如何使用SVN查看具体某行代码的提交人、合并分支或者拉取新分支

2023-05-16

1.如何在SVN上查看具体某一行代码的提交人:

首先选中该文件,然后点击“追溯”,

 

如上图可以选择该文件对应的版本区间 —— 默认不需要设置。如果需要查询该文件在某个特定版本区间的修改人,则可以在上面设定起始版本和最终版本

确定查询版本区间后点击下方“确定”即可得到下图:

如上图所示,左侧“作者”一栏中显示的就是该行代码最后的修改人。如此在查找某个bug时就可以很快的找到该作者询问本行代码提交的原因,方便定位问题所在

PS: 如果SVN使用的是英文语言包,则“追溯”对应的英文名是“Blame"

2.如何合并不同工程某些版本的代码

例子:把项目工程B的某些已经提交的版本合并到项目工程A中

首先找到项目A在本地的文件地址 —— 需要首先将项目A“CheckOut”到本地

然后选中该项目A根目录,鼠标右键:

在如下窗口中设定源项目地址和需要合并的版本号(多个版本号时用逗号隔开)

 

注意:

第一步中选择被合并的项目工程地址非常重要,比如要将项目B的内容合并到项目A,则这里就需要在版本库中找到项目B对应的SVN地址,并点击确定,如此设定源地址就完成了

然后第二步,点击“显示日志”,打开如下面板,。

选中对应的提交版本,选中之后该版本左侧会有“√”的标志

选择好之后,点击“确定” ——》“下一步” ——》“合并”

合并完成后,项目A的本地工程就包含有项目B中版本“6115”的提交内容

但是这里只是将修改内容合并到A项目的本地工程,还需要上传到A工程的SVN地址上

因此在项目工程A中选中需要提交的文件,鼠标右键,选择”SVN 提交“,并填写相应的注释内容即可 —— 这一步和平时A项目需要svn提交文件一样的步骤,没有区别

如此将项目B对应版本的修改内容合并到A项目中,这一目标就完成了

3.如何在SVN中拉取新的分支

在项目开发中有时会遇到需要给某个项目A拉取一个新的分支B,来进行某些功能的开发,然后等这些新的内容开发完成后再合并到原来的分支A上。这种情况就需要拉取新分支了

首先在项目A根目录下,鼠标右键选择“分支/标记”:

打开如下窗口:

 如上图中:

1代表需要拉取新分支的源项目A —— 这里当在项目A的本地工程根目录下鼠标右键打开svn窗口时已经固定该源地址为项目A的svn地址,这里暂时无法再手动改变

2代表需要在SVN的版本库中新拉取的分支B的地址。如上图所示,代表该新分支B在版本库的“branches"下某个文件夹

这里就是拉取新分支的关键了:

首先点击右侧的"..."打开版本库浏览器,选择该新分支B的路径: 

如上图所示,当选择"trunk"路径后,点击确定,得到下图:

 但上图只代表该新分支B的父级目录,此时还需要在“/trunk”下添加新的文件夹名称:

例如当直接在“/trunk”下添加“/helloBranch"后则代表新分支B的名称为“helloBranch",在版本库“trunk”文件夹下 —— 如此就是手动的添加新分支name。当点击下方的“确定”后则会在SVN版本库中“trunk”下新建文件夹“helloBranch”,该文件夹作为分支B的根目录的svn地址

注意:这里无法直接在版本库浏览器中选择新分支B的路径,版本库浏览器中选择的只是该新分支B的父级目录—— 或者另外修改父级目录也可以;也无法直接在版本库浏览器中新建文件夹,然后选择该新建的文件夹为分支B的地址——这样设置后会提示“分支已存在,无法拉取”。

总结:

1.拉取新分支是一个很快的过程,只需要选定源工程A的地址,然后手动设定新分支B的路径,注意版本库中同一路径下不能有两个相同name的分支

2.在选定了新分支B的父级路径后,再设定新分支的name即可马上成功拉取新分支;或者直接自定义父级目录也可以,如果是自定义父级目录,则点击确定后会在svn下直接新建该分支

