RISC与CISC比较

2023-05-16

RISC的设计重点在于降低由硬件执行指令的复杂度,因为软件比硬件容易提供更大的灵活性和更高的智能,因此RISC设计对编译器有更高的要求;CISC的设计则更侧重于硬件执行指令的功能,使CISC的指令变得很复杂。总之RISC对编译器的要求高,CISC强调硬件的复杂性,CPU的实现更复杂

RISC设计思想准则:

1. 指令集----RISC处理器减少指令集的种类,通常一个周期一条指令,也就是说指令的周期是固定的,编译器或程序员通过几条指令完成一个复杂的操作;CISC的指令长度通常不固定。

2. 流水线----流水线的本质就是CPU并行运行,只是并行运行不像FPGA中的那么直接,它只是把一条指令分成几个更小的执行单元;CISC指令的执行需要调用一个微程序,明显没有RISC的指令吞吐量大。

3. 寄存器----RISC的寄存器拥有更多的通用寄存器,寄存器操作较多,例如ARM具有27个寄存器,CISC的寄存器都是用于特定目的的。

4. Load-store结构----处理器只处理寄存器中的数据,这是因为访问存储器很耗时,同时对外部存储器的读写会影响其寿命;CISC能够在存储器中直接运行

5. 寻址方式简化,不像CISC那样的复杂众多的寻址方式


 

一、背景知识:

指令的强弱是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集(CISC)精简指令集(RISC)两部分。相应的,微处理随着微指令的复杂度也可分为CISC及RISC这两类。

CISC是一种为了便于编程和提高记忆体访问效率的晶片设计体系。在20世纪90年代中期之前,大多数的微处理器都采用CISC体系——包括Intel的80x86和Motorola的68K系列等。 即通常所说的X86架构就是属于CISC体系的。 RISC是为了提高处理器运行的速度而设计的晶片体系。它的关键技术在于流水线操作(Pipelining):在一个时钟周期里完成多条指令。而超流水线以及超标量技术已普遍在晶片设计中使用。RISC体系多用于非x86阵营高性能微处理器CPU。像HOLTEK MCU系列等。 ARM ( Advanced RISC Machines ),既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。而ARM体系结构目前被公认为是业界领先的32 位嵌入式RISC 微处理器结构。 所有ARM处理器共享这一体系结构。 因此我们可以从其所属体系比较入手,来进行X86指令集与ARM指令集的比较。

二、CISC和RISC的比较

(一)CISC

1.CISC体系的指令特征 使用微代码。指令集可以直接在微代码记忆体(比主记忆体的速度快很多)里执行,新设计的处理器,只需增加较少的电晶体就可以执行同样的指令集,也可以很快地编写新的指令集程式。 庞大的指令集。可以减少编程所需要的代码行数,减轻程式师的负担。高阶语言对应的指令集:包括双运算元格式、寄存器到寄存器、寄存器到记忆体以及记忆体到寄存器的指令。

2.CISC体系的优缺点 优点:能够有效缩短新指令的微代码设计时间,允许设计师实现CISC体系机器的向上相容。新的系统可以使用一个包含早期系统的指令超集合,也就可以使用较早电脑上使用的相同软体。另外微程式指令的格式与高阶语言相匹配,因而编译器并不一定要重新编写。 缺点:指令集以及晶片的设计比上一代产品更复杂,不同的指令,需要不同的时钟周期来完成,执行较慢的指令,将影响整台机器的执行效率。

(二)RISC

1.RISC体系的指令特征 精简指令集:包含了简单、基本的指令,透过这些简单、基本的指令,就可以组合成复杂指令。 同样长度的指令:每条指令的长度都是相同的,可以在一个单独操作里完成。 单机器周期指令:大多数的指令都可以在一个机器周期里完成,并且允许处理器在同一时间内执行一系列的指令。

2.RISC体系的优缺点 优点:在使用相同的晶片技术和相同运行时钟下,RISC系统的运行速度将是CISC的2~4倍。由于RISC处理器的指令集是精简的,它的记忆体管理单元、浮点单元等都能设计在同一块晶片上。RISC处理器比相对应的CISC处理器设计更简单,所需要的时间将变得更短,并可以比CISC处理器应用更多先进的技术,开发更快的下一代处理器。 缺点:多指令的操作使得程式开发者必须小心地选用合适的编译器,而且编写的代码量会变得非常大。另外就是RISC体系的处理器需要更快记忆体,这通常都集成于处理器内部,就是L1 Cache(一级缓存)。 综合上面所述,若要再进一步比较CISC与RISC之差异,可以由以下几点来进行分析:

 

