TCP的三次握手与四次挥手详解

2023-05-16

文章目录

    • TCP 协议简述
    • TCP包首部
    • TCP 三次握手建立连接
    • TCP 四次挥手关闭连接
    • 常见面试题:

TCP 协议简述

TCP 提供面向有连接的通信传输,面向有连接是指在传送数据之前必须先建立连接,数据传送完成后要释放连接。TCP传输的是字节流

无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接。在TCP/IP协议中,TCP协议提供可靠的连接服务,连接是通过三次握手进行初始化的。
同时由于TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议,TCP是全双工模式,所以需要四次挥手关闭连接。

TCP包首部

首部的结构由协议的具体规范详细定义。在数据包的首部,明确标明了协议应该如何读取数据。

TCP数据被封装在一个IP数据报中如下图:
在这里插入图片描述
TCP首部如果不计任选字段,它通常是20个字节。最多可以是40字节
在这里插入图片描述
(从这个图上看:一层32位,也就是4个字节,一共5层,共20个字节)

现在分析一下TCP协议首部的各项信息:

  • TCP端口号

TCP的连接是需要四个要素确定唯一一个连接:(源IP,源端口号)+ (目地IP,目的端口号)
所以TCP首部预留了两个16位作为端口号的存储,而IP地址由上一层IP协议负责传递
源端口号和目地端口各占16位两个字节,也就是端口的范围是2^16=65535,另外1024以下是系统保留的,从1024-65535是用户使用的端口范围

  • TCP的序号和确认号:

32位序号 seq:Sequence number 缩写seq ,TCP通信过程中某一个传输方向上的字节流的每个字节的序号,通过这个来确认发送的数据有序,比如现在序列号为1000,发送了1000个字节,下一个序列号就是2000。

32位确认号 ack(小写):Acknowledge number 缩写ack,TCP对上一次seq序号做出的确认号,用来响应TCP报文段,给收到的TCP报文段的序号seq加1

  • TCP的标志位

每个标志位占一位,因此不是0就是1,1为有效,0为无效
每个TCP段都有一个目的,借助于TCP标志位选项就可以确定每个TCP端的发送目的。
用的最广泛的标志是 SYN,ACK 和 FIN,用于建立连接,确认成功的段传输,最后终止连接。

SYN:同步标志位,用于建立会话连接,同步序列号;
ACK: 确认标志位,对已接收的数据包进行确认;
FIN: 完成标志位,表示我已经没有数据要发送了,即将关闭连接;

PSH:简写为P,推送标志位,表示该数据包被对方接收后应立即交给上层应用,而不在缓冲区排队;
RST:简写为R,重置标志位,用于连接复位、拒绝错误和非法的数据包;
URG:简写为U,紧急标志位,表示数据包的紧急指针域有效,用来保证连接不被阻断,并督促中间设备尽快处理;

TCP 三次握手建立连接

所谓三次握手(Three-way Handshake),是指建立一个 TCP 连接时,需要客户端和服务器总共发送3个报文。

三次握手的目的是连接服务器指定端口,建立 TCP 连接,并同步连接双方的序列号和确认号,交换 TCP 窗口大小信息。在 socket 编程中,客户端执行 connect() 时。将触发三次握手

三次握手过程的示意图如下
在这里插入图片描述

第一次握手:
客户端将TCP报文标志位SYN置为1,随机产生一个序号值seq=J,保存在TCP首部的序列号(Sequence Number)字段里,指明客户端打算连接的服务器的端口,并将该数据包发送给服务器端,发送完毕后,客户端进入SYN_SENT状态,等待服务器端确认。

第二次握手:
服务器端收到数据包后由标志位SYN=1表示知道客户端请求建立连接,同时将标志位SYN和ACK都置为1,确认号ack=J+1,随机产生一个序号值seq=K,并将该数据包发送给客户端以确认连接请求,服务器端进入SYN_RCVD状态。

第三次握手:
客户端收到确认后,检查确认号ack是否为J+1,标志位ACK是否为1,如果正确则将标志位ACK置为1,确认号ack=K+1,并将该数据包发送给服务器端,服务器端检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,客户端和服务器端进入ESTABLISHED状态,完成三次握手,随后客户端与服务器端之间可以开始传输数据了

注意:我们上面写的ack和ACK,不是同一个概念:

  • 小写的ack代表的是头部的确认号Acknowledge number, 缩写ack,是对上一个包的序号进行确认的号,ack=seq+1。
  • 大写的ACK,则是我们上面说的TCP首部的标志位,用于标志的TCP包是否对上一个包进行了确认操作,如果确认了,则把ACK标志位设置成1。

TCP 四次挥手关闭连接

四次挥手即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发。

由于TCP连接是全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭。

四次挥手过程的示意图如下:

