Java集合详解

2023-10-28

文章目录

集合框架的概述

1.集合、数组都是对多个数据进行存储操作的结构,简称Java容器。

​ 说明:此时的存储,主要指的是内存层面的存储,不涉及到持久化的存储(.txt,.jpg,.avi,数据库中)

2.1 数组在存储多个数据方面的特点:

  • 一旦初始化以后,其长度就确定了。
  • 数组一旦定义好,其元素的类型也就确定了。我们也就只能操作指定类型的数据了。
    • 比如:String[] arr;int[] arr1;Object[] arr2;

2.2 数组在存储多个数据方面的缺点:

  • 一旦初始化以后,其长度就不可修改。
  • 数组中提供的方法非常有限,对于添加、删除、插入数据等操作,非常不便,同时效率不高。
  • 获取数组中实际元素的个数的需求,数组没有现成的属性或方法可用
  • 数组存储数据的特点:有序、可重复。对于无序、不可重复的需求,不能满足。

集合框架

|----Collection接口:单列集合,用来存储一个一个的对象
|----List接口:存储有序的、可重复的数据。 -->“动态”数组
|----实现类:ArrayList、LinkedList、Vector

​ |----Set接口:存储无序的、不可重复的数据 -->高中讲的“集合”
|----实现类:HashSet、LinkedHashSet、TreeSet

|----Map接口:双列集合,用来存储一对(key - value)一对的数据 -->高中函数:y = f(x)
|----实现类:HashMap、LinkedHashMap、TreeMap、Hashtable、Properties

Collection接口继承树

在这里插入图片描述

List接口框架

|----Collection接口:单列集合,用来存储一个一个的对象

​ |----List接口:存储有序的、可重复的数据。 -->“动态”数组,替换原有的数组

​ |----ArrayList:作为List接口的主要实现类;线程不安全的,效率高;底层使用Object[] elementData存储

​ |----LinkedList:对于频繁的插入、删除操作,使用此类效率比ArrayList高;底层使用双向链表存储

​ |----Vector:作为List接口的古老实现类;线程安全的,效率低;底层使用Object[] elementData存储

Set接口框架

|----Collection接口:单列集合,用来存储一个一个的对象

​ |----Set接口:存储无序的、不可重复的数据 -->高中讲的“集合”

​ |----HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null值

​ |----LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加的顺序遍历对于频繁的遍历操作, LinkedHashSet效率高于HashSet.

​ |----TreeSet:可以按照添加对象的指定属性,进行排序。

Map接口继承树

在这里插入图片描述

Collection接口中的方法的使用

向Collection接口的实现类的对象中添加数据obj时,要求obj所在类要重写equals().因为contains()方法时调用equals()方法进行挨个对比

  • 添加

    • add(Object obj)
    • addAll(Collection coll)
  • 获取有效元素的个数

    • int size()
  • 清空集合

    • void clear()
  • 是否是空集合

    • boolean isEmpty()
  • 是否包含某个元素

    • boolean contains(Object obj):是通过元素obj的equals方法来判断是否
      是同一个对象,比如:string类型重写equals()不比地址,比内容
    • boolean containsAll(Collection c):也是调用元素的equals方法来比
      较的。拿两个集合的元素挨个比较。
  • 删除

    • boolean remove(Object obj) :通过元素的equals方法判断是否是

      要删除的那个元素。只会删除找到的第一个元素

    • boolean removeAll(Collection coll):取当前集合的差集,删除调用方法的集合中所有与coll集合中相同的元素

  • 取两个集合的交集

    • boolean retainAll(Collection c):把交集的结果存在当前集合中,不影响c
  • 集合是否相等

    • boolean equals(Object obj),内容相同顺序不同返回false
  • 转成对象数组

    • Object[] toArray()
  • 获取集合对象的哈希值

    • hashCode()
  • 遍历

    • iterator():返回迭代器对象,用于集合遍历
public class CollectionTest {

    @Test
    public void test1(){
        Collection coll = new ArrayList();

        //add(Object e):将元素e添加到集合coll中
        coll.add("AA");
        coll.add("BB");
        coll.add(123);//自动装箱
        coll.add(new Date());

