gsoap工具生成onvif设备搜索(remotediscovery)代码框架

2023-05-16

什么是gsoap工具?

gSOAP 提供了两个工具来方便开发人员使用 C/C++ 语言快速开发Web 服务应用,通过 gSOAP 提供的这两个工具,开发人员可以快速生成服务端与客户端代码框架,接下来开发人员只需要实现具体的接口函数即可。

gSOAP工具可以在Windows、Linux和Macosx操作系统下运行,gSOAP工具包中自带有Windows和Macosx操作系统的wsdl2h和soapcpp2可执行文件。wsdl2h 工具根据 WSDL 文件生成 C/C++ .h 头文件;soapcpp2 工具则从上面生成的头文件生成 SOAP 服务端和客户端框架代码。

gSOAP开源版下载网址(最新版本):gSOAP Toolkit download | SourceForge.net

======================================================

1、制作编译文件夹

下载gSOAP工具,进行解压。创建一个文件夹onvif1,从gSOAP工具中拷贝如下文件和文件夹到onvif1文件夹中:

soap_2.8\gsoap-2.8\gsoap\bin\win32\soapcpp2.exe
gsoap_2.8\gsoap-2.8\gsoap\bin\win32\wsdl2h.exe
gsoap_2.8\gsoap-2.8\gsoap\stdsoap2.c
gsoap_2.8\gsoap-2.8\gsoap\stdsoap2.h
gsoap_2.8\gsoap-2.8\gsoap\typemap.dat
gsoap_2.8\gsoap-2.8\gsoap\import\
gsoap_2.8\gsoap-2.8\gsoap\custom\

还有一个onvif模块wsdl文件remotediscovery.wsdl,也放入该目录下。

=====================================================

2、进行wsdl2h编译,得到的文件onvif.h

wsdl2h 工具根据 WSDL 文件生成 C/C++ .h 头文件。
WSDL(Web Service Description Language)即 Web 服务描述语言,它使用 XML 来对 Web 服务进行描述。进入电脑的cmd环境,进入刚才创建的onvif1目录。
wsdl2h 的用法:


格式用法: wsdl2h -o 头文件名 WSDL文件名或URL

在本篇中,主要使用gSOAP工具在Windows操作系统下生成onvif协议的设备搜索代码框架,的wsdl2h和soapcpp2可执行文件,onvif设备搜索的WSDL文件的URL地址为:

RemoteDiscovery(设备发现)
https://www.onvif.org/ver10/networ/wsdl/remotediscovery.wsdl

方法一

本篇中在C:\WINDOWS\system32\cmd.exe中使用URL的wsdlh2的命令为:


wsdl12h -P -x -c -s -t ./typemap.dat -o samples/onvif/onvif.h https://www.onvif.org/ver10/networ/wsdl/remotediscovery.wsdl

方法二

在C:\WINDOWS\system32\cmd.exe中不使用模块的URL,可以先下载需要使用的onvif模块,命令行后加上模块名,这样wsdlh2的命令为:


wsdl2h -o onvif.h -c -s -t ./typemap.dat remotediscovery.wsdl 

-c为产生纯c代码,默认生成 c++代码;

-s为不使用STL库,

-t为typemap.dat的标识。

onvif模块wsdl文件下载地址为:

https://download.csdn.net/download/weixin_44651073/87580490

运行结束后,得到变异的c++头文件(onvif.h)

=================================================================

3、进行soapcpp2编译,由c++文件生成onvif 的设备搜索代码框架

soapcpp2 工具则从上面生成的头文件生成 SOAP 服务端和客户端框架代码。例如对于上面的cacl.h,使用 soapcpp2 命令:


soapcpp2 -2 -c onvif.h -I .\custom -I .\import -I .\import

soapcpp2 也支持额外的参数:

-i 生成 C++ 包装类,客户端为 xxxProxy.h(.cpp),服务端为xxxService.h(.cpp)
-I 指定 import 的路径,比如需要引入stlvector.h文件来支持 STL vector 的序列化
-C 仅生成客户端代码
-S 仅生成服务端代码
-c 产生纯 C 代码,否则是 C++ 代码
-x 不要产生 XML 示例文件
-L 不要产生soapClientLib.c和soapServerLib.c文件

