【STL一】STL组件(容器、迭代器、算法、适配器、函数对象、内存分配器)

2023-05-16

【STL一】STL组件(容器、迭代器、算法、适配器、函数对象、内存分配器)

  • 一、STL
  • 二、STL组件(component)
    • 1、stl六大组件
    • 2、C++ STL的13个头文件
    • 3、stl所有头文件
  • 三、容器(container)
    • 1、序列容器(Sequence container)——顺序容器
    • 2、关联容器(Associative container)——排序容器
    • 3、无序容器(unordered (associative) container)——哈希容器
    • 4、其他容器
    • 5、容器实现
  • 四、迭代器(iterator)
    • 1、迭代器分类
    • 2、迭代器定义
    • 3、begin、end
  • 五、算法(algorithm)
  • 六、demo
    • 1、遍历 vector 容器。
    • 2、遍历 list 容器
    • 3、算法(反转)

简介:
STL 是“Standard Template Library”的缩写,中文译为“标准模板库”。STL 是 C++ 标准库的一部分,不用单独安装。C++ 对模板(Template)支持得很好,STL 就是借助模板把常用的数据结构及其算法都实现了一遍,并且做到了数据结构和算法的分离。例如,vector 的底层为顺序表(数组),list 的底层为双向链表,deque 的底层为循环队列,set 的底层为红黑树,hash_set 的底层为哈希表。

一、STL

  • STL,英文全称 standard template library,中文可译为标准模板库(或者泛型(generic)库),其包含有大量的模板类和模板函数,是 C++ 提供的一个基础模板的集合,用于完成诸如输入/输出、数学计算等功能

从程序员的角度来看,STL是由一些可适应不同需求的集合类(collection class)和一些能够在这些数据集合尚运作的算法构成。

  • STL内的所有组件都是由template(模板)构成,所以这些元素可以是任何类型。

  • STL赋予了c++新的抽象层次。

抛开dynamic array(动态数组)、linked list(链表)、binary tree(二叉树)、hash table(散列表)、之类的东西吧,再也不用担心各种search(查找)算法了。你只需要恰当的使用集合类,然后调用其成员函数和算法来处理数据,就万事大吉。

  • c++标准库中的所有标识符都被定义于一个名为std的namespace内;

二、STL组件(component)

1、stl六大组件

STL组件包括是由容器、算法、迭代器、函数对象、适配器、内存分配器;(这些组件中,最关键的是容器、迭代器和算法)

stl组件也被网上成为stl六大组件。当然,stl组件也有叫stl组成的,大家清楚即可。

STL组件含义
容器一些封装数据结构的模板类,例如 vector 向量容器、list 列表容器等。
算法STL 提供了非常多(大约 100 个)的数据结构算法,它们都被设计成一个个的模板函数,这些算法在 std 命名空间中定义,其中大部分算法都包含在头文件 中,少部分位于头文件 中。
迭代器在 C++ STL 中,对容器中数据的读和写,是通过迭代器完成的,扮演着容器和算法之间的胶合剂。
函数对象如果一个类将 () 运算符重载为成员函数,这个类就称为函数对象类,这个类的对象就是函数对象(又称仿函数)。
适配器可以使一个类的接口(模板的参数)适配成用户指定的形式,从而让原本不能在一起工作的两个类工作在一起。值得一提的是,容器、迭代器和函数都有适配器。
内存分配器为容器类模板提供自定义的内存申请和释放功能,由于往往只有高级用户才有改变内存分配策略的需求,因此内存分配器对于一般用户来说,并不常用。

2、C++ STL的13个头文件

在 C++ 标准中,它们被重新组织为 13 个头文件,如表所示。

stl组件头文件
容器<vector> <deque> <list> <queue> <stack> <set> <map>
算法<algorithm> <numeric>
迭代器<iterator>
函数对象<functional>
内存分配器<memory>
通用工具<utility>

C++ STL 标准库头文件 中文文档
C++ STL基本组成(6大组件+13个头文件)

3、stl所有头文件

C++ STL C++ 标准库头文件 中文文档

在这里插入图片描述

三、容器(container)

  • 容器:是用来管理某类对象的集合。

每一种容器都有其优点和缺点,所有,为了应付不同的需求,stl准备了不同的容器类型。

  • 容器可分为三大类:序列容器(Sequence container)、关联容器(Associative container)、无序容器(unordered (associative) container)