在这里插入图片描述
第一次挥手:
Client端发起挥手请求,并且停止发送数据,向Server端发送标志位是FIN报文段,FIN=1,设置序列号seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,Client端进入FIN_WAIT_1(终止等待1)状态,这表示Client端没有数据要发送给Server端了(TCP规定,FIN报文段即使不携带数据,也要消耗一个序号)

第二次挥手:
Server端收到了Client端发送的FIN报文段,向Client端返回一个标志位是ACK=1的报文段,ack设为seq加1(u+1),并且带上自己的序列号seq=v,服务端就进入了CLOSE-WAIT(关闭等待)状态,TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

第三次挥手:
服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

第四次挥手:
客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端依然没有收到回复,才进入CLOSED状态。

服务器只要收到了客户端发出的确认,立即进入CLOSED状态。可以看到,服务器结束TCP连接的时间要比客户端早一些。

常见面试题:

【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。所以建立连接只需要三次握手。
但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,“你发的FIN报文我收到了”。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

【问题3】为什么需要三次握手?为什么不能用两次握手进行连接?

答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

如果使用两次握手就建立连接,就会出现出现以下情况:

  1. 我们假设client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。
    假设采用“两次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。
  2. 把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下(第二次握手丢失),将不知道S是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

【问题4】如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

TCP的三次握手与四次挥手详解 的相关文章

  • 用 C 处理 TCP 的部分返回

    我一直在读Beej 的网络编程指南 http beej us guide bgnet 获取 TCP 连接的句柄 在其中一个示例中 简单 TCP 流客户端的客户端代码如下所示 if numbytes recv sockfd buf MAXDA
  • Linux Socket write() 的错误文件描述符 错误的文件描述符 C

    我对 write 2 函数有一个有趣的问题 PrepareResponseForSetCoordinates 函数会导致写入时出现错误的文件描述符错误 这是错误行 perror 写入套接字时出错 总产量 写入套接字时出错 文件描述符错误 我
  • 为什么在数据包输入时 skb_buffer 需要跳过 20 个字节才能读取传输缓冲区?

    我正在 Linux 中编写一个网络模块 我发现只有在从 skb 缓冲区跳过 20 个字节后才能提取 tcp 标头 即使 API 是 skb transport header 其背后的原因是什么 有人可以详细解释一下吗 传出数据包不需要同样的
  • Socket ReceiveAsync 合并数据包

    我打算通过套接字接收数据包 但由于它们是从发送方以高频率发送的 因此其中许多数据包被打包成一个byte array SocketAsyncEventArgs Buffer然后保存多个数据包 即使它们是单独发送的 使用验证wireshark
  • 为什么我们可以将 sockaddr 转换为 sockaddr_in

    我明白为什么强制转换很有用sockaddr to sockaddr in 但我不明白这怎么可能 据我所知 它们的大小相同sockaddr in添加了sin zero使其大小相同 我想知道编译器如何知道从哪里获取信息sockaddr in如果
  • 数据包丢失和数据包重复

    我试图找出数据包丢失和数据包重复问题之间的区别 有谁知道 数据包重复 是什么意思 和TCP检测到丢失时重传数据包一样吗 No In TCP 数据包 的传递是可靠的 我认为在这种情况下术语数据应该更好 因为它是面向流的协议 数据包丢失和重复是
  • 两个http请求可以合并在一起吗?如果可以的话,nodeJS服务器如何处理呢?

    昨天我做了一些关于 NodeJS 的演讲 有人问我以下问题 我们知道nodeJS是一个单线程服务器 多个请求是 到达服务器并将所有请求推送到事件循环 如果什么 两个请求同时到达服务器 服务器将如何处理 处理这种情况 我猜到了一个想法并回复如
  • C# Socket.receive连续接收0字节且循环中不阻塞

    我正在尝试用 C 编写一个最简单的多线程 TCP 服务器 它接收来自多个客户端的数据 每次连接新客户端时 都会建立套接字连接 并将套接字作为参数传递给新类函数 之后运行 while 循环并接收数据 直到客户端连接为止 这里的问题是 sock
  • AMQP如何克服直接使用TCP的困难?

    AMQP如何克服直接使用TCP发送消息时的困难 或者更具体地说 在发布 订阅场景中 在 AMQP 中 有一个代理 该代理接收消息 然后完成将消息路由到交换器和队列的困难部分 您还可以设置持久队列 即使客户端断开连接 也可以为客户端保存消息
  • 为什么 UDP 服务器中只有一个套接字?

    我正在准备考试 发现了这个问题 典型的 UDP 服务器可以使用单个套接字来实现 解释一下为什么 对于 TCP 驱动的服务器 我发现创建了两个套接字 一个用于所有客户端访问服务器 另一个用于每个客户端的特定 套接字 用于服务器和客户端之间的进
  • 序列化是通过套接字发送数据的最佳选择吗?