最后运行的结果为:

命令的其他参数详细说明如下:

可以使用命令wsdl2h.exe -help查看

E:\onvif1>wsdl2h.exe -help
Usage: wsdl2h [-a] [-b] [-c|-c++|-c++11|-c++14|-c++17] [-D] [-d] [-e] [-F] [-f] [-g] [-h] [-I path] [-i] [-j] [-k] [-L] [-l] [-M] [-m] [-N name] [-n name] [-O1|-O2|-O3|-O4|-Ow2|-Ow3|-Ow4] [-P|-p] [-Q] [-q name] [-R] [-r proxyhost[:port[:uid:pwd]]] [-r:uid:pwd] [-Sname] [-s] [-T] [-t typemapfile] [-U] [-u] [-V] [-v] [-w] [-W] [-x] [-y] [-z#] [-_] [-o outfile.h] infile.wsdl infile.xsd http://www... ...

-a      generate indexed struct names for local elements with anonymous types
-b      bi-directional operations (duplex ops) added to serve one-way responses
-c      generate C source code
-c++    generate C++ source code (default)
-c++11  generate C++11 source code
-c++14  generate C++14 source code
-c++17  generate C++17 source code
-D      make attribute members with default/fixed values optional with pointers
-d      use DOM to populate xs:any, xs:anyType, and xs:anyAttribute
-e      don't qualify enum names
-F      add transient members to structs to simulate struct-type derivation in C
-f      generate flat C++ class hierarchy by removing inheritance
-g      generate global top-level element and attribute declarations
-h      display help info and exit
-Ipath  use path to locate WSDL and XSD files
-i      don't import (advanced option)
-j      don't generate SOAP_ENV__Header and SOAP_ENV__Detail definitions
-k      don't generate SOAP_ENV__Header mustUnderstand qualifiers
-L      generate less documentation by removing generic @note comments
-l      display license information
-M      suppress error "must understand element with wsdl:required='true'"
-m      use xsd.h module to import primitive types
-Nname  use name for service prefixes to produce a service for each binding
-nname  use name as the base namespace prefix instead of 'ns'
-O1     optimize by omitting duplicate choice/sequence members
-O2     optimize -O1 and omit unused schema types (unreachable from roots)
-O3     optimize -O2 and omit unused schema root attributes
-O4     optimize -O3 and omit unused schema root elements (use only with WSDLs)
-Ow2    optimize -O2 while retaining all derived types of used base types
-Ow3    optimize -O3 while retaining all derived types of used base types
-Ow4    optimize -O4 while retaining all derived types of used base types
-ofile  output to file
-P      don't create polymorphic types inherited from xsd__anyType
-p      create polymorphic types inherited from base xsd__anyType
-Q      make xsd__anySimpleType equal to xsd__anyType to use as the base type
-qname  use name for the C++ namespace of all declarations
-R      generate REST operations for REST bindings specified in a WSDL
-rhost[:port[:uid:pwd]]
        connect via proxy host, port, and proxy credentials uid and pwd
-r:uid:pwd
        connect with authentication credentials uid and pwd
-Sname  use name instead of 'soap' for the C++ class members with soap contexts
-s      don't generate STL code (no std::string and no std::vector)
-tfile  use type map file instead of the default file typemap.dat
-U      allow UTF-8-encoded Unicode C/C++ identifiers when mapping XML tag names
-u      don't generate unions
-V      display the current version and exit
-v      verbose output
-W      suppress warnings
-w      always wrap response parameters in a response struct (<=1.1.4 behavior)
-X      don't qualify part names to disambiguate doc/lit wrapped patterns
-x      don't generate _XML any/anyAttribute extensibility elements
-y      generate typedef synonyms for structs and enums
-z1     compatibility with 2.7.6e: generate pointer-based arrays
-z2     compatibility with 2.7.7-2.7.15: (un)qualify element/attribute refs
-z3     compatibility with 2.7.16-2.8.7: (un)qualify element/attribute refs
-z4     compatibility up to 2.8.11: don't generate union structs in std::vector
-z5     compatibility up to 2.8.15: don't include minor improvements
-z6     compatibility up to 2.8.17: don't include minor improvements
-z7     compatibility up to 2.8.59: don't generate std::vector of class of union
-z8     compatibility up to 2.8.74: don't gen quals for doc/lit wrapped patterns
-z9     compatibility up to 2.8.93: always qualify element/attribute refs
-z10    compatibility up to 2.8.96: gen quals even when defined w/o namespace
-_      don't generate _USCORE (replace with Unicode code point _x005f)
infile.wsdl infile.xsd http://www... list of input sources (if none reads stdin)