在这里插入图片描述

1、序列容器(Sequence container)——顺序容器

  • 是一种有序(ordered)集合;
  • 其内每个元素均有明确的位置——取决于插入时机和地点,与元素值无关。
  • 之所以被称为序列容器,是因为元素在容器中的位置同元素的值无关,即容器不是排序的。将元素插入容器时,指定在什么位置,元素就会位于什么位置。

如果你以追加方式对一个集合置入6个元素,它们的排列顺序将和置于次序一致。

  • STL提供了5个定义好的序列容器:array、vector、deque、list、forward_list

2、关联容器(Associative container)——排序容器

  • 关联容器也被成为——排序容器;
  • 是一种已排序(sorted)集合;
  • 元素位置取决于其value(或key——如果元素是个key/value pair)和给定的某个排序准则。

如果你将6个元素置于这样的集合中,他们的值将决定他们的次序,和插入次序无关。

排序容器中的元素默认是由小到大排序好的,即便是插入元素,元素也会插入到适当位置。所以关联容器在查找时具有非常好的性能。

  • STL提供了四个关联容器:set和multiset、map和multimap;

3、无序容器(unordered (associative) container)——哈希容器

  • 五序容器也有被翻译为——哈希容器
  • 这是一种无序集合(unordered collection);
  • 其内每个元素的位置无关紧要,唯一重要的是某特定元素释放至于此集合内;

元素值或其安插顺序,都不影响;

C++ 11 新加入 4 种关联式容器,分别是 unordered_set 哈希集合、unordered_multiset 哈希多重集合、unordered_map 哈希映射以及 unordered_multimap 哈希多重映射。和排序容器不同,哈希容器中的元素是未排序的,元素的位置由哈希函数确定。

4、其他容器

  • 可以把string当作一种stl容器。(这里的string指的是c++ string class对象(basic_string<>、string、wstring)

5、容器实现

  • Sequence 通常被实现为array或linked list。
  • Associative 通常实现为binary tree。
  • unordered 通常实现为hash table。

四、迭代器(iterator)

无论是序列容器还是关联容器,它们本质上都是用来存储大量数据的。诸如数据的排序、查找、求和、插入等需要对数据进行遍历的操作方法应该是类似的。而实现此操作,多数情况会选用“迭代器(iterator)”来实现。

它除了要具有对容器进行遍历读写数据的能力之外,还要能对外隐藏容器的内部差异,从而以统一的界面向算法传送数据。

  • 迭代器是一个“可遍历STL容器全部或部分元素”的对象.

1、迭代器分类

STL 标准库为每一种标准容器定义了一种迭代器类型,这意味着,不同容器的迭代器也不同,其功能强弱也有所不同。

常用的迭代器按功能强弱分为输入迭代器、输出迭代器、前向迭代器、双向迭代器、随机访问迭代器 5 种。本节主要介绍后面的这 3 种迭代器。

    1. 前向迭代器(forward iterator)
      假设 p 是一个前向迭代器,则 p 支持 ++p,p++,*p 操作,还可以被复制或赋值,可以用 == 和 != 运算符进行比较。此外,两个正向迭代器可以互相赋值。
    1. 双向迭代器(bidirectional iterator)
      双向迭代器具有正向迭代器的全部功能,除此之外,假设 p 是一个双向迭代器,则还可以进行 --p 或者 p-- 操作(即一次向后移动一个位置)。
    1. 随机访问迭代器(random access iterator)
      随机访问迭代器具有双向迭代器的全部功能。除此之外,假设 p 是一个随机访问迭代器,i 是一个整型变量或常量,则 p 还支持以下操作:
      p+=i:使得 p 往后移动 i 个元素。
      p-=i:使得 p 往前移动 i 个元素。
      p+i:返回 p 后面第 i 个元素的迭代器。
      p-i:返回 p 前面第 i 个元素的迭代器。
      p[i]:返回 p 后面第 i 个元素的引用。
容器对应的迭代器类型
array随机访问迭代器
vector随机访问迭代器
deque随机访问迭代器
list双向迭代器
set / multiset双向迭代器
map / multimap双向迭代器
forward_list前向迭代器
unordered_map / unordered_multimap前向迭代器
unordered_set / unordered_multiset前向迭代器
stack不支持迭代器
queue不支持迭代器