        //size():获取添加的元素的个数
        System.out.println(coll.size());//4

        //addAll(Collection coll1):将coll1集合中的元素添加到当前的集合中
        Collection coll1 = new ArrayList();
        coll1.add(456);
        coll1.add("CC");
        coll.addAll(coll1);

        System.out.println(coll.size());//6
        System.out.println(coll);

        //clear():清空集合元素
        coll.clear();

        //isEmpty():判断当前集合是否为空
        System.out.println(coll.isEmpty());

    }

}
public class CollectionTest {


    @Test
    public void test1(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
//        Person p = new Person("Jerry",20);
//        coll.add(p);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);
        //1.contains(Object obj):判断当前集合中是否包含obj
        //我们在判断时会调用obj对象所在类的equals()。
        boolean contains = coll.contains(123);
        System.out.println(contains);
        System.out.println(coll.contains(new String("Tom")));
//        System.out.println(coll.contains(p));//true
        System.out.println(coll.contains(new Person("Jerry",20)));//false -->true

        //2.containsAll(Collection coll1):判断形参coll1中的所有元素是否都存在于当前集合中。
        Collection coll1 = Arrays.asList(123,4567);
        System.out.println(coll.containsAll(coll1));
    }

    @Test
    public void test2(){
        //3.remove(Object obj):从当前集合中移除obj元素。
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        coll.remove(1234);
        System.out.println(coll);

        coll.remove(new Person("Jerry",20));
        System.out.println(coll);

        //4. removeAll(Collection coll1):差集:从当前集合中移除coll1中所有的元素。
        Collection coll1 = Arrays.asList(123,456);
        coll.removeAll(coll1);
        System.out.println(coll);


    }

    @Test
    public void test3(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //5.retainAll(Collection coll1):交集:获取当前集合和coll1集合的交集,并返回给当前集合
//        Collection coll1 = Arrays.asList(123,456,789);
//        coll.retainAll(coll1);
//        System.out.println(coll);

        //6.equals(Object obj):要想返回true,需要当前集合和形参集合的元素都相同。
        Collection coll1 = new ArrayList();
        coll1.add(456);
        coll1.add(123);
        coll1.add(new Person("Jerry",20));
        coll1.add(new String("Tom"));
        coll1.add(false);

        System.out.println(coll.equals(coll1));


    }

    @Test
    public void test4(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //7.hashCode():返回当前对象的哈希值
        System.out.println(coll.hashCode());

        //8.集合 --->数组:toArray()
        Object[] arr = coll.toArray();
        for(int i = 0;i < arr.length;i++){
            System.out.println(arr[i]);
        }

        //拓展:数组 --->集合:调用Arrays类的静态方法asList()
        List<String> list = Arrays.asList(new String[]{"AA", "BB", "CC"});
        System.out.println(list);

        List arr1 = Arrays.asList(new int[]{123, 456});
        System.out.println(arr1.size());//1,把123 456识别为一个元素了

        List arr2 = Arrays.asList(new Integer[]{123, 456});
        System.out.println(arr2.size());//2

        //9.iterator():返回Iterator接口的实例,用于遍历集合元素。放在IteratorTest.java中测试

    }
}

iterator迭代器

只有Collection有iterator

集合元素的遍历操作,使用迭代器Iterator接口

  1. 内部的方法:hasNext() 和 next()

  2. 集合对象每次调用iterator()方法都得到一个全新的迭代器对象,默认游标都在集合的第一个元素之前。

  3. 内部定义了remove(),可以在遍历的时候,删除集合中的元素。此方法不同于集合直接调用remove()。不可以在没有调用过next()方法时就remove,也不可以在同一个位置多次调用remove()

@Test//遍历集合
    public void test1(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        Iterator iterator = coll.iterator();
        System.out.println(iterator);
        //方式一:
//        System.out.println(iterator.next());
//        System.out.println(iterator.next());
//        System.out.println(iterator.next());
//        System.out.println(iterator.next());
//        System.out.println(iterator.next());
//        //报异常:NoSuchElementException
//        System.out.println(iterator.next());

        //方式二:不推荐
//        for(int i = 0;i < coll.size();i++){
//            System.out.println(iterator.next());
//        }