 

 在生成的onvif.h代码中,要修改上面生成的onvif.h: 在onvif.h头文件开头加入:#import "wsse.h"    

为了方便,我们将所有需要的代码放到同一个目录中。我们在刚才建立的onvif1目录下创建一个application目录,存放我们需要的所有代码。

比如soap下生成的soapC.cpp、soapClient.cpp、soapH.h、soapStub.h、wsdd.nsmap;gsoap源码目录下的stdsoap2.cpp、stdsoap2.h;gsoap/plugin目录下的wsseapi.h、wsseapi.cpp、smdevp.h、smdevp.cpp、mecevp.cpp、mecevp.h、threads.cpp、threads.h、wsaapi.cpp、wsaapi.h等。并创建一个main.cpp(注意,如果只有.c没有.cpp的,那么就将其拷贝到application目录下,然后将尾部改成.cpp):

=========================================================================

main.cpp的代码工程:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <winsock.h>
#else
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <unistd.h>
#endif

/* 从技术层面来说,通过单播、多播、广播三种方式都能探测到IPC,但多播最具实用性*/
#define COMM_TYPE_UNICAST         1                                             // 单播
#define COMM_TYPE_MULTICAST       2                                             // 多播
#define COMM_TYPE_BROADCAST       3                                             // 广播
#define COMM_TYPE                 COMM_TYPE_MULTICAST

/* 发送探测消息(Probe)的目标地址、端口号 */
#if COMM_TYPE == COMM_TYPE_UNICAST
    #define CAST_ADDR "100.100.100.15"                                          // 单播地址,预先知道的IPC地址
#elif COMM_TYPE == COMM_TYPE_MULTICAST
    #define CAST_ADDR "239.255.255.250"                                         // 多播地址,固定的239.255.255.250
#elif COMM_TYPE == COMM_TYPE_BROADCAST
    #define CAST_ADDR "100.100.100.255"                                         // 广播地址
#endif

#define CAST_PORT 3702                                                          // 端口号

/* 以下几个宏是为了socket编程能够跨平台,这几个宏是从gsoap中拷贝来的 */
#ifndef SOAP_SOCKET
# ifdef WIN32
#  define SOAP_SOCKET SOCKET
#  define soap_closesocket(n) closesocket(n)
# else
#  define SOAP_SOCKET int
#  define soap_closesocket(n) close(n)
# endif
#endif

#if defined(_AIX) || defined(AIX)
# if defined(_AIX43)
#  define SOAP_SOCKLEN_T socklen_t
# else
#  define SOAP_SOCKLEN_T int
# endif
#elif defined(SOCKLEN_T)
# define SOAP_SOCKLEN_T SOCKLEN_T
#elif defined(__socklen_t_defined) || defined(_SOCKLEN_T) || defined(CYGWIN) || defined(FREEBSD) || defined(__FreeBSD__) || defined(OPENBSD) || defined(__QNX__) || defined(QNX) || defined(OS390) || defined(__ANDROID__) || defined(_XOPEN_SOURCE)
# define SOAP_SOCKLEN_T socklen_t
#elif defined(IRIX) || defined(WIN32) || defined(__APPLE__) || defined(SUN_OS) || defined(OPENSERVER) || defined(TRU64) || defined(VXWORKS) || defined(HP_UX)
# define SOAP_SOCKLEN_T int
#elif !defined(SOAP_SOCKLEN_T)
# define SOAP_SOCKLEN_T size_t
#endif

#ifdef WIN32
#define SLEEP(n)    Sleep(1000 * (n))
#else
#define SLEEP(n)    sleep((n))
#endif