2、迭代器定义

尽管不同容器对应着不同类别的迭代器,但这些迭代器有着较为统一的定义方式,具体分为 4 种,

迭代器定义方式具体格式
正向迭代器容器类名::iterator 迭代器名;
常量正向迭代器容器类名::const_iterator 迭代器名;
反向迭代器容器类名::reverse_iterator 迭代器名;
常量反向迭代器容器类名::const_reverse_iterator 迭代器名;

迭代器是什么,C++ STL迭代器(iterator)用法详解

3、begin、end

所有容器都提供一些最级别的成员函数,使我们得以取得迭代器并以之便利所有元素。
这些函数中最重要的是:

  • begin():返回一个迭代器,指向容器的起点,也就是第一个元素(如果有的话)的位置。
  • end()返回一个迭代器,指向容器终点。终点位于最末元素的下一个位置。
    在这里插入图片描述

五、算法(algorithm)

STL提供了大约100个实现算法的模版函数,比如算法for_each将为指定序列中的每一个元素调用指定的函数,stable_sort以你所指定的规则对序列进行稳定性排序等等。

只要我们熟悉了STL之后,许多代码可以被大大的化简,只需要通过调用一两个算法模板,就可以完成所需要的功能并大大地提升效率。

STL中算法大致分为四类:

  • 非可变序列算法:指不直接修改其所操作的容器内容的算法。
  • 可变序列算法:指可以修改它们所操作的容器内容的算法。
  • 排序算法:对序列进行排序和合并的算法、搜索算法以及有序序列上的集合操作。
  • 数值算法:对容器内容进行数值计算。

C++中STL用法超详细总结(收藏级)

以下对所有算法进行细致分类并标明功能:

<一>查找算法(13个):判断容器中是否包含某个值

adjacent_find: 在iterator对标识元素范围内,查找一对相邻重复元素,找到则返回指向这对元素的第一个元素的 ForwardIterator。否则返回last。重载版本使用输入的二元操作符代替相等的判断。

binary_search: 在有序序列中查找value,找到返回true。重载的版本实用指定的比较函数对象或函数指针来判断相等。

count: 利用等于操作符,把标志范围内的元素与输入值比较,返回相等元素个数。

count_if: 利用输入的操作符,对标志范围内的元素进行操作,返回结果为true的个数。

equal_range: 功能类似equal,返回一对iterator,第一个表示lower_bound,第二个表示upper_bound。

find: 利用底层元素的等于操作符,对指定范围内的元素与输入值进行比较。当匹配时,结束搜索,返回该元素的 一个InputIterator。

find_end: 在指定范围内查找"由输入的另外一对iterator标志的第二个序列"的最后一次出现。找到则返回最后一对的第一 个ForwardIterator,否则返回输入的"另外一对"的第一个ForwardIterator。重载版本使用用户输入的操作符代 替等于操作。

find_first_of: 在指定范围内查找"由输入的另外一对iterator标志的第二个序列"中任意一个元素的第一次出现。重载版本中使 用了用户自定义操作符。

find_if: 使用输入的函数代替等于操作符执行find。

lower_bound: 返回一个ForwardIterator,指向在有序序列范围内的可以插入指定值而不破坏容器顺序的第一个位置。重载函 数使用自定义比较操作。

upper_bound: 返回一个ForwardIterator,指向在有序序列范围内插入value而不破坏容器顺序的最后一个位置,该位置标志 一个大于value的值。重载函数使用自定义比较操作。

search: 给出两个范围,返回一个ForwardIterator,查找成功指向第一个范围内第一次出现子序列(第二个范围)的位 置,查找失败指向last1。重载版本使用自定义的比较操作。