        //方式三:推荐
        hasNext():判断是否还有下一个元素,不会使指针下移
        while(iterator.hasNext()){
            //next():①指针下移 ②将下移以后集合位置上的元素返回
            System.out.println(iterator.next());
        }

    }

 @Test
    public void test2(){

        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //错误方式一:
//        Iterator iterator = coll.iterator();
//        while((iterator.next()) != null){
//            System.out.println(iterator.next());
//        }

        //错误方式二:
        //集合对象每次调用iterator()方法都得到一个全新的迭代器对象,默认游标都在集合的第一个元素之前。
        while (coll.iterator().hasNext()){
            System.out.println(coll.iterator().next());
        }


    }

测试Iterator中的remove()

//测试Iterator中的remove()
    //如果还未调用next()或在上一次调用 next 方法之后已经调用了 remove 方法,
    // 再调用remove都会报IllegalStateException。
    @Test
    public void test3(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //删除集合中"Tom"
        Iterator iterator = coll.iterator();
        while (iterator.hasNext()){
//            iterator.remove();
            Object obj = iterator.next();
            if("Tom".equals(obj)){
                iterator.remove();
//                iterator.remove();
            }

        }
        //遍历集合
        iterator = coll.iterator();
        while (iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }

foreach循环

for(集合元素的类型 局部变量 : 集合对象)

内部仍然调用了迭代器。

@Test
    public void test1(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //for(集合元素的类型 局部变量 : 集合对象)
        //内部仍然调用了迭代器。
        for(Object obj : coll){
            System.out.println(obj);
        }
    }

    @Test
    public void test2(){
        int[] arr = new int[]{1,2,3,4,5,6};
        //for(数组元素的类型 局部变量 : 数组对象)
        for(int i : arr){
            System.out.println(i);
        }
    }

    //练习题
    @Test
    public void test3(){

        String[] arr = new String[]{"MM","MM","MM"};

//        //方式一:普通for赋值(可以改变数组值)
//        for(int i = 0;i < arr.length;i++){
//            arr[i] = "GG";
//        }

        //方式二:增强for循环(重新造出来了一个s,给s赋值,无法改变数组值)
        for(String s : arr){
            s = "GG";
        }

        for(int i = 0;i < arr.length;i++){
            System.out.println(arr[i]);
        }/


    }

List接口中的常用方法

void add(int index, Object ele):在index位置插入ele元素
boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
Object get(int index):获取指定index位置的元素
int indexOf(Object obj):返回obj在集合中首次出现的位置
int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置
Object remove(int index):移除指定index位置的元素,并返回此元素
Object set(int index, Object ele):设置指定index位置的元素为ele
List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的子集合

    总结:常用方法
	增:add(Object obj)
	删:remove(int index) / remove(Object obj)
	改:set(int index, Object ele)
	查:get(int index)
	插:add(int index, Object ele)
	元素的个数:size() 
	遍历:① Iterator迭代器方式
    	 ② 增强for循环
     	 ③ 普通的循环
   @Test
    public void test2(){
        ArrayList list = new ArrayList();
        list.add(123);
        list.add(456);
        list.add("AA");
        list.add(new Person("Tom",12));
        list.add(456);
        //int indexOf(Object obj):返回obj在集合中首次出现的位置。如果不存在,返回-1.
        int index = list.indexOf(4567);
        System.out.println(index);

        //int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置。如果不存在,返回-1.
        System.out.println(list.lastIndexOf(456));

        //Object remove(int index):移除指定index位置的元素,并返回此元素
        Object obj = list.remove(0);
        System.out.println(obj);
        System.out.println(list);

        //Object set(int index, Object ele):设置指定index位置的元素为ele
        list.set(1,"CC");
        System.out.println(list);

        //List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的左闭右开区间的子集合
        List subList = list.subList(2, 4);
        System.out.println(subList);
        System.out.println(list);


    }


    @Test
    public void test1(){
        ArrayList list = new ArrayList();
        list.add(123);
        list.add(456);
        list.add("AA");
        list.add(new Person("Tom",12));
        list.add(456);

        System.out.println(list);

        //void add(int index, Object ele):在index位置插入ele元素
        list.add(1,"BB");
        System.out.println(list);

        //boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
        List list1 = Arrays.asList(1, 2, 3);
        list.addAll(list1);
//        list.add(list1);
        System.out.println(list.size());//9

