}  

/axis is a unit vector
local_rotation.w = cosf( fAngle/2)
local_rotation.x = axis.x * sinf( fAngle/2 )
local_rotation.y = axis.y * sinf( fAngle/2 )
local_rotation.z = axis.z * sinf( fAngle/2 )
//代码是抄的,抄的时候忘记了加出处。
//大体意思是将 [0 0 g]的在地理坐标系下的重力向量旋转到载体坐标系上
//和载体坐标系上的加速度计进行叉乘,求出误差
// 相同的,磁力计也是一样旋转到载体坐标系上,求出误差
// 误差很小的情况下,sinx约等于x,相加进行进行误差补偿,加上PI控制
// 磁力计和[0 0 g]每种只能补偿两个轴,(加速度计和磁力计)(这里之后需要详细说下),
// 比如说加速度计无法感知Z轴变化。

四、实际测量使用

使用的小钢炮板子,juma,现在官网都没了,是个STM32F401,板载的外设很多,此处是用板载的LSM6DS3 ,貌似也是ST的,输出的加速度计的值,发现的确加速度计无法感知绕Z轴的变化,绕X轴和Y轴旋转,蓝色是Z轴分量,平铺的板子左边翘起放平以及前边翘起的波形图(采用的串口,模拟示波器,这个很早我就上传了,当时飞思卡尔时候就用着很好用),当机体受力平衡的时候加速度计就是[0, 0, g]。

// UPDATE 20230507
// 有错误以及写的不好不对看不懂的地方及时沟通
// 如有原作有意见的及时沟通

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

坐标系变换推导(欧拉角、方向余弦矩阵、四元数)+代码解析 的相关文章

  • 【今日CV 计算机视觉论文速览 第96期】 8 Apr 2019

    今日CS CV 计算机视觉论文速览 Mon 8 Apr 2019 Totally 49 papers 上期速览 更多精彩请移步主页 Interesting 单图像修饰去除 通过估计图像中含有干扰的像素 xff08 水印 涂鸦和变形 xff0
  • gitee及github有什么区别?

    前言 xff1a 1 目前的最常用的版本控制中心有两种 xff1a SVN和Git xff1b 2 SVN xff1a 集中式版本控制中心 xff0c svn就像是一对多的关系 xff0c 一个仓库供多个人使用 xff0c 而且必须联网才能
  • 软体和软件的区别

    作者 xff1a 朱金灿 来源 xff1a http blog csdn net clever101 我们这边把Software翻译为软件 xff0c 台湾同胞把它翻译为软体 最近生发一点思考 xff0c 觉得把Software翻译为软体
  • Docker入门

    Docker简介 Docker是开发人员和系统管理员构建 发布和运行分布式应用程序的开放平台 是应用容器 xff08 Application Container xff09 xff0c 是可以为应用提供可运行容器的一个平台 Docker看作
  • js 中 set 与 数组 相互转换

    1 定义set span class token keyword let span manage ip span class token operator 61 span span class token keyword new span
  • mybatis多条件批量删除整理

    批量增加 span class token operator lt span insert id span class token operator 61 span span class token string 34 batchSaveU
  • vscode设置打开多个标签页

    首先进入路径C Users admin AppData Roaming Code User xff1b 然后打开settings json文件 xff0c 并添加一条配置 xff1a 34 workbench editor enablePr
  • Java Date 关于before和after 的使用

    1 date1 after date 当date1大于date2时 xff0c 返回true xff0c 当小于等于时 xff0c 返回false xff1b 2 date1 before date xff0c 当date1小于date2时
  • js正则表达式判断密码满足大写字母,小写字母,数字和特殊字符,其中任意三种组合,且长度在8到15之间

    一 判断密码满足大写字母 xff0c 小写字母 xff0c 数字和特殊字符 xff0c 其中任意三种组合 xff0c 且长度在8到15之间 在js中的代码 xff0c 如下 var testPassword 61 a zA Z 43 A Z
  • Java 获取两个时间的时间差(时、分、秒)

    前言 在平时的工作中 xff0c 难免会遇到获取两个时间相差多少天 小时 分钟 秒 毫秒 xff0c 现在我将自己获取的方法总结如下 xff1a 注明 xff1a 原文章转载链接出自 xff1a https www cnblogs com
  • HeidiSQL工具导出导入MySQL数据

    有时候 为了数据方便导出导入SQL 我们可以借助一定的工具 方便我们队数据库的移植 可以达到事半功倍的效果 在这里 就给大家简单的介绍一款能方便导出或者导入MySQL的数据 首先 选择你要导出的数据库 点击鼠标右键 如下图所示 这里是进行对
  • Navicat相关注册码