search_n: 在指定范围内查找val出现n次的子序列。重载版本使用自定义的比较操作。

<二>排序和通用算法(14个):提供元素排序策略

inplace_merge: 合并两个有序序列,结果序列覆盖两端范围。重载版本使用输入的操作进行排序。

merge: 合并两个有序序列,存放到另一个序列。重载版本使用自定义的比较。

nth_element: 将范围内的序列重新排序,使所有小于第n个元素的元素都出现在它前面,而大于它的都出现在后面。重 载版本使用自定义的比较操作。

partial_sort: 对序列做部分排序,被排序元素个数正好可以被放到范围内。重载版本使用自定义的比较操作。

partial_sort_copy: 与partial_sort类似,不过将经过排序的序列复制到另一个容器。

partition: 对指定范围内元素重新排序,使用输入的函数,把结果为true的元素放在结果为false的元素之前。

random_shuffle: 对指定范围内的元素随机调整次序。重载版本输入一个随机数产生操作。

reverse: 将指定范围内元素重新反序排序。

reverse_copy: 与reverse类似,不过将结果写入另一个容器。

rotate: 将指定范围内元素移到容器末尾,由middle指向的元素成为容器第一个元素。

rotate_copy: 与rotate类似,不过将结果写入另一个容器。

sort: 以升序重新排列指定范围内的元素。重载版本使用自定义的比较操作。

stable_sort: 与sort类似,不过保留相等元素之间的顺序关系。

stable_partition: 与partition类似,不过不保证保留容器中的相对顺序。

<三>删除和替换算法(15个)

copy: 复制序列

copy_backward: 与copy相同,不过元素是以相反顺序被拷贝。

iter_swap: 交换两个ForwardIterator的值。

remove: 删除指定范围内所有等于指定元素的元素。注意,该函数不是真正删除函数。内置函数不适合使用remove和 remove_if函数。

remove_copy: 将所有不匹配元素复制到一个制定容器,返回OutputIterator指向被拷贝的末元素的下一个位置。

remove_if: 删除指定范围内输入操作结果为true的所有元素。

remove_copy_if: 将所有不匹配元素拷贝到一个指定容器。

replace: 将指定范围内所有等于vold的元素都用vnew代替。

replace_copy: 与replace类似,不过将结果写入另一个容器。

replace_if: 将指定范围内所有操作结果为true的元素用新值代替。

replace_copy_if: 与replace_if,不过将结果写入另一个容器。

swap: 交换存储在两个对象中的值。

swap_range: 将指定范围内的元素与另一个序列元素值进行交换。

unique: 清除序列中重复元素,和remove类似,它也不能真正删除元素。重载版本使用自定义比较操作。

unique_copy: 与unique类似,不过把结果输出到另一个容器。

<四>排列组合算法(2个):提供计算给定集合按一定顺序的所有可能排列组合

next_permutation: 取出当前范围内的排列,并重新排序为下一个排列。重载版本使用自定义的比较操作。

prev_permutation: 取出指定范围内的序列并将它重新排序为上一个序列。如果不存在上一个序列则返回false。重载版本使用 自定义的比较操作。

<五>算术算法(4个)

accumulate: iterator对标识的序列段元素之和,加到一个由val指定的初始值上。重载版本不再做加法,而是传进来的 二元操作符被应用到元素上。

partial_sum: 创建一个新序列,其中每个元素值代表指定范围内该位置前所有元素之和。重载版本使用自定义操作代 替加法。

inner_product: 对两个序列做内积(对应元素相乘,再求和)并将内积加到一个输入的初始值上。重载版本使用用户定义 的操作。

adjacent_difference: 创建一个新序列,新序列中每个新值代表当前元素与上一个元素的差。重载版本用指定二元操作计算相 邻元素的差。

<六>生成和异变算法(6个)

fill: 将输入值赋给标志范围内的所有元素。

fill_n: 将输入值赋给first到first+n范围内的所有元素。

for_each: 用指定函数依次对指定范围内所有元素进行迭代访问,返回所指定的函数类型。该函数不得修改序列中的元素。

generate: 连续调用输入的函数来填充指定的范围。

generate_n: 与generate函数类似,填充从指定iterator开始的n个元素。

transform: 将输入的操作作用与指定范围内的每个元素,并产生一个新的序列。重载版本将操作作用在一对元素上,另外一 个元素来自输入的另外一个序列。结果输出到指定容器。