1指令的形成 CISC因指令复杂,故采微指令码控制单元的设计,而RISC的指令90%是由硬体直接完成,只有10%的指令是由软体以组合的方式完成,因此指令执行时间上RISC较短,但RISC所须ROM空间相对的比较大,至于RAM使用大小应该与程序的应用比较有关系。

2定址模式 CISC的需要较多的定址模式,而RISC只有少数的定址模式,因此CPU在计算记忆体有效位址时,CISC占用的汇流排周期较多。

3指令周期 CISC指令的格式长短不一,执行时的周期次数也不统一,而RISC结构刚好相反,故适合采用管线处理架构的设计,进而可以达到平均一周期完成一指令的方向努力。显然的,在设计上RISC较CISC简单,同时因为CISC的执行步骤过多,闲置的单元电路等待时间增长,不利于平行处理的设计,所以就效能而言RISC较CISC还是站了上风,但RISC因指令精简化后造成应用程式码变大,需要较大的程式记忆体空间,且存在指令种类较多等等的缺点。

4大量使用寄存器

 

(三)X86指令集和ARM指令集:

(1) X86指令集: X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,后来的电脑中为提高浮点数据处理能力而增加的X87芯片系列数学协处理器另外使用X87指令,以后就将X86指令集和X87指令集统称为X86指令集。虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486,但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。 除了具备上述CISC的诸多特性外,X86指令集有以下几个突出的缺点:

l 通用寄存器组————对CPU内核结构的影响 X86指令集只有8个通用寄存器。所以,CISC的CPU执行是大多数时间是在访问存储器中的数据,而不是寄存器中的。这就拖慢了整个系统的速度。 RISC系统往往具有非常多的通用寄存器,并采用了重叠寄存器窗口和寄存器堆等技术使寄存器资源得到充分的利用。

l 解码————对CPU的外核的影响 解码器(Decode Unit),这是x86CPU才有的东西。其作用是把长度不定的x86指令转换为长度固定的类似于RISC的指令,并交给RISC内核。解码分为硬件解码和微解码,对于简单的x86指令只要硬件解码即可,速度较快,而遇到复杂的x86指令则需要进行微解码,并把它分成若干条简单指令,速度较慢且很复杂。Athlon也好,PIII也好,老式的CISC的X86指令集严重制约了他们的性能表现。

l 寻址范围小——约束了用户需要 即使AMD研发出X86-64架构时,虽然也解决了传统X86固有的一些缺点,比如寻址范围的扩大,但这种改善并不能直接带来性能上的提升。

 

 (2) ARM指令集: 相比而言,以RISC为架构体系的ARM指令集的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多。ARM处理器都是所谓的精简指令集处理机(RISC)。其所有指令都是利用一些简单的指令组成的,简单的指令意味着相应硬件线路可以尽量做到最佳化,而提高执行速率,相对的使得一个指令所需的时间减到最短。 而因为指令集的精简,所以许多工作都必须组合简单的指令,而针对较复杂组合的工作便需要由『编译程式』(compiler) 来执行,而 CISC 体系的X86指令集因为硬体所提供的指令集较多,所以许多工作都能够以一个或是数个指令来代替,compiler 的工作因而减少许多。 除了具备上述RISC的诸多特性之外,可以总结ARM指令集架构的其它一些特点如下:

l ARM的特点

1. 体积小,低功耗,低成本,高性能

2. 支持 Thumb ( 16 位) /ARM ( 32 位)双指令集,能很好的兼容 8 位 /16 位器件;

3. 大量使用寄存器,指令执行速度更快;

4. 大多数数据操作都在寄存器中完成;

5. 寻址方式灵活简单,执行效率高;

6. 指令长度固定;

7. 流水线处理方式

8. Load_store结构 l ARM的一些非RISC思想的指令架构: 1. 允许一些特定指令的执行周期数字可变,以降低功耗,减小面积和代码尺寸。 2. 增加了桶形移位器来扩展某些指令的功能。 3. 使用了16位的Thumb指令集来提高代码密度。 4. 使用条件执行指令来提高代码密度和性能。 5. 使用增强指令来实现数据信号处理的功能。

 