    Navicat相关注册码 用户名和组织随便起 注册码如下 Navicat for SQL Server V10 0 10 NAVD 3CG2 6KRN IEPM NAVL NIGY 6MYY XWQE NAVI C3UU AAGI 57FW
  • 我心目中的好的技术教程

    作者 xff1a 朱金灿 来源 xff1a http blog csdn net clever101 当人类进入互联网时代 xff0c 便宣告一个新的学习模式 网上学习的诞生 现在各种网上教程之多可以用恒河沙数来形容 xff08 这里暂时除
  • TCP的建立

    大家好呀 xff0c 我是请假君 xff0c 今天又来和大家一起学习数通了 xff0c 今天要分享的知识是TCP的建立 TCP是一个面向连接的可靠的传输控制协议 xff0c 在每次数据传输之前首先需要建立连接 xff0c 连接建立成功后才开
  • Java根据数字金额生成大写金额

    要求 根据用户输入金额数字转换成相对应大写金额例如 xff1a 430 65 xff0c 转换成肆佰叁拾元陆角伍分代码如下 xff1a public class MoneyFormatUtils private static final S
  • POI 设置Excel单元格背景色(参考颜色代码)

    创建一个 workbook 对象 Workbook workbook 61 new XSSFWorkbook 创建一个 sheet Sheet sheet 61 workbook createSheet 创建一行 Row row 61 sh
  • RedisTemplate之opsForValue使用说明

    转载链接出自 xff1a https blog csdn net qq 25135655 article details 80357137 Redis中opsForValue 方法的使用介绍 xff1a 1 set K key V valu
  • Python爬虫(二)——爬取电影天堂,保存下载地址

    首先我们开始要分析一下 xff0c 下载种子我们需要哪几步 xff1a 获取所有电影页的访问地址获取电影页源码提取出下载地址将下载地址保存 首先第一步 xff0c 我们来分析一下电影天堂网站的结构 xff0c 发现他跟我们的古诗文网还是非常
  • pixhawk飞控中添加uORB主题

    本说明针对 Firmware v1 2 0 参考 xff1a https pixhawk org start id 61 zh dev shared object communication 1 添加流程说明 在Firmware msg下新
  • px4 多旋翼SITL仿真

    好久不写csdn了 xff0c 自己的笔记都记在了onenote里面了 xff0c 没有时间写东西分享 xff0c 今天找了个记得比价规整的分享一下 备注 xff1a SITL需要程序源码和QGC xff0c 以及配置环境时安装的一些东西

随机推荐

  • keil空间不足,.\Objects\template.axf: Error: L6406E: No space in execution regions with .ANY selector mat

    关于keil空间报错 xff0c 我总结了一下集中解决方案 xff1a 1 有可能是所选主控芯片RAM xff0c ROM真的被用完了 xff0c 这是需要更换主控芯片 2 keil里面的优化还可以继续优化省出一点空间 下面红色标的选择跟你
  • 无人机之姿态控制篇

    姿态控制篇 拿四旋翼无人机为例 xff0c 四个桨叶旋转是的无人机产生了升力 xff0c 但是这个升力要怎么匹配才能使得无人机能够平稳的飞行呢 xff0c 这个就是无人机姿态控制的关键 如图四个电机1 2 3 4 xff0c 水平位置X x
  • 无人机小四轴定高篇

    无人机定高篇 定高 xff0c 也是无人机的标配功能 xff0c 可以说必须要有的 一般来说定高怎么做 xff0c 常规的思维就是计算出无人机的高度和Z轴速度 xff0c 然后对高度和速度进行PID运算 实际上大思想就是这么的简单 xff0
  • 无人机光流定点讲解

    无人机光流定点 光流是测速算法 xff0c 并不是直接定位的 简单理解 xff0c 光流就是通过检测图像中光点和暗点的移动 xff0c 来判断图像中像素点相对于飞行器的移动速度 如果地面是静止的 xff0c 自然就可以得到飞行器相对于地面的
  • TinyXml快速入门(一)

    作者 xff1a 朱金灿 来源 xff1a http blog csdn net clever101 对于xml文件 xff0c 目前我的工作只是集中在配置文件和作为简单的信息文件来用 xff0c 因此我不太喜欢使用msxml这种重量级的x
  • 华大单片机HC32L130/HC32L136从机IIC通信