<七>关系算法(8个)

equal: 如果两个序列在标志范围内元素都相等,返回true。重载版本使用输入的操作符代替默认的等于操 作符。

includes: 判断第一个指定范围内的所有元素是否都被第二个范围包含,使用底层元素的<操作符,成功返回 true。重载版本使用用户输入的函数。

lexicographical_compare: 比较两个序列。重载版本使用用户自定义比较操作。

max: 返回两个元素中较大一个。重载版本使用自定义比较操作。

max_element: 返回一个ForwardIterator,指出序列中最大的元素。重载版本使用自定义比较操作。

min: 返回两个元素中较小一个。重载版本使用自定义比较操作。

min_element: 返回一个ForwardIterator,指出序列中最小的元素。重载版本使用自定义比较操作。

mismatch: 并行比较两个序列,指出第一个不匹配的位置,返回一对iterator,标志第一个不匹配元素位置。 如果都匹配,返回每个容器的last。重载版本使用自定义的比较操作。

<八>集合算法(4个)

set_union: 构造一个有序序列,包含两个序列中所有的不重复元素。重载版本使用自定义的比较操作。

set_intersection: 构造一个有序序列,其中元素在两个序列中都存在。重载版本使用自定义的比较操作。

set_difference: 构造一个有序序列,该序列仅保留第一个序列中存在的而第二个中不存在的元素。重载版本使用 自定义的比较操作。

set_symmetric_difference: 构造一个有序序列,该序列取两个序列的对称差集(并集-交集)。

<九>堆算法(4个)

make_heap: 把指定范围内的元素生成一个堆。重载版本使用自定义比较操作。

pop_heap: 并不真正把最大元素从堆中弹出,而是重新排序堆。它把first和last-1交换,然后重新生成一个堆。可使用容器的 back来访问被"弹出"的元素或者使用pop_back进行真正的删除。重载版本使用自定义的比较操作。

push_heap: 假设first到last-1是一个有效堆,要被加入到堆的元素存放在位置last-1,重新生成堆。在指向该函数前,必须先把 元素插入容器后。重载版本使用指定的比较操作。

sort_heap: 对指定范围内的序列重新排序,它假设该序列是个有序堆。重载版本使用自定义比较操作。

六、demo

1、遍历 vector 容器。

#include <iostream>
#include <vector>
using namespace std;
int main()
{
    vector<int> v{ 1,2,3,4,5,6,7,8,9,10 }; //v被初始化成有10个元素
    cout << "第一种遍历方法:" << endl;
    //size返回元素个数
    for (int i = 0; i < v.size(); ++i)
        cout << v[i] << " "; //像普通数组一样使用vector容器
    //创建一个正向迭代器,当然,vector也支持其他 3 种定义迭代器的方式

    cout << endl << "第二种遍历方法:" << endl;
    vector<int>::iterator i;
    //用 != 比较两个迭代器
    for (i = v.begin(); i != v.end(); ++i)
        cout << *i << " ";

    cout << endl << "第三种遍历方法:" << endl;
    for (i = v.begin(); i < v.end(); ++i) //用 < 比较两个迭代器
        cout << *i << " ";

    cout << endl << "第四种遍历方法:" << endl;
    i = v.begin();
    while (i < v.end()) { //间隔一个输出
        cout << *i << " ";
        i += 2; // 随机访问迭代器支持 "+= 整数"  的操作
    }
}

输出

第一种遍历方法:
1 2 3 4 5 6 7 8 9 10
第二种遍历方法:
1 2 3 4 5 6 7 8 9 10
第三种遍历方法:
1 2 3 4 5 6 7 8 9 10
第四种遍历方法:
1 3 5 7 9

2、遍历 list 容器

#include <iostream>
#include <list>
using namespace std;
int main()
{
    list<int> v = {1,2,3,4,5};
    //创建一个常量正向迭代器,同样,list也支持其他三种定义迭代器的方式。
    list<int>::const_iterator i;
    // 则以下代码是合法的:
    for (i = v.begin(); i != v.end(); ++i)
            cout << *i<<" ";
}

输出

1 2 3 4 5

  • 以下代码则不合法,因为双向迭代器不支持用“<”进行比较:
for(i = v.begin(); i < v.end(); ++i)
    cout << *i;
  • 以下代码也不合法,因为双向迭代器不支持用下标随机访问元素:
for(int i=0; i<v.size(); ++i)
    cout << v[i];

3、算法(反转)

#include <iostream>
#include <vector>
using namespace std;
int main()
{
    vector<int> v{ 1,2,3,4,5,6,7,8,9,10 }; //v被初始化成有10个元素
    cout << "遍历(正序):" << endl;
    //size返回元素个数
    for (int i = 0; i < v.size(); ++i)
        cout << v[i] << " "; //像普通数组一样使用vector容器