(四)小结: 因此,大量的复杂指令、可变的指令长度、多种的寻址方式这些CISC的特点,也是CISC的缺点,因为这些都大大增加了解码的难度,而在现在的高速硬件发展下,复杂指令所带来的速度提升早已不及在解码上浪费点的时间。除了个人PC市场还在用X86指令集外,服务器以及更大的系统都早已不用CISC了。x86仍然存在的理由就是为了兼容大量的x86平台上的软件,同时,它的体系结构组成的实现不太困难。 而RISC体系的ARM指令最大特点是指令长度固定,指令格式种类少,寻址方式种类少,大多数是简单指令且都能在一个时钟周期内完成,易于设计超标量与流水线,寄存器数量多,大量操作在寄存器之间进行。优点是不言而喻的,因此,ARM处理器才成为是当前最流行的处理器系列,是几种主流的嵌入式处理体系结构之一。 RISC目前正如日中天,Intel似乎也将最终抛弃x86而转向RISC结构。 而实际上,随着RISC处理器在嵌入式领域中大放异彩,传统的X86系列CISC处理器在Intel公司的积极改进下也克服了功耗过高的问题,成为一些高性能嵌入式设备的最佳选择,发展到今天,CISC与RISC之间的界限已经不再是那么泾渭分明,RISC自身的设计正在变得越来越复杂(当然并不是完全依着CISC的思路变复杂),因为所有实际使用的CPU都需要不断提高性能,所以在体系结构中加入新特点就在所难免。另一方面,原来被认为是CISC体系结构的处理器也吸收了许多RISC的优点,比如Pentium处理器在内部的实现中也是采用的RISC的架构,复杂的指令在内部由微码分解为多条精简指令来运行,但是对于处理器外部来说,为了保持兼容性还是以CISC风格的指令集展示出来。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

RISC与CISC比较 的相关文章

  • firebird数据库安装连接的一些常见错误及解决方法

    firebird数据库安装连接的一些常见错误及解决方法 最近有一个需求是把数据库里面的数据提取出来 xff0c 这个数据库的后缀是 fdb xff0c 查阅资料可知应该是firebird数据库的文件 xff0c 可是firebird数据库是
  • PX4与Gazebo、ROS/MAVROS以及QGC地面站之间的通信

    PX4与Gazebo ROS MAVROS以及QGC地面站之间的通信 一 整体框架 ROS xff08 机器人操作系统 xff09 可用于PX4和Gazebo模拟器 它使用MAVROS MAVLink节点与PX4通信 ROS Gazebo与
  • 四旋翼飞行器控制模型公式推导

    四旋翼飞行器控制模型 为便于建立模型 xff0c 现对四旋翼飞行器进行以下假设 xff1a 1 四旋翼飞行器是均匀对称的刚体 2 四旋翼飞行器的质量和转动惯量不发生改变 3 四旋翼飞行器的几何中心与其重心重合 4 四旋翼飞行器只受重力和螺旋
  • java中几种读取配置文件的方法

    java读取 properties配置文件的几种方法 xff08 1 xff09 Properties类读取 Properties类继承自Hashtable类并且实现了Map接口 xff0c 也是使用一种键值对的形式来保存属性集 不过Pro

随机推荐

  • Java项目分层

    MVC模式 在实际的开发中有一种项目的程序组织架构方案叫做MVC模式 xff0c 按照程序 的功能将他们分成三个层 xff0c 如下图 xff1a Modle层 xff08 模型层 xff09 View层 xff08 显示层 xff09 C
  • 简单介绍控制理论(经典、现代)

    1 经典和现代的区别和联系 xff08 1 xff09 区别 研究对象 经典控制系统一般局限于单输入单输出 线性定常系统 主要分为开环控制系统和闭环控制系统 严格的说 xff0c 理想的线性系统在实际中并不存在 实际的物理系统 xff0c
  • 框架中<include>**/*.xml</include>配置解释

    在mybatis Spring SpringMVC SpringBoot等框架的配置文件中经常会使用到如下代码 xff1a lt resource gt lt directory gt src main java lt directory
  • 反转单链表的几种方式对比(包括双指针法和递归)

    需求 xff1a 给你单链表的头节点 head xff0c 请你反转链表 xff0c 并返回反转后的链表 方式一 xff1a 双指针法 建立一个虚拟节点 class Solution public ListNode reverseList
  • 正则表达式 ^$ 同时出现代表什么

    与 同时出现在正则前后表示什么 xff1f 脱字符 xff1a 匹配开头 xff0c 若存在多行匹配多行的行头 美元符 xff1a 匹配尾部 xff0c 若存在多行匹配多行的尾部 同时写时只是限制字符的起点与终点 xff0c 比如 xff1
  • 设置虚拟机为固定IP,避免每次启动虚拟机都会分配新的IP地址

    采用一种最简单的方式 xff0c 通过修改配置文件来指定IP xff0c 并可以连接到外网 要求 xff1a 将IP地址配置为静态的 xff0c 比如设固定IP地址为192 168 117 131 打开文件 etc sysconfig ne
  • 我的2014--众人皆醉我独醒