    有人告诉我 序列化不是通过套接字发送数据的最佳方法 但他们说他们在一本书上读过一次 并且不确定更好的方法 因为他们以前没有真正做过网络 那么序列化是最好的方法还是有更好的方法 如果这有很大的不同的话 这也是一个游戏 通过搜索有关通过它发送对
  • 如何强制关闭 TcpListener

    我有一个通过 tcpListener 进行通信的服务 问题是当用户重新启动服务时 抛出 地址已在使用 异常 并且服务在几分钟左右无法启动 有没有办法告诉系统终止旧连接 以便我可以打开一个新连接 我不能只使用随机端口 因为服务无法通知客户端端
  • UWP 无法在两个应用程序之间创建本地主机连接

    我正在尝试在两个 UWP 应用程序之间设置 TCP 连接 当服务器和客户端在同一个应用程序中运行时 它可以正常工作 但是 当我将服务器部分移动到一个应用程序并将客户端部分移动到另一个应用程序时 ConnectAsync 会引发异常 服务器未
  • Erlang gen_tcp 连接问题

    简单的问题 这段代码 client gt SomeHostInNet localhost to make it runnable on one machine ok Sock gen tcp connect SomeHostInNet 56
  • 如何在Linux内核源代码中打印IP地址或MAC地址

    我必须通过修改 Linux 内核源代码来稍微改变 TCP 拥塞控制算法 但为了检查结果是否正确 我需要记录 MAC 或 IP 地址信息 我使用 PRINTK 函数来打印内核消息 但我感觉很难打印出主机的MAC IP地址 printk pM
  • ADO.NET SQLServer:如何防止关闭的连接持有S-DB锁?

    i Dispose http msdn microsoft com en us library system data sqlclient sqlconnection close aspx一个 SqlConnection 对象 但是当然它并
  • 建立 TCP 连接边界的正确方法

    我的问题是关于如何正确处理使用 tcp 连接接收的数据 事实上 通过建立 tcp 连接 创建了一个流 假设我想发送一条有开头和结尾的消息 由于数据在流中流动而没有指定任何边界 我如何识别消息的开始和结束 我想在消息的开头和结尾处放置一些特殊
  • 如何使用 Nmap 检索 TCP 和 UDP 端口? [关闭]

    Closed 这个问题是无关 help closed questions 目前不接受答案 我需要在使用 Nmap 的同一扫描中以尽可能最快的方式检索 TCP 和 UDP 端口 我会尽力解释得更好 如果我使用最常用的命令 nmap 192 1
  • ADB TCPIP 连接问题

    我有两台 Galaxy S3 其中一个已扎根 另一个则未扎根 因此 当我尝试通过本地网络连接它们时 计算机可以看到已root的计算机 但是正常的就卡在tcpip这一步了 所以 我写 adb tcpip 5555 It says restar
  • 将 C++ TCP/IP 应用程序从 IPv4 转换为 IPv6。难的?值得这么麻烦吗?

    多年来 我使用 WinSock 为 Windows 开发了少量 C 服务器 客户端应用程序 路由器 Web 邮件 FTP 服务器等 等等 我开始越来越多地考虑创建这些应用程序的 IPv6 版本 当然 同时也保留原始的 IPv4 版本 问题

随机推荐

  • 【C++】C++中防止头文件重复包含的两种方法

    文章目录 01 错误分析 xff1a 类型重定义 xff08 头文件重复包含 xff09 02 解决方案2 1 微软宏2 2 条件编译2 3 两种方法比较 03 变量被重复包含3 1 解决办法 04 版权声明 amp 总结 01 错误分析
  • C/C++程序员应聘常见面试题深入剖析

    1 引言 本文的写作目的并不在于提供C C 43 43 程序员求职面试指导 xff0c 而旨在从技术上分析面试题的内涵 文中的大多数面试题来自各大论坛 xff0c 部分试题解答也参考了网友的意见 许多面试题看似简单 xff0c 却需要深厚的
  • Nvidia jetson tx2 详细安装、配置教程以及固定ip

    jetson tx2 是什么 一 硬件组装 xff1a 1 将 Wi Fi 天线插上 xff0c 组装好充电器即可 2 接口介绍 xff1a USB接口只有一个 xff08 建议使用USB拓展 xff0c 方便前期配置的时候连接键盘鼠标 x
  • C语言 用指针实现字符串函数 strlen strcpy strcat strcmp

    目录 一 指针模拟实现strlen 函数 1 strlen 函数description 2 用指针实现且将strlen封装 3 运行结果 二 指针模拟实现strcpy 函数 1 strcpy 函数description 2 用指针实现且将s
  • 常用器件介绍

    常用器件介绍 这篇文章主要介绍一些在做电子设计时最最常见的器件 xff0c 针对的是完全的小白们 面包板 首先是搭建设计电路用的面包板 面包板正面图 背面拆解图 面包板是专为电子电路的无焊接实验设计制造的 xff0c 上面有很多小插孔 各种
  • VScode代码格式化解决方案c/c++