/* 探测消息(Probe),这些内容是ONVIF Device Test Tool 15.06工具搜索IPC时的Probe消息,通过Wireshark抓包工具抓包到的 */
const char *probe = "<?xml version=\"1.0\" encoding=\"utf-8\"?><Envelope xmlns:dn=\"http://www.onvif.org/ver10/network/wsdl\" xmlns=\"http://www.w3.org/2003/05/soap-envelope\"><Header><wsa:MessageID xmlns:wsa=\"http://schemas.xmlsoap.org/ws/2004/08/addressing\">uuid:fc0bad56-5f5a-47f3-8ae2-c94a4e907d70</wsa:MessageID><wsa:To xmlns:wsa=\"http://schemas.xmlsoap.org/ws/2004/08/addressing\">urn:schemas-xmlsoap-org:ws:2005:04:discovery</wsa:To><wsa:Action xmlns:wsa=\"http://schemas.xmlsoap.org/ws/2004/08/addressing\">http://schemas.xmlsoap.org/ws/2005/04/discovery/Probe</wsa:Action></Header><Body><Probe xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\" xmlns=\"http://schemas.xmlsoap.org/ws/2005/04/discovery\"><Types>dn:NetworkVideoTransmitter</Types><Scopes /></Probe></Body></Envelope>";

int main(int argc, char **argv)
{
    int ret;
    int optval;
    SOAP_SOCKET s;
    SOAP_SOCKLEN_T len;
    char recv_buff[4096] = {0};
    struct sockaddr_in multi_addr;
    struct sockaddr_in client_addr;

#ifdef WIN32
    WSADATA wsaData;
    if( WSAStartup(MAKEWORD(2,2), &wsaData) != 0 ) {                             // 初始化Windows Sockets DLL
        printf("Could not open Windows connection.\n");
        return 0;
    }
    if ( LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2 ) {
        printf("the version of WinSock DLL is not 2.2.\n");
        return 0;
    }
#endif

    s = socket(AF_INET, SOCK_DGRAM, 0);                                         // 建立数据报套接字
    if (s < 0) {
        perror("socket error");
        return -1;
    }

#if COMM_TYPE == COMM_TYPE_BROADCAST
    optval = 1;
    ret = setsockopt(s, SOL_SOCKET, SO_BROADCAST, (const char*)&optval, sizeof(int));
#endif

    multi_addr.sin_family = AF_INET;                                            // 搜索IPC:使用UDP向指定地址发送探测消息(Probe)
    multi_addr.sin_port = htons(CAST_PORT);
    multi_addr.sin_addr.s_addr = inet_addr(CAST_ADDR);
    ret = sendto(s, probe, strlen(probe), 0, (struct sockaddr*)&multi_addr, sizeof(multi_addr));
    if (ret < 0) {
        soap_closesocket(s);
        perror("sendto error");
        return -1;
    }
    printf("Send Probe message to [%s:%d]\n\n", CAST_ADDR, CAST_PORT);
    SLEEP(1);

    for (;;) {                                                                  // 接收IPC的应答消息(ProbeMatch)
        len = sizeof(client_addr);
        memset(recv_buff, 0, sizeof(recv_buff));
        memset(&client_addr, 0, sizeof(struct sockaddr));
        ret = recvfrom(s, recv_buff, sizeof(recv_buff) - 1, 0, (struct sockaddr*)&client_addr, &len);
        printf("===Recv ProbeMatch from [%s:%d]===\n%s\n\n",  inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port), recv_buff);
        SLEEP(1);
    }
    soap_closesocket(s);

    return 0;
}

 

 


 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

gsoap工具生成onvif设备搜索(remotediscovery)代码框架 的相关文章

  • 记录JPA并发save时遇到的坑

    前言 在JPA中 xff0c 使用save方法时是这样的 xff1a 如果我们save的对象指定了主键 xff0c 那么会根据主键先进行一次查询 xff0c 如果查询记录不存在则执行insert语句 xff0c 如果查询记录存在则执行upd
  • Openmv(一)OpenMV图像处理的基本方法

    一 图像处理基础知识 摄像头 xff1a 光学信号转换成电信号 计算机视觉中 xff0c 最简单的模型是小孔成像模型 小孔成像是一种理想模型 xff0c 实际镜头会存在场曲和畸变等 xff0c 但可以通过在标定过程中引入畸变参数解决 xff
  • CMakeLists详解