    转眼间大学两年过去了 xff0c 舍友们还在撸游戏 xff0c 有的也找到了另一半的归属 我是我宿舍唯一一个不玩电脑游戏的人 xff0c 当然 xff0c 不是不玩游戏就代表着成绩很好 xff0c 也不代表玩游戏就不好 xff0c 但意味着
  • Java多线程通信-利用传统的线程通信wait(),notify()方法实现“生产者消费者模式”

    想利用传统的线程通信wait notify xff0c notifyAll 方法 xff0c 必须依赖于同步监听器的存在 xff0c 也就是说 xff0c 对于synchronized修饰的同步方法 xff0c 因为该类的默认实例 xff0
  • java TCP/IP实现简单的多人聊天功能

    TCP IP是可靠的网络协议 xff0c 数据的传输需要服务端和客户端之间三次 握手 xff0c 比较适合文本等一些可靠性要求高的数据传输 xff0c 但是它的效率较UDP低 下面通过一张图来简要说明使用 ServerSocket 创建 T
  • 死锁面试题(什么是死锁,产生死锁的原因及必要条件)

    什么是死锁 xff1f 所谓死锁 xff0c 是指多个进程在运行过程中因争夺资源而造成的一种僵局 xff0c 当进程处于这种僵持状态时 xff0c 若无外力作用 xff0c 它们都将无法再向前推进 因此我们举个例子来描述 xff0c 如果此
  • 标准模板库-容器

    标准模板库STL Standard Template Libarary 是一个标准类与函数模板的库 STL包含容器 容器适配器 迭代器 算法 函数对象和函数适配器 容器 用来存储和组织其他对象的对象 T是存储在容器中的元素类型的模板类型形参
  • Ubuntu18.04安装PX4踩坑、报错及解决方案整理

    笔者最近需要跑无人机巡检大坝的仿真 xff0c 于是在自己的Ubuntu2018 04中开始安装PX4 xff0c 问过不少之前已经装过PX4的师兄和同学 xff0c 都曾在PX4安装过程中踩过许多坑 xff0c 耗费了不少时间 xff0c
  • 初识ROS文件结构:以阿木实验室Prometheus项目为例

    ROS的工作空间是一个存放工程开发相关文件的文件夹 xff0c Fuerte版本之后的ROS默认使用的是Catkin编译系统 功能包是ROS软件中的基本单元 xff0c 包含ROS节点 库 配置文件等 一个文件夹是功能包的标志是该文件夹中有
  • 六轴无人机装配问题小结(Pixhawk飞控、APM固件、电机装配、电调校准)

    笔者近期需要组装一架六轴无人机供超声波避障模块 单点激光雷达等传感器的测试使用 由于是第一次碰真机 xff0c 面对散落一箱的部件还是非常的头大的 xff0c 不过好在实验室有经验的大佬能提供一些指导 xff0c 并且还能够参考 创客智造
  • 测试API接口,返回404。

    报错 xff1a 34 timestamp 34 34 2020 06 02T12 40 53 125 43 00 00 34 34 status 34 404 34 error 34 34 Not Found 34 34 message
  • 再谈STM32的CAN过滤器-bxCAN的过滤器的4种工作模式以及使用方法总结

    转自 xff1a http blog csdn net flydream0 article details 52317532 1 前言 bxCAN是STM32系列最稳定的IP核之一 xff0c 无论有哪个新型号出来 xff0c 这个IP核基
  • NVIDIA TX2自制底板的USB口无法使用的一种解决方法

    这是由于官方的底板上采用INA3221芯片做了电源监控电路 xff0c 只有确保5V电源达到要求的情况下才会使能USB口 而自制的底板上将上述电路省略了 xff0c 所以导致了USB口无法使用 解决办法就是要给TX2更新设备树 在网上找到一
  • Benchmark(基准测试)初相识

    一 benchmark概念 在计算中 xff0c 基准是运行一个计算机程序 一组程序或其他操作的行为 xff0c 以评估一个对象的相对性能 xff0c 通常是通过对它运行一些标准测试和试验 基准测试一词也通常用于精心设计的基准测试程序本身
  • 嵌入式中的通讯协议——UART、I2C、SPI、DMA

    目录 一 通讯的基本概念 二 USART 串口通讯 三 I2C通讯协议 四 SPI通讯协议 五 DMA 直接存储器存取 六 USART I2C SPI比较 一 通讯的基本概念 1 串行通讯与并行通讯 xff08 按数据的传送方式 xff09
  • RISC与CISC比较

    RISC的设计重点在于降低由硬件执行指令的复杂度 xff0c 因为软件比硬件容易提供更大的灵活性和更高的智能 xff0c 因此RISC设计对编译器有更高的要求 xff1b CISC的设计则更侧重于硬件执行指令的功能 xff0c 使CISC的