    前贴链接 xff1a https tieba baidu com p 7891213649 之前说过研究出来了会和大家分享一下自己是如何解决的 xff0c 于是就有了此贴 首先要说明 xff0c 本文主要是针对c c 43 43 xff0c
  • C语言输入和输出

    文章目录 一 数据输入二 数据输出三 断章取义四 printf输出1 输出描述性的文字2 输出整数3 输出字符4 输出浮点数5 输出字符串6 输出多个内容7 示例 xff08 book12 c xff09 五 scanf输入1 输入整数2
  • c 和 python语法 对比

    直接干货 xff1a 先稍微了解两种语言的基本不同 pythonc执行方式无需手动编译 xff0c 执行时按行读取 xff0c 自动编译成字节码 所以python可轻易被获取源码需要手动进行编译生成机器可直接执行的机器码内存管理有自己的垃圾
  • 删除typora图片目录下失效的图片脚本

    背景 xff1a md中插入图片与word不同 xff0c 在word中图片是拷贝了一份放在文件中 xff0c 与原图片无关 xff0c 所以无论删除哪个互不影响 xff0c 但是md中却不同 xff0c md中插入图片时用超链接的方式从外
  • scanf中‘\n‘的用法和隐患

    读到这篇文章的人90 的可能是遇到了输入字符后 xff0c 回车没有预期的输出 xff0c 连续回车都没用 这种情况可能是因为你在scanf中加了 n xff0c 而且加了不该加的地方 把代码里的 n删了或者再输入一个不是 n的字符再回车
  • c语言使用一维数组实现杨辉三角

    通常使用在实现杨辉三角时使用的时使用二维数组的方式 xff0c 这种方式比较快捷 xff0c 且比较好理解 xff0c 但是使用二维数组浪费了大量的空间 xff0c 又大概一般的空间未被使用 如果使用一维数组进行计算能大大提高空间利用率 首
  • 链表、结构体和数组对比

    结构体和数组 1 结构体可以存不同类型的元素 而数组只能存同一类型 2 结构体类型需要我们自已定义 数组是用别的类型加 元素个数 3 结构体内存分配方式很特别 使用对齐原则 不一定是所有元素的字节数和 而数组一定是所有元素的字节数和 4 结
  • C和C++那些事儿

    1 new delete malloc free关系 delete会调用对象的析构函数 和new对应free只会释放内存 xff0c new调用构造函数 malloc与free是C 43 43 C语言的标准库函数 xff0c new del
  • 排序和复杂度

    常见的排序方式 1 冒泡排序 xff1a 时间复杂度 xff1a 最好情况是 O n xff0c 最坏情况是 O n2 空间复杂度 xff1a 开辟一个空间交换顺序O 1 2 快速排序 xff1a 时间复杂的 xff1a 最好情况是 O n
  • 文件IO过程

    基本概念 xff1a 文件描述符 xff1a xff08 文件描述符有时称为文件句柄 xff09 进程级 xff09 文件描述符是一个简单的整数 xff0c 用以标明每一个 被 进程所打开的文件和socket 通常0 1 2被标准输入 标准
  • private与构造函数

    通常我们都将构造函数的声明置于public区段 xff0c 假如我们将其放入private区段中会发生什么样的后果 xff1f 没错 xff0c 我也知道这将会使构造函数成为私有的 xff0c 这意味着什么 xff1f 我们知道 xff0c
  • 使用VS Code连接远程服务器

    目录 一 VS Code的安装与下载 二 安装插件 三 添加服务器连接配置 四 连接服务器 一 VS Code的安装与下载 关于VS Code的安装与下载及VS Code的使用方式详见如下链接 VSCode安装教程并配置C C 43 43
  • C语言 转换10进制为16进制

    实际上就是除16取余然后将其本身除以16 xff0c 得到的这一个数将它转换为具体的16进制数字的过程 xff0c 当然最后还要注意前面的字符位置的添加 span class token comment 进制之间互相转换 xff1a 将十进
  • TCP协议是如何保证传输可靠性的

    TCP确保传输可靠性的方式 校验和序列号 确认应答超时重传连接管理流量控制 xff08 滑动窗口控制 xff09 拥塞控制 校验和 xff1a TCP校验和是一个端到端的校验和 xff0c 由发送端计算 xff0c 然后由接收端验证 其目的
  • TCP的三次握手与四次挥手详解

    文章目录 TCP 协议简述TCP包首部TCP 三次握手建立连接TCP 四次挥手关闭连接常见面试题 xff1a TCP 协议简述 TCP 提供面向有连接的通信传输 xff0c 面向有连接是指在传送数据之前必须先建立连接 xff0c 数据传送完