        //Object get(int index):获取指定index位置的元素
        System.out.println(list.get(0));

    }
//遍历方式

@Test
    public void test3(){
        ArrayList list = new ArrayList();
        list.add(123);
        list.add(456);
        list.add("AA");

        //方式一:Iterator迭代器方式
        Iterator iterator = list.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }

        System.out.println("***************");

        //方式二:增强for循环
        for(Object obj : list){
            System.out.println(obj);
        }

        System.out.println("***************");

        //方式三:普通for循环
        for(int i = 0;i < list.size();i++){
            System.out.println(list.get(i));
        }



    }

ArrayList的源码分析

jdk 7情况下:

ArrayList list = new ArrayList();//底层创建了长度是10的Object[]数组elementData

list.add(123);//elementData[0] = new Integer(123);

...

list.add(11);//如果此次的添加导致底层elementData数组容量不够,则扩容。

默认情况下,扩容为原来的容量的1.5倍,同时需要将原有数组中的数据复制到新的数组中。

结论:建议开发中使用带参的构造器:ArrayList list = new ArrayList(int capacity)

jdk 8中ArrayList的变化:

ArrayList list = new ArrayList();//底层Object[] elementData初始化为{}.并没有创建长度为10的数组

list.add(123);//第一次调用add()时,底层才创建了长度10的数组,并将数据123添加到elementData[0]

...
后续的添加和扩容操作与jdk 7 无异

小结:jdk7中的ArrayList的对象的创建类似于单例的饿汉式,而jdk8中的ArrayList的对象的创建类似于单例的懒汉式,延迟了数组的创建,节省内存。

LinkedList的源码分析

LinkedList:双向链表,内部没有声明数组,而是定义了Node类型的first和last,用于记录首末元素。同时,定义内部类Node,作为LinkedList中保存数据的基本结构。

Node除了保存数据,还定义了两个变量:

prev变量记录前一个元素的位置

next变量记录下一个元素的位置

LinkedList list = new LinkedList(); 内部声明了Node类型的first和last属性,默认值为null
list.add(123);//将123封装到Node中,创建了Node对象。
其中,Node定义为:体现了LinkedList的双向链表的说法:

private static class Node<E> {
             E item;
             Node<E> next;
             Node<E> prev;

             Node(Node<E> prev, E element, Node<E> next) {
             this.item = element;
             this.next = next;
             this.prev = prev;
             }
         }

对于频繁的插入或删除元素的操作,建议使用LinkedList类,效率较高

新增方法:

void addFirst(Object obj)
void addLast(Object obj)
Object getFirst()
Object getLast()
Object removeFirst()
Object removeLast()

Vector的源码分析

Vector 是一个古老的集合,JDK1.0就有了。大多数操作与ArrayList
相同,区别之处在于Vector是线程安全的。

在各种list中,最好把ArrayList作为缺省选择。当插入、删除频繁时,
使用LinkedList;Vector总是比ArrayList慢,所以尽量避免使用。

jdk7和jdk8中通过Vector()构造器创建对象时,底层都创建了长度为10的数组。

在扩容方面,默认扩容为原来的数组长度的2倍。

新增方法:

void addElement(Object obj)
void insertElementAt(Object obj,int index)
void setElementAt(Object obj,int index)
void removeElement(Object obj)
void removeAllElements()

Set接口

Set接口框架:

|----Collection接口:单列集合,用来存储一个一个的对象

​ |----Set接口:存储无序的、不可重复的数据 -->高中讲的“集合”

​ |----HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null值

​ |----LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加的顺序遍历对于频繁的遍历操作, LinkedHashSet效率高于HashSet.