    从机IIC理论知识 主机IIC的做法比较多 xff0c 从机IIC的就相对比较难一点 先补充一下从机IIC的思路 xff1a 先看IIC时序图 xff0c 然后根据时序图理清IIC从机需要做哪些判断 xff1a 从机发送 xff1a 判断I
  • cannot access memory

    cannot access memory 先说一个经历 xff1a 在一次我测试单片机FLASH时候 xff0c 程序就是一直运行的擦除FALSH xff0c 写入FLASH 然后再想通过SWD重新烧录程序就无法烧录进去了 具体现象如下 x
  • 无刷电机反方向高速旋转

    无刷电机反方向高速旋转 最近遇到一个问题 xff0c 就是无刷电机在给正转的力的时候如果用手往反方向快速的掰 xff0c 突然的电机会往反方向高速运动 xff0c 除非电机有阻力让转速慢下来 xff0c 要不就会一直反方向运动 经过一个晚上
  • 串口仿真数据正常,不接仿真数据异常

    今天遇到一个奇怪的问题 xff0c 折腾了大半天 具体问题如下 xff1a 串口我用的DMA空闲中断接收 xff0c 接仿真器仿真时接收数据完全正确 xff0c 没有异常 但是仿真器不接的时候 xff0c 正常外部供电串口接收数据就异常了
  • 普通定时器输出互补PWM带死区

    普通定时器输出互补PWM带死区 一般来说三相半桥电路需要互补PWM驱动 xff0c 而且互补PWM需要带死区 xff0c 死区的大小跟管子的性能参数有关 公司为了省成本 xff0c 在云台上把电机驱动芯片替换成三相半桥 用6个MOS驱动无刷
  • STM32F4配置内部时钟(HSI)

    STM32F4配置内部时钟 半年多没更新了 xff0c 今天配置F4的时候内部时钟问题整了2个小时 xff0c 记录下这个坑 有些板子由于没有贴外部晶振 xff0c 所以代码运行起来的时候时钟就会出问题 xff0c 本来配置的中断是1ms实
  • 无人机加速计、气压计、GPS数据融合

    加速计 气压计 GPS数据融合 在无人机控制当中 xff0c 传感器的参与那是必不可少的 xff0c 特别是陀螺仪 xff0c 最经典的为MPU6050 xff0c 目前大部分的无人机都是用的这个器件 熟悉MPU6050的都知道 xff0c
  • ROS串口编程学习笔记

    串口是一种设备间常用的通讯接口 xff0c 本文将记录如何在ROS上使用其提供的serial包进行串口通信 首先 xff0c 这里要引入一个名称为serial的包 xff0c 这个包的安装命令为 xff1a sudo apt get ins
  • github国内镜像代理【持续更新】

    整理github国内代理 xff08 镜像站 xff09 会不定期持续更新 不过由于我都是优先从gitee上找资源 xff0c 所以有时会更新的比较慢 域名更新时间备注https kgithub com2023 03 14 已失效备注 以下
  • android适配ipv6,请求慢?

    先贴一篇我们经常能搜索到的解决方案 xff1a Android 在 4G 下访问 IPV6 慢的解决方案 文章很有参考意义 xff0c 但也并不是所有请求慢的的原因 xff01 本文是另一种原因 有兴趣就继续往下看一看 使用的okhttp框
  • 总结一下__declspec(dllimport)的作用

    作者 xff1a 朱金灿 来源 xff1a http blog csdn net clever101 是时候总结一下 declspec dllimport 的作用了 可能有人会问 xff1a declspec dllimport 和 dec
  • Autojs初试

    1 环境布置 AutoJs 目前能找到的 autojs的版本是 Autojs 4 4 1 7 pro pojie 8pro 需付费 VsCode VScode 安装对应版本插件 xff0c autojs 和autojs pro需要插件不同
  • APK反编译流程学习[1]

    1 获得 classes dex classes dex是由java文件编译再通过dx工具打包而成的 将apk重命名为zip或者rar后缀 xff0c 进行解压 里面的文件基本都是乱码 xff0c 如下图 xff1a 2 使用dex2jar
  • c csv 保存函数

    include lt stdio h gt include lt stdlib h gt include lt string gt int save csv const char file path unsigned char data i
  • 坐标系变换推导(欧拉角、方向余弦矩阵、四元数)+代码解析

    一 为什么选择四元数 描述两个坐标系之间的变换关系主要有几个方法 1 欧拉角法 存在奇异性和万向锁而且三个轴旋转的顺序不好定 2 方向余弦矩阵法 翻译为Directional cosine matrix xff0c 简称DCM xff0c