如此即完成新分支拉取工作

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

如何使用SVN查看具体某行代码的提交人、合并分支或者拉取新分支 的相关文章

  • (6)ROS与STM32之间的联系

    ROS与STM32之间的联系 简介两者之间的关系两者之间的通信ROS如何在代码层面去接收stm32发送过来的数据1 整体框架2 机器人底盘类3 构造函数4 主函数5 循环功能函数6 析构函数 简介 1 如何实现ROS与stm32之间的通信
  • keil 局部变量不能查看值,显示为not in scope

    关于编译器的优化 xff0c 参考网上的8051系列的说明如下 xff1a xfeff xfeff 0级优化 xff1a 1 常数折叠 xff1a 只要有可能 xff0c 编译器就执行将表达式化为常数数字的计算 xff0c 其中包括运行地址
  • 算法——均方根检波

    均方根检波 1 均方根检波技术2 高精度采样技术3 STM32的ADC4 程序工程文件 1 均方根检波技术 1 均值检波电路通常采用电容充放电电路作为平均值电路 2 由于输出为整流平均值 xff0c 要求电容充放电时间常数相等 3 电容充放
  • 二.LVGL学习——(lv_obj基础对象)

    二 LVGL学习 xff08 lv obj基础对象 xff09 1 介绍2 对象的工作机制3 对象的创建与删除4 Screen 屏幕对象5 实例代码 xff08 1 xff09 6 实例代码 xff08 2 xff09 1 介绍 LVGL是
  • 三.LVGL学习——(Buttons styles)

    三 LVGL学习 xff08 Buttons styles xff09 1 按钮对象样式 2 程序 定义三个lv style t变量 static lv style t style btn 按钮1按下前的样式变量 static lv sty
  • 51单片机串行通信原理

    51单片机串行通信原理 计算机通信串行通信异步通信同步通信数据传送速率传输方向 单片机串行口串行口特殊功能寄存器串行口控制寄存器SCON电源控制寄存器PCON 波特率的设定与计算 PC与多个单片机通信串口如何使用 计算机通信 计算机通信 x
  • 基于动态窗口法(DWA)的局部避障算法研究及MATALB的实现

    一 动态窗口法基本概念 1 1 速度采样空间 1 2 评价函数 二 基于Matlab的机器人局部避障仿真 一 动态窗口法基本概念 动态窗口方法 DynamicWindowApproach 是一种可以实现实时避障的局部规划算法 xff0c 通
  • ROS(python)如何实现1个节点同时订阅2个话题,并实现话题同步,调用同一个callback

    1 创建talker1 span class token comment usr bin env python span span class token comment license removed for brevity span s
  • java与c++的性能比较

    java与c 43 43 的性能比较 参考其他文章 一 从编译器的角度分析性能差异 许多程序员印象中可能认为c 43 43 相比较于java语言性能会更好一点 xff0c 运行速度会快一点 这其中主要是因为java刚出现的时候JIT编译技术
  • OO-数字串char*与数值int_double之间转换

    OO 数字串char 与数值int double之间转换 文章目录 OO 数字串char 与数值int double之间转换 一 任务描述二 TestCase 2 测试集 需要填空的代码源代码 xff08 可以复制在编译器里面自行调试 xf
  • Altium Designer 生成 BOM(Bill of Material)

    画好图后 xff0c 生成 BOM xff08 Bill of Material xff09 xff1a 1 选择 Reports xff08 报告 xff09 gt gt Bill of Materials 材料清单 2 选择BOM表表头
  • CAN总线协议:标准CAN和扩展CAN

    CAN通讯协议是一个载波侦听 基于报文优先级碰撞检测和仲裁 xff08 CSMA CD 43 AMP xff09 的多路访问协议 CSMA的意思是总线上的每一个节点在企图发送报文前 xff0c 必须要监听总线 xff0c 当总线处于空闲时
  • c++new操作符笔记

    c 43 43 new语句 功能 xff1a 堆区开辟一组数据 语法 xff1a new 数据类型 注意点 xff1a new创建的数据会返回该数据对应的类型指针 xff0c 另外堆区开辟的数据由程序员手动释放
  • 循环冗余校验