​ |----TreeSet:可以按照添加对象的指定属性,进行排序。

  1. Set接口中没有额外定义新的方法,使用的都是Collection中声明过的方法。

  2. 要求:向Set(主要指:HashSet、LinkedHashSet)中添加的数据,其所在的类一定要重写hashCode()和equals()

    要求:重写的hashCode()和equals()尽可能保持一致性:相等的对象必须具有相等的散列码

    重写两个方法的小技巧:对象中用作 equals() 方法比较的 Field,都应该用来计算 hashCode 值。

一、Set:存储无序的、不可重复的数据(底层是Map)

以HashSet为例说明:

  1. 无序性:不等于随机性。存储的数据在底层数组中并非按照数组索引的顺序添加,而是根据数据的哈希值决定的。(有序无序说的是存储的顺序是不是和添加的顺序相同)
  2. 不可重复性:保证添加的元素按照equals()判断时,不能返回true.即:相同的元素只能添加一个。

二、添加元素的过程:以HashSet为例:

我们向HashSet中添加元素a,首先调用元素a所在类的hashCode()方法,计算元素a的哈希值,
        此哈希值接着通过某种算法计算出在HashSet底层数组中的存放位置(即为:索引位置),判断
        数组此位置上是否已经有元素:
            如果此位置上没有其他元素,则元素a添加成功。 --->情况1
            如果此位置上有其他元素b(或以链表形式存在的多个元素),则比较元素a与元素b的hash值:
                如果hash值不相同,则元素a添加成功。--->情况2
                如果hash值相同,进而需要调用元素a所在类的equals()方法:
                       equals()返回true,元素a添加失败
                       equals()返回false,则元素a添加成功。--->情况2

        对于添加成功的情况2和情况3而言:元素a 与已经存在指定索引位置上数据以链表的方式存储。
        jdk 7 :元素a放到数组中,指向原来的元素。
        jdk 8 :原来的元素在数组中,指向元素a
        总结:七上八下

HashSet底层:数组+链表的结构。

Set接口是Collection的子接口,set接口没有提供额外的方法

Set 集合不允许包含相同的元素,如果试把两个相同的元素加入同一个Set 集合中,则添加操作失败。

Set 判断两个对象是否相同不是使用 == 运算符,而是根据 equals() 方法

HashSet

HashSet底层:数组+链表的结构。

HashSet 是 Set 接口的典型实现,大多数时候使用 Set 集合时都使用这个实现类。

HashSet 按 Hash 算法来存储集合中的元素,因此具有很好的存取、查找、删除
性能。

HashSet 具有以下特点:

​ 不能保证元素的排列顺序

​ HashSet 不是线程安全的

​ 集合元素可以是 null

HashSet 集合判断两个元素相等的标准:两个对象通过 hashCode() 方法比较相
等,并且两个对象的 equals() 方法返回值也相等。

对于存放在Set容器中的对象,对应的类一定要重写equals()和hashCode(Object
obj)方法,以实现对象相等规则。即:“相等的对象必须具有相等的散列码”。

向HashSet中添加元素的过程

  1. 当向 HashSet 集合中存入一个元素时,HashSet 会调用该对象的 hashCode() 方法来得到该对象的 hashCode 值,然后根据 hashCode 值,通过某种散列函数决定该对象在 HashSet 底层数组中的存储位置。(这个散列函数会与底层数组的长度相计算得到在数组中的下标,并且这种散列函数计算还尽可能保证能均匀存储元素,越是散列分布,该散列函数设计的越好
  2. 如果两个元素的hashCode()值相等,会再继续调用equals方法,如果equals方法结果为true,添加失败;如果为false,那么会保存该元素,但是该数组的位置已经有元素了,那么会通过链表的方式继续链接
  3. 如果两个元素的 equals() 方法返回 true,但它们的 hashCode() 返回值不相等,hashSet 将会把它们存储在不同的位置,但依然可以添加成功
set.add(new User("Tom",12));
set.add(new User("Tom",12));
//这种情况虽然内存地址不同,hashcode()值相同,且equals()返回true,但是不能重复添加,添加失败
@Test
    public void test1(){
        Set set = new HashSet();
        set.add(456);
        set.add(123);
        set.add(123);
        set.add("AA");
        set.add("CC");
        set.add(new User("Tom",12));
        set.add(new User("Tom",12));
        set.add(129);

        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }

HashSet扩容机制

底层也是数组,初始容量为16,当如果使用率超过0.75,(16*0.75=12)就会扩大容量为原来的2倍。(16扩容为32,依次为64,128…等)

重写 hashCode() 方法的基本原则

  1. 在程序运行时,同一个对象多次调用 hashCode() 方法应该返回相同的值。
  2. 当两个对象的 equals() 方法比较返回 true 时,这两个对象的 hashCode() 方法的返回值也应相等。
  3. 对象中用作 equals() 方法比较的 Field,都应该用来计算 hashCode 值。

重写 equals() 方法的基本原则

以自定义的Customer类为例,何时需要重写equals()?