    CMakeLists详解 一 CMake简介 cmake 是一个跨平台 开源的构建系统 它是一个集软件构建 测试 打包于一身的软件 它使用与平台和编译器独立的配置文件来对软件编译过程进行控制 二 常用命令 1 指定cmake最小版本 cma
  • c++继承与多态总结

    不知不觉C 43 43 课程的学习已经接近尾声 xff0c 感觉自己对于c 43 43 的认知更近了一步 xff0c 粗略总结一下最近学习的继承与多态部分的知识 继承 C 43 43 的继承 继承有3种形式 xff1a 私有继承 保护继承
  • C++对象的销毁

    对象的销毁 一般来说 xff0c 需要销毁的对象都应该做清理 解决方案 1 为每个类都提供一个public的free函数 xff1b 2 对象不再需要时立即调用free函数进行清理 析构函数 1 C 43 43 的类中可以定义一个特殊的清理
  • C++中类中的函数重载

    类中的函数重载 函数重载的回顾 1 函数重载的本质就是为相互独立的不同函数 xff1b 2 C 43 43 中通过函数名和函数参数确定函数调用 xff1b 3 无法直接通过函数名得到重载函数的入口地址 xff1b 4 函数重载必然发生在同一
  • C++中的字符串类

    字符串类 历史遗留的问题 1 C语言不支持真正意义上的字符串 xff1b 2 C语言用字符数组和一组实现字符串操作 xff1b 3 C语言不支持自定义类型 xff0c 因此无法获得字符类型 xff1b 解决方案 1 从C到C 43 43 的
  • MySQL中的Block Nested Loop优化分析

    前言 一般在MySQL规范中 xff0c 都会规定如果两张表进行join查询 xff0c 那么join的字段一定要有索引 xff0c 在之前的文章中我们分析了MySQL join大小表前后顺序影响分析 xff0c 这是在有索引的情况下 xf
  • C++之类模板的概念和意义

    类模板 一些类主要用于存储和组织数据元素 类中数据组织的方式和数据元素的具体类型无关 如 xff1a 数组类 链表类 Stack Queue类 等 1 C 43 43 中将模板的思想应用于类 xff0c 使得类的实现不关注数据元素的具体类型
  • C++之单例类模板

    需求的提出 在架构设计时 xff0c 某些类在整个系统生命周期中最多只能有一个对象存在 xff08 Single Instance xff09 要控制类的对象数目 xff0c 必须对外隐藏构造函数 xff1b 思路 xff1a 1 将构造函
  • 【无标题】

    绘图控件GraphicsView 一 GraphicsView简介 1 QT有多种绘图相关的技术 xff0c 我们将在第2部分 2 4 QT绘图和图表 中比较详细系统的讲 2 本节简单讲一下GraphicsView的基本理论 xff0c 并
  • uboot源码分析之start.S解析

    1 start S引入 1 1 u boot lds中找到start S入口 1 在uboot中因为有汇编阶段参与 xff0c 因此不能直接找main c 整个程序的入口取决于链接脚本中ENTRY声明的地方 ENTRY start 因此 s
  • uboot启动第二阶段

    uboot启动第二阶段 start armboot函数简介 一个很长的函数 1 这个函数在uboot lib arm board c的第444行开始到908行结束 2 450行还不是全部 xff0c 因为里面还调用了别的函数 3 为什么这么
  • cmake设置编译类型为release命令

    cmake编译类型通常默认为debug xff0c 但是在编译软件时 xff0c 一般都需要使用release版本的 xff0c debug太慢了 设置为release版本可以在cmake文件里进行 xff0c 也可以在运行cmake命令时
  • 设计模式之单例模式(Singleton),以C++为例,实现日志输出。

    Hello大家好 xff0c 好久没更新了 xff0c 今天给大家补上最基础的设计模式 xff1a 单例模式 这个单例模式实在是我的心结啊 xff0c 2021年末左右面试京东算法岗 xff0c 面试官让我写一个单例 xff0c 没写出来
  • 源码分析MyBatis对数值(int、double)类型进行test判断的误区