    循环冗余校验 xff08 CRC xff09 是一个错误检测码在数字常用网络和存储设备 xff0c 以检测到的原始数据的意外改变 进入这些系统的数据块将根据其内容的多项式除法运算的余数获得一个简短的校验值 在检索时 xff0c 将重复计算
  • 串口通讯(USART)

    对于通讯协议 xff0c 我们也以分层的方式来理解 xff0c 最基本的是把它分为物理层和协议层 物理层规定通讯系统中具有机械 电子功能部分的特性 xff0c 确保原始数据在物理媒体的传输 协议层主要规定通讯逻辑 xff0c 统一收发双方的
  • curl解析工具

    main span class token keyword package span span class token namespace com span class token punctuation span alone span c
  • c语言实现进制的转化

    编写一个函数实现数制的转换 xff0c 不用递归 xff0c 用数组实现 在主函数中输入一个十进制数 xff0c 输出相应的十六进制数 span class token macro property span class token dir
  • springboot项目多环境配置(详细步骤)

    说明 xff1a 使用springboot实现项目多环境配置 xff01 目录 一 application properties多环境配置二 application yaml多环境配置 一 application properties多环境
  • 二叉树递归遍历(C语言实现)

    span class token macro property span class token directive hash span span class token directive keyword include span spa
  • n&(1<<i)用法

    1 lt lt i 是将1左移i位 xff0c 即第i位为1 xff0c 其余位为0 xff1b 例如1 lt lt 2 则0001 gt 0100 n amp 1 lt lt i 是将左移i位的1与n进行按位与 xff0c 即为保留n的第

随机推荐

  • C++如何将数字常量转换为字符串

    头文件 xff1a include lt string gt 功能 xff1a 将数字常量转换为字符串 参数 xff1a value 返回值 xff1a 转换好的字符串 定义于头文件 std string to string int val
  • 动态数组(C语言)

    span class token macro property span class token directive hash span span class token directive keyword include span spa
  • STM32使用串口空闲中断接收不定长数据帧-USART_IT_IDLE使用(不使用DMA方式)

    STM32使用串口空闲中断接收不定长数据帧 USART IT IDLE使用 xff08 不使用DMA方式 xff09 前言串口空闲中断介绍清中断方法串口中断处理函数串口中断用到的全局变量定义串口初始化 xff08 使能接收中断 空闲中断 x
  • C语言编程规范

    一 头文件编程规范 三大原则 设计层面 xff1a 1 头文件中适合放置接口声明 xff0c 不适合放实现 2 头文件职责单一 3 头文件应向稳定的方向包含 八项规则 编码层面 xff1a 1 只能通过包含头文件的方式使用其他模块提供的接口
  • struct2数据传输格式错误

    n incompatible version 1 1 14 of the APR based Apache Tomcat Native library is installed while Tomcat requires version 1
  • 简单自定义协议的封包和解包

    简单自定义协议的封包和解包 一 通信协议1 百度百科的解释2 过于简单的通信协议引发的问题3 通信协议常见内容1 帧头2 设备地址 类型3 命令 指令4 命令类型 功能码5 数据长度6 数据7 帧尾8 校验码 4 通信协议代码实现 xff0
  • 如何计算C语言中结构体的大小:结构体内存对齐

    结构体的对齐规则 xff1a 1 第一个成员在与结构体变量偏移量为0的地址处 2 其他成员变量要对齐到某个数字 xff08 对齐数 xff09 的整数倍的地址处 xff08 对齐数 61 编译器默认的一个对齐数 与 该成员大小的较小值 xf
  • C语言实现大小端转换

    C语言实现大小端转换 xff1a 大端模式 xff1a 数据的高字节保存在内存的低地址中 xff0c 而数据的低字节保存在内存的高地址中 数字999 换算成补码就是 xff1a 0000 0011 1110 0111 xff0c 大端存储模
  • Flask全局拦截器&局部拦截器