  1. 当一个类有自己特有的“逻辑相等”概念,当改写equals()的时候,总是 要改写hashCode(),根据一个类的equals方法(改写后),两个截然不 同的实例有可能在逻辑上是相等的,但是,根据Object.hashCode()方法, 它们仅仅是两个对象。
  2. 因此,违反了“相等的对象必须具有相等的散列码”
  3. 结论:复写equals方法的时候一般都需要同时复写hashCode方法。通常参与计算hashCode的对象的属性也应该参与到equals()中进行计算

Eclipse/IDEA工具里hashCode()的重写

以Eclipse/IDEA为例,在自定义类中可以调用工具自动重写equals和hashCode。
问题:为什么用Eclipse/IDEA复写hashCode方法,有31这个数字?

  • 选择系数的时候要选择尽量大的系数。因为如果计算出来的hash地址越大,所谓的 “冲突”就越少,查找起来效率也会提高。(减少冲突)
  • 并且31只占用5bits,相乘造成数据溢出的概率较小。
  • 31可以 由i*31== (i<<5)-1来表示,现在很多虚拟机里面都有做相关优化。(提高算法效率)
  • 31是一个素数,素数作用就是如果我用一个数字来乘以这个素数,那么最终出来的结 果只能被素数本身和被乘数还有1来整除!(减少冲突)

HashSet使用易错点

  1. 重写equals和hashcode后 改变已经添加进HashSet容器里的对象的属性值 ,hashcode值改变 ,remove()方法根据hashccode值找不到这个被改变属性的对象 ,会造成删除失败 ,并且该对象的存储索引和原来没有变化。
 @Test
    public void test3(){
        HashSet set = new HashSet();
        Person p1 = new Person(1001,"AA");
        Person p2 = new Person(1002,"BB");

        set.add(p1);
        set.add(p2);
        System.out.println(set);

        p1.name = "CC";//修改了name,并且person重写了hashcode,hashcode值改变,下边remove的时候找不到原来的索引值,删不掉,set里有两个对象
        set.remove(p1);
        System.out.println(set);
        
        //精彩部分
        set.add(new Person(1001,"CC"));
        System.out.println(set);
        set.add(new Person(1001,"AA"));
        System.out.println(set);

    }

LinkedHashSet

数组+链表1+链表2,链表1负责链接同索引值的对象,链表2负责记录插入顺序

LinkedHashSet作为HashSet的子类,在添加数据的同时,每个数据还维护了两个引用,记录此数据前一个数据和后一个数据。

优点:对于频繁的遍历操作,LinkedHashSet效率高于HashSet

 @Test
    public void test2(){
        Set set = new LinkedHashSet();
        set.add(456);
        set.add(123);
        set.add(123);
        set.add("AA");
        set.add("CC");
        set.add(new User("Tom",12));
        set.add(new User("Tom",12));
        set.add(129);

        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }

LinkedHashSet底层结构

在这里插入图片描述

TreeSet

  • TreeSet 是 SortedSet 接口的实现类,TreeSet 可以确保集合元素处于排序状态
  • TreeSet底层使用红黑树结构存储数据
  • 新增的方法如下: (了解)
    • Comparator comparator()
    • Object first()
    • Object last()
    • Object lower(Object e)
    • Object higher(Object e)
    • SortedSet subSet(fromElement, toElement)
    • SortedSet headSet(toElement)
    • SortedSet tailSet(fromElement
  1. 向TreeSet中添加的数据,要求是相同类的对象
  2. 两种排序方式:自然排序(实现Comparable接口) 和 定制排序(Comparator)
    1. 自然排序中,比较两个对象是否相同的标准为:compareTo()返回0.不再是equals().因为二叉树中子树上的值必须比根 小 或者 大,存不了 被参考的属性 相同的对象
    2. 定制排序中,比较两个对象是否相同的标准为:compare()返回0.不再是equals().存不了 被参考的属性 相同的对象