    //反转
    std::reverse(begin(v), end(v));

    cout << endl << "遍历(反转):" << endl;
    vector<int>::iterator i;
    //用 != 比较两个迭代器
    for (i = v.begin(); i != v.end(); ++i)
        cout << *i << " ";
}

遍历(正序):
1 2 3 4 5 6 7 8 9 10
遍历(反转):
10 9 8 7 6 5 4 3 2 1

今天先到这里,后面会更详细的讲解下每一种容器使用时的注意事项。

参考:
1、C++ STL 容器库 中文文档
2、STL教程:C++ STL快速入门
3、https://www.apiref.com/cpp-zh/cpp/header.html
4、https://en.cppreference.com/w/cpp/container

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

【STL一】STL组件(容器、迭代器、算法、适配器、函数对象、内存分配器) 的相关文章

  • 【网段】【vlan】【广播域】关于网段,vlan和广播域的关系的个人理解

    广播域是一个二层概念 xff0c 所有能够接收到同一个广播的设备处于同一广播域 而所有的三层以下的设备 xff08 不包括第三层 xff09 都是不能隔离广播的 xff0c 所以所有由交换机 xff0c 网桥 xff0c 集线器连接起来的设
  • git 创建远程库

    首先是git的配置 git config global user name 34 your name 34 git config global user email 34 your mail 34 这两个配置信息是用来记录你的git操作 x
  • python 创建二维列表的方法

    使用python创建二维列表有以下两种方式 xff1a 1 列表复制法 xff1a a 61 0 width height 但是这种方法会导致如下问题 xff1a gt gt gt a 61 0 3 4 gt gt gt a 0 0 0 0
  • 各种接插头名称汇总

    杜邦线插头 JST接线端子 SH1 0MX1 25ZH1 5PH2 0HY2 0XH2 54贴片座子 T型插头 XT60型插头 SM插头 未完待续
  • GA-B85M-D3V PLUS 1150安装win10后的蓝屏问题汇总

    通过windbg来定位出错的sys文件 下面是安装技嘉官方驱动后依然频繁出现的蓝屏 尝试方案fltmgr sys sfc scannow chkdsk c f r dxgmms2 syssystem service exception dx
  • 超声波风速风向传感器

    OSA 1F1 超声波风速风向传感器 1 概述 OSA 1F1超声波风速风向传感器是一款迷你型全数字化传感器 xff0c 高度集成超声波风速 风向传感器 xff0c 体积小巧 xff0c 集成度高 xff0c 质量轻 xff0c 坚固耐用
  • Loggernet软件新手入门(一)

    loggernet软件新手入门 xff08 一 xff09 安装与简单操作 一 xff0e 软件及驱动安装安装 1 1 打开软件安装包 xff0c 点击 exe应用程序图标 xff0c 然后在弹出的对话框中 xff0c 选择 Install
  • Loggernet软件新手入门(二)

    一 xff0e 创建一个程序 在loggernet软件中 xff0c 创建一个程序有两种方式 xff1a Short Cut以及CRBasic Editor xff0c 这两种方式都可以在Program目录下找到 1 1Short Cut
  • PC200W-简版loggernet软件

    一 xff0e 解压缩PC200W文件夹 xff0c 双击下图图标 xff0c 可以打开PC200W 二 xff0e 创建一个连接 打开软件后 xff0c 会弹出一个关于创建连接的对话框 xff0c 如果没有弹出 xff0c 可以在Netw
  • 示例一:CR300接CS655

    Public PTemp Batt volt Public CS655 3 Alias CS655 1 61 vwc Alias CS655 2 61 ec Alias CS655 3 61 T Units vwc 61 Units ec
  • 日本原装COM 3600F专业型空气负离子检测仪 --CR1000采集

    Public PTemp Batt volt Public instring string As String 36 Public Num spilt 3 As String 3 Alias Num spilt 1 61 ION FM Pu
  • java FlowLayout示例

    java FlowLayout示例 xff1a import java awt FlowLayout import javax swing JLabel import javax swing WindowConstants import j
  • Get 一个显示界面,与数采串口通信