    拦截器 在开发网站时 xff0c 不同路由下有可能需要做一些重复的判断 例如购物网站中管理员想要获取所有订单的信息 xff0c 需要首先判断管理员是否登录 xff0c 如果没有登录肯定是没有权限的 同理 xff0c 管理员的其他操作同样需要
  • C struct 简单实现 class

    以车为对象 xff0c 用C来写C 43 43 的class车 在C中没有类 xff0c 所以用struct来代替 xff0c 而class中对应的类对象函数就用函数指针来代替 span class token keyword typede
  • 2019年全国大学生电子设计竞赛综合测评题解析

    2019年全国大学生电子设计竞赛综合测评题解析 题目如下 xff0c 设计制作电路产生下列四路信号 xff1a 1 频率为19kHz 21kHz连续可调的方波脉冲信号 xff0c 幅度不小于3 2V xff1b 2 与方波同频率的正弦波信号
  • char转string

    在平常做算法题的时候 xff0c 经常会碰到遍历字符串 xff0c 然后将在将目前遍历的子串与已经遍历过的进行其他操作时 xff0c 我们需要将子串由char类型转换为string类型 以下是几种简单的方法 1 使用赋值 61 includ
  • 进程和线程、单线程、多线程和多进程

    欢迎学习交流 xff01 xff01 xff01 持续更新中 文章目录 进程和线程理论知识二者区别 单线程和多线程多线程和多进程 进程和线程 由于理论概念难以理解 xff0c 我在查资料的过程中经常能看到这样一个形象的比喻 xff1a 进程
  • Linux下TCP、UDP、UDP广播通信代码及运行

    一 网络环境配置 网络通信方式可选择一台主机里的两个虚拟机 xff0c 也可以两台主机里的两个虚拟机 xff0c 本文采用方式二 主机一IP地址为192 168 1 109 主机二IP地址为192 168 1 24 必须使两台主机在一个网段
  • 8086/8088CPU内部结构,引脚图,物理地址与逻辑地址

    文章目录 第2章 80X86微处理器的工作原理2 1 80x86处理器2 2 8086 8088微处理器2 2 1 8086 8088微处理器的内部结构2 2 2 8086 8088微处理器的寄存器 2 3 8086 8088微处理器总线功
  • 《强化学习周刊》第11期:强化学习应用之模拟到真实

    No 11 智源社区 强化学习组 强 化 学 习 研究 观点 资源 活动 关于周刊 强化学习作为人工智能领域研究热点之一 xff0c 它在模拟到真实领域中的应用研究进展与成果也引发了众多关注 为帮助研究与工程人员了解该领域的相关进展和资讯
  • 【基于GCC】STM32的printf函数重定向

    重定向c库函数printf到串口 添加 write函数 在keil借助的是fputc函数 xff0c 而gcc用fputc就不行了 xff0c 需要用 write函数 xff0c 函数原型如下 xff1a int write span cl
  • VSCode使用Clangd

    前言 在使用微软的C C 43 43 插件时 xff0c 遇到较大项目时 xff0c 代码提示速度非常的慢 xff0c 这时可以使用clangd 1 系统安装clangd 版本选择 xff1a Linux github仓库 https gi
  • 常用通信时序之UART、IIC、SPI(基于STM32)

    常用通信时序 xff08 UART IIC SPI xff0c RS232 RS485 xff09 及协议 xff08 Modbus xff09 通讯时序1 UART2 IIC3 SPI4 RS3235 RS485 通信协议1 Modbus
  • 如何使用SVN查看具体某行代码的提交人、合并分支或者拉取新分支

    1 如何在SVN上查看具体某一行代码的提交人 xff1a 首先选中该文件 xff0c 然后点击 追溯 xff0c 如上图可以选择该文件对应的版本区间 默认不需要设置 如果需要查询该文件在某个特定版本区间的修改人 xff0c 则可以在上面设定