    文章目录 问题描述问题分析验证解析表达式执行解析后表达式分别测试两个条件 查询Ognl官方文档验证问题解决 问题描述 在如下判断中 xff0c 如果type类型为int xff0c 那么对于type 61 39 39 部分判断会出现一些问题
  • Git报错:error: xxxx bytes of body are still expected.

    git一个很老的项目 xff0c 项目深度很深 xff0c 报错 xff1a error 7857 bytes of body are still expected fetch pack unexpected disconnect whil
  • 设计模式之代理模式(Proxy),以C++为例,实现远程代理、虚拟代理、保护代理等。

    兄弟姐妹们好 xff0c 又是好久没有更新了 xff0c 今天给大家简单介绍代理模式 xff0c 一个很简单的设计模式 xff0c 旨在不改变原对象的情况下通过代理对象来控制对原对象的访问 代理模式根据具体情况还可以分为远程代理 虚拟代理
  • C++ 互斥锁原理以及实际使用介绍

    兄弟姐妹们 xff0c 我又回来了 xff0c 今天带来实际开发中都需要使用的互斥锁的内容 xff0c 主要聊一聊如何使用互斥锁以及都有哪几种方式实现互斥锁 实现互斥 xff0c 可以有以下几种方式 xff1a 互斥量 xff08 Mute
  • 【C++】使用【windwos api】获取windwos计算机的基本信息

    今天来一篇获取windows计算机的基本信息的文章 xff0c 包含计算机名称 操作系统版本 处理器信息 内存信息 硬盘信息 显示器信息 网络信息 驱动程序信息 电源信息 其他硬件信息 目录 一 windwos系统包含的基本信息 二 获取信

随机推荐

  • C++ POCO库的基础介绍(Windwos和Linux)

    简单介绍C 43 43 POCO库能干什么 xff0c 后续有时间的话将根据其每个点详细解析 xff0c 关注我 本篇包含POCO库简单介绍 下载以及安装方式 简单代码示例 目录 一 POCO简单介绍 1 1 POCO库的基本模块 1 2
  • ROS踩坑记录

    ROS踩坑记录 问题 xff1a ubuntu 没有 dev ttyUSB0问题 xff1a 运行 launch 文件或 ROS 节点时出现 exit code 9 错误提示问题 xff1a windows使用vscode远程连接 xff0
  • STM32串口数据接收 --环形缓冲区

    STM32串口数据接收 环形缓冲区 环形缓冲区简介 在单片机中串口通信是我们使用最频繁的 xff0c 使用串口通信就会用到串口的数据接收与发送 xff0c 环形缓冲区方式接收数据可以更好的保证数据丢帧率第 在通信程序中 xff0c 经常使用
  • 如何设计安全可靠的开放接口---对请求参加密保护

    文章目录 如何设计安全可靠的开放接口 系列前言AES加解密代码实现 如何设计安全可靠的开放接口 系列 1 如何设计安全可靠的开放接口 之Token 2 如何设计安全可靠的开放接口 之AppId AppSecret 3 如何设计安全可靠的开放
  • rosdep init报错解决方法

    rosdep init报错解决方法 很多小伙伴在安装ROS的过程中都不可避免的要执行rosdep init和rosdep update这两行命令行 xff0c 这也是在安装ROS的过程中最让人头疼的两步 xff0c 一般都没法一次成功 xf
  • NVIDIA Jetson Nano/Xavier NX 扩容教程

    在售的 NVIDIA Jetson 内置 16 GB 的 eMMC xff0c 并已安装了 ubuntu 18 04 LTS 和 NVIDIA JetPack 4 6 xff0c 所以剩余的用户可用空间大约 2GB xff0c 这对将 NV
  • 深度学习框架YOLOv3的C++调用

    深度学习框架YOLOv3的C 43 43 调用 深度学习框架YOLOv3的C 43 43 调用 xff08 1 xff09 tensorflow版本的YOLOv3的C 43 43 调用 xff08 失败 xff09 xff08 2 xff0
  • 基于GPT-2实现图像文本生成