    程序第一步 xff1a 显示 数据来源 xff0c CR1000数据采集器 xff0c 5秒采集并存储上传 第二步 xff1a 存储 TXT文档存储 xff0c 逗号分隔 xff0c 每月创建一个新的文件 xff0c 可以另存为excel文
  • UART通信协议

    UART通信协议 一 UART是什么 xff1f 1 同步串口通信 vs 异步串口通信2 串行通信 二 通信协议三 工作原理四 特点 一 UART是什么 xff1f 通用异步收发传输器 xff08 Universal Asynchronou
  • win10右下角的通知区域

    属性 gt 通知和操作 gt 选择在任务栏上显示哪些图标 gt
  • UART一对多通信的方法

    通常 xff0c uart为单对单通信 xff0c 当用到一对多时可以用RS485 然而有时候我们MCU的uart口只剩一个 xff0c 又要接多个uart的外围芯片 xff0c 这时如果转成RS485需要加多个485收发器 xff0c 成
  • 全网最全的 postman 工具使用教程

    正文如下 xff0c 如果觉得有用欢迎点赞 关注 postman是一款支持http协议的接口调试与测试工具 xff0c 其主要特点就是功能强大 xff0c 使用简单且易用性好 无论是开发人员进行接口调试 xff0c 还是测试人员做接口测试
  • 星际争霸1终于可以在win10上运行了

    win7的时候 xff0c 星际争霸1就不能运行 xff0c 只好装了个虚拟机 xff0c 在虚拟机里玩 刚刚更新到了win10 xff0c 总觉得在虚拟机里玩不是个事 xff0c 就去网上搜索 xff0c 终于发现了办法 在 StarCr
  • windows下编译opencv 3.4.0

    为了方便后期的调试 xff0c 自己动手编译opencv3 4 0 xff0c 这样有需要的时候还可以自己修改修改源代码 通常来说 xff0c 编译32位比较简单 xff0c 直接用cmake生成编译的工程就行了 xff0c 但64位就比较
  • opencv添加的新接口clearVec()的实现

    自己编译的opencv xff0c 之前文章有说添加了这个接口 xff0c 也有上传3 3 0版本添加这个接口之后编译好的库 xff0c 但是没有把实现过程展现出来 xff0c 导致有些朋友问我如何实现的 xff0c 今天把这个实现放出来

随机推荐

  • 苏泊尔电饭煲不工作的维修

    本篇文章与其说是维修 xff0c 倒不如说成是 拆 xff0c 因为维修相对容易 xff0c 但想拆开却很艰难 xff0c 大部分的时间都花在了拆的工作上面 老家伙的样子如下 型号为 xff1a CYSB50FC99 100 xff0c 铭
  • 萨克斯吹不响的解决办法

    刚开始吹萨克斯 xff0c 发现总是吹不响 看各种入门的文章 xff0c 很多都强调口型的重要性 xff0c 各文章说得也都差不多 xff0c 我仔细捉摸 xff0c 不断尝试 xff0c 似乎还是不得要领 特别是安装好之后 xff0c 很
  • vs2010制作安装工程

    这里的安装工程 xff0c 是指制作安装包 xff0c 而不是vs2010的安装包 用向导生成一个安装工程 xff0c 通常会直接打开一个文件编辑窗口 xff1a 这个窗口很容易编辑 xff0c 把所有要安装的文件拖到 应用程序文件夹 上
  • windows下编译ffmpeg源代码

    由于工作原因 xff0c 需要使用ffmpeg在windows下进行代码跟踪 于是 xff0c 上网找相关文章 xff0c 搜索出来有很多 xff0c 经过查看 xff0c 其中的一个英文网站是最好的 xff0c 网址 xff1a http
  • 注册控件失败之一:提示0x80040200错误的处理办法

    今天有客户反馈说控件无法注册 xff0c 晕 xff0c 这问题好容易困扰开发者以及客服人员 xff0c 但是环境千差万别 xff0c 很难做到完全自动化 出现的错误号码有很多 xff0c 但相对的0x80040200这个号码出现的概率较其
  • win10+ubuntu23.04双系统安装

    win10 win10先安装好 xff08 确保主板上各个螺丝稳定 xff0c 至少4对螺丝 43 铜柱 xff0c 否则会各种蓝屏 xff09 如果双系统安装失败了 xff0c 连win10都进不去了 xff0c 用原版ISO刻录的U盘或
  • 冷门指标移中平均线和多空指数的完美结合(一定要看)