    原理 使用GPT 2模型处理文本 xff0c 做decoder 使用google的vit base patch16 224模型处理图像 xff0c 做encoder 最后通过VisionEncoderDecoderModel将这两个模型粘起
  • C语言中常见的两个比较字符串是否相等的函数strcmp和strncmp

    函数 xff1a strcmp和strncmp strcmp 使用格式 xff1a include lt string h gt int strcmp const char s1 const char s2 设这两个字符串为str1 xff
  • sprintf和printf 用法的区别

    printf 的作用是标准化输出 xff0c 默认的对象是标准输出缓冲区 xff0c 要有一定的条件才能把缓冲区里面的数据输出 sprintf 作用是格式化输出函数 xff0c 保存字符串到缓冲区中 xff0c 起到拼接字符串的作用 功能
  • 第六篇,STM32脉冲宽度调制(PWM)编程

    1 PWM概念 PWM叫脉冲宽度调制 Pulse Width Modulation xff0c 通过编程控制输出方波的频率和占空比 高低电平的比例 xff0c 广泛应用在测量 xff0c 通信 xff0c 功率控制等领域 呼吸灯 xff0c
  • 第十篇,STM32串口蓝牙编程

    1 串口蓝牙概念 串口蓝牙是一个蓝牙模块 xff0c 内部有蓝牙模块和程序 xff0c 可以进行蓝牙通信 xff0c 同时提供一个串口接口 xff0c 通过串口可以配置蓝牙模块进行数据传输 2 使用串口3连接蓝牙模块 3 手机上安装蓝牙调试
  • LeetCode岛屿问题通用解决模板

    文章目录 前言第一题 xff1a 求岛屿的周长模板整理遍历方向确定边界重复遍历问题处理 模板解第一题第二题 xff1a 求岛屿数量第三题 xff1a 岛屿的最大面积第四题 xff1a 统计子岛屿第五题 xff1a 统计封闭岛屿的数目第六题
  • 第十四篇,STM32的CAN总线通信

    1 CAN总线的概念 CAN指的是控制器局域网网络 Controller Area Network xff0c 由德国博世汽车电子厂商开发出来 CAN使用差分信号 xff0c 具有较强的抗干扰能力和传输稳定性 CAN属于多主通信 xff0c
  • OpenCV图像处理学习十九,像素重映射cv::remap

    一 像素重映射概念 重映射就是把输入图像中各个像素按照制定的规则顺序映射到另外一张图像的对应位置上去 xff0c 形成一张新的图像 二 像素映射API函数接口 cv remap xff08 InputArray src 输入图像 Outpu
  • OpenCV图像处理学习二十一,直方图比较方法

    一 直方图比较 直方图比较是对输入的两张图像进行计算得到直方图H1与H2 xff0c 归一化到相同的尺度空间 xff0c 然后可以通过计算H1与H2的之间的距离得到两个直方图的相似程度 xff08 每张图像都有唯一的直方图与之对应 xff0
  • 嵌入式FreeRTOS学习九,任务链表的构成,TICK时间中断和任务状态切换调度

    一 tskTaskControlBlock 函数结构体 在tskTaskControlBlock 任务控制块结构体中 xff0c 其中有任务状态链表和事件链表两个链表成员 xff0c 首先介绍任务状态链表这个结构 xff0c 这个链表通常用
  • SOAP传输协议

    一 HTTP传输协议 超文本传输协议 xff08 HyperText Transfer Protocol xff0c 缩写 xff1a HTTP xff09 xff0c 它是基于请求 响应的模式协议 xff0c 客户端发出请求 xff0c
  • ONVIF简介

    一 什么是ONVIF ONVIF规范描述了网络视频的模型 接口 数据类型以及数据交互的模式 并复用了一些现有的标准 xff0c 如WS系列标准等 ONVIF规范的目标是实现一个网络视频框架协议 xff0c 使不同厂商所生产的网络视频产品 x
  • gsoap工具生成onvif设备搜索(remotediscovery)代码框架

    什么是gsoap工具 xff1f gSOAP 提供了两个工具来方便开发人员使用 C C 43 43 语言快速开发Web 服务应用 xff0c 通过 gSOAP 提供的这两个工具 xff0c 开发人员可以快速生成服务端与客户端代码框架 xff