    注 xff0c 原贴地址 xff1a http blog sina com cn s blog 7f0a6fa50101hyls html 在此谨以记录防止原帖无法打开为忧 冷门指标移中平均线和多空指数的完美结合 一定要看 xff09 20
  • LINUX下安装QT的惨痛经历

    安装QT的惨痛经历 目标 xff1a 2012 4月下旬 xff0c 计划开始在linux上安装QT和ffmpeg xff0c 准备摸索一下视频客户端的开发 以下是安装过程 由于没有额外的电脑 xff0c 所以使用了虚拟机安装 电脑上刚好有
  • Linux下CAN总线速率设置,socketCAN。

    背景 xff1a 飞思卡尔Freescale的ARM9处理器i MX25系列 socketCAN对于在Linux下操作CAN总线非常的快捷方便 xff0c 其配置方法和在Linux下对网卡的配置相似 xff0c 方法如下 xff1a 1 i
  • c++在Linux环境下的套接字Tcp通信例子(demo)

    demo包括服务端和客户端的通信 xff0c 发送端发送格式为先发送长度为5的字符串数据 xff0c 告知对方接下来的数据长度 xff0c 接收端首先接收到消息长度 xff0c 再根据消息长度接受接下来的消息 服务端 xff1a inclu
  • yolo_mark工具的使用

    之前自己编译了一下yolo mark用来标注样本 我编译时yolo mark依赖了opencv3 2 0 当时为了方便直接把yolo mark exe放到编译yolo的文件夹 现在要在其他地方使用 xff0c 就把所有文件整理出来 其中op
  • GStreamer与opencv实现rtsp推流

    文章目录 前言安装库代码总结 前言 最近工作遇到瓶颈了呀 xff01 xff01 xff01 公司分配给我的任务是deepstream部署 xff0c 太难了 xff0c gstreamer语言学的我头皮发麻 xff01 xff01 xff
  • 【STM32学习5】STM32使用printf函数 打印到电脑串口助手

    本文所使用的方法与代码参考自正点原子 xff0c 如果想要详细了解这方面的知识 xff0c 请阅读正点原子官方提供的文档 一 背景 在开发STM32应用时 xff0c 将一些信息通过串口打印到电脑上是常用的调试手段 C语言标准库中的prin
  • linux下socketCAN实现反转过滤——CAN_INV_FILTER的使用

    关于Linux中socket can怎么使用 xff0c CSDN上已经有很多文章介绍 本文重点记录can filter中的 CAN INV FILTER的使用 xff0c 很多文章对此一笔带过 xff0c 且很多文章翻译不全 xff0c
  • [摘抄-Socket-学习中]UDP通信基础代码-server端

    include lt stdio h gt include lt stdlib h gt include lt string h gt include lt sys socket h gt include lt netinet in h g
  • 四轴飞行器初步——器件选择

    电机 图1 图2 四轴飞行器可以采用无刷电机 xff08 图1 xff09 xff0c 也可以采用有刷电机 xff08 图2 xff09 前者载重能力强 xff0c 一般用于稍大型的多轴飞行器 后者一般用 于小型四轴飞行器 xff0c 如c
  • 如何提取小程序中的文字

    打开微信pc端 xff0c 点击小程序图片 打开qq使用长截图功能 打开adobe acrobat破解版 xff0c 进行文字识别 xff0c 即可得到所有内容
  • 导致数据库中数据不一致的根本原因

    数据库中很有可能存在不一致的数据 一般导致数据库中数据不一致的根本原因有三种情况 第一种是数据冗余造成的 xff0c 第二种是并发控制不当造成的 xff0c 第三种是由于某种原因 xff08 比如软硬件故障或者操作错误 xff09 导致数据
  • visual studio的team使用问题小结

    visual studio的team使用问题小结 一 visual studio xff08 2017 xff09 默认浏览器打开team任务和bug二 visual studio xff08 2017 xff09 上传team时 xff0
  • 【STL一】STL组件(容器、迭代器、算法、适配器、函数对象、内存分配器)

    STL一 STL组件 xff08 容器 迭代器 算法 适配器 函数对象 内存分配器 xff09 一 STL二 STL组件 xff08 component xff09 1 stl六大组件2 C 43 43 STL的13个头文件3 stl所有头