TreeSet 两种排序方法:自然排序和定制排序。默认情况下,TreeSet 采用自然排序。

在这里插入图片描述

自然排序的TreeSet:

@Test
    public void test1(){
        TreeSet set = new TreeSet();

        //失败:不能添加不同类的对象
//        set.add(123);
//        set.add(456);
//        set.add("AA");
//        set.add(new User("Tom",12));

            //举例一:
//        set.add(34);
//        set.add(-34);
//        set.add(43);
//        set.add(11);
//        set.add(8);

        //举例二:
        set.add(new User("Tom",12));
        set.add(new User("Jerry",32));
        set.add(new User("Jim",2));
        set.add(new User("Mike",65));
        set.add(new User("Jack",33));
        set.add(new User("Jack",56));


        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }

    }

定制排序的TreeSet

 @Test
    public void test2(){
        Comparator com = new Comparator() {
            //按照年龄从小到大排列
            @Override
            public int compare(Object o1, Object o2) {
                if(o1 instanceof User && o2 instanceof User){
                    User u1 = (User)o1;
                    User u2 = (User)o2;
                    return Integer.compare(u1.getAge(),u2.getAge());
                }else{
                    throw new RuntimeException("输入的数据类型不匹配");
                }
            }
        };

        TreeSet set = new TreeSet(com);
        set.add(new User("Tom",12));
        set.add(new User("Jerry",32));
        set.add(new User("Jim",2));
        set.add(new User("Mike",65));
        set.add(new User("Mary",33));
        set.add(new User("Jack",33));
        set.add(new User("Jack",56));


        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }

默认compareto方法对比汉字的时候,是按照汉字的utf-8值排列,不是按照汉字对应的拼音排序,所以默认的方法可能会出现排序错误,因此如果想要按照汉字对应的拼音排序,就要重写compareto方法。建议导入网上已经相关的已经写好的jar包

Map接口

Map的实现类的结构

|----Map:双列数据,存储key-value对的数据 —类似于高中的函数:y = f(x)

​ |----HashMap:作为Map的主要实现类;线程不安全的,效率高;存储null的key和value

​ |----LinkedHashMap:保证在遍历map元素时,可以按照添加的顺序实现遍历。

​ 原因:在原有的HashMap底层结构基础上,添加了一对指针,指向前一个和后一个元素。

​ 对于频繁的遍历操作,此类执行效率高于HashMap。

​ |----TreeMap:保证按照添加的key-value对进行排序,实现排序遍历。此时考虑key的自然排序或定制排序

​ 底层使用红黑树

​ |----Hashtable:作为古老的实现类;线程安全的,效率低;不能存储null的key和value

​ |----Properties:常用来处理配置文件。key和value都是String类型

HashMap的底层: 数组+链表 (jdk7及之前)

数组+链表+红黑树 (jdk 8)

Map结构的理解

在这里插入图片描述

Map中的key:无序的、不可重复的,使用Set存储所有的key —> key所在的类要重写equals()和hashCode() (以HashMap为例)

Map中的value:无序的、可重复的,使用Collection存储所有的value —>value所在的类要重写equals()

一个键值对:key-value构成了一个Entry对象。

Map中的entry:无序的、不可重复的,使用Set存储所有的entry

Map常用方法

以HashMap为例:

添加、删除、修改操作:

Object put(Object key,Object value):将指定key-value添加到(或修改)当前map对象中
void putAll(Map m):将m中的所有key-value对存放到当前map中
Object remove(Object key):移除指定key的key-value对,并返回value
void clear():清空当前map中的所有数据

@Test
public void test3(){
    Map map = new HashMap();
    //添加
    map.put("AA",123);
    map.put(45,123);
    map.put("BB",56);
    //修改
    map.put("AA",87);

    System.out.println(map);

    Map map1 = new HashMap();
    map1.put("CC",123);
    map1.put("DD",123);

    map.putAll(map1);

    System.out.println(map);

    //remove(Object key)
    Object value = map.remove("CC");
    System.out.println(value);
    System.out.println(map);

    //clear()
    map.clear();//与map = null操作不同
    System.out.println(map.size());//0
    System.out.println(map);//{}
}

元素查询的操作:

Object get(Object key):获取指定key对应的value
boolean containsKey(Object key):是否包含指定的key
boolean containsValue(Object value):是否包含指定的value
int size():返回map中key-value对的个数
boolean isEmpty():判断当前map是否为空
boolean equals(Object obj):判断当前map和参数对象obj是否相等,即判断两个map是否相等

@Test
    public void test4(){
        Map map = new HashMap();
        map.put("AA",123);
        map.put(45,123);
        map.put("BB",56);
        // Object get(Object key)
        System.out.println(map.get(45));
        //containsKey(Object key)
        boolean isExist = map.containsKey("BB");
        System.out.println(isExist);

        isExist = map.containsValue(123);
        System.out.println(isExist);

        map.clear();

        System.out.println(map.isEmpty());

    }

元视图操作的方法:

Set keySet():返回所有key构成的Set集合
Collection values():返回所有value构成的Collection集合
Set entrySet():返回所有key-value对构成的Set集合

遍历:key集 、valuess集 、key-values集

@Test
    public void test5(){
        Map map = new HashMap();
        map.put("AA",123);
        map.put(45,1234);
        map.put("BB",56);

        //遍历所有的key集:keySet()
        Set set = map.keySet();
            Iterator iterator = set.iterator();
            while(iterator.hasNext()){
                System.out.println(iterator.next());
        }
        System.out.println();
        //遍历所有的valuess集:values()
        Collection values = map.values();
        for(Object obj : values){
            System.out.println(obj);
        }
        System.out.println();
        //遍历所有的key-values集
        //方式一:entrySet()
        Set entrySet = map.entrySet();
        Iterator iterator1 = entrySet.iterator();
        while (iterator1.hasNext()){
            Object obj = iterator1.next();
            //entrySet集合中的元素都是entry
            Map.Entry entry = (Map.Entry) obj;
            System.out.println(entry.getKey() + "---->" + entry.getValue());

        }
        System.out.println();
        //方式二:
        Set keySet = map.keySet();
        Iterator iterator2 = keySet.iterator();
        while(iterator2.hasNext()){
            Object key = iterator2.next();
            Object value = map.get(key);
            System.out.println(key + "=====" + value);

        }

    }

常用方法:

添加:put(Object key,Object value)
删除:remove(Object key)
修改:put(Object key,Object value)
查询:get(Object key)
长度:size()
遍历:keySet() / values() / entrySet()

HashMap的底层实现原理?

以jdk7为例说明:

HashMap map = new HashMap();
在实例化以后,底层创建了长度是16的一维数组Entry[] table。
...可能已经执行过多次put...
map.put(key1,value1):

首先,调用key1所在类的hashCode()计算key1哈希值,此哈希值经过某种算法计算以后,得到在Entry数组中的存放位置。
    
如果此位置上的数据为空,此时的key1-value1添加成功。 ----情况1
    
如果此位置上的数据不为空,(意味着此位置上存在一个或多个数据(以链表形式存在)),比较key1和已经存在的一个或多个数据的哈希值:
	如果key1的哈希值与已经存在的数据的哈希值都不相同,此时key1-value1添加成功。----情况2
    如果key1的哈希值和已经存在的某一个数据(key2-value2)的哈希值相同,继续比较:调用key1所在类的equals(key2)方法,比较:
        如果equals()返回false:此时key1-value1添加成功。----情况3
        如果equals()返回true:使用value1替换value2。

补充:关于情况2和情况3:此时key1-value1和原来的数据以链表的方式存储。

扩容:
    在不断的添加过程中,会涉及到扩容问题,当超出临界值(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的2倍,并将原有的数据复制过来。复制之后元素的索引因为 取余数 改变的原因而改变,重新计算每个元素(包括同一索引里的链表)的索引

jdk8 相较于jdk7在底层实现方面的不同

  1. new HashMap():底层没有创建一个长度为16的数组
  2. jdk 8底层的数组是:Node[],而非Entry[]
  3. 首次调用put()方法时,底层创建长度为16的数组
  4. jdk7底层结构只有:数组+链表。jdk8中底层结构:数组+链表+红黑树。
    1. 形成链表时,七上八下(jdk7:新的元素指向旧的元素。jdk8:旧的元素指向新的元素)
    2. 当数组的某一个索引位置上的元素以链表形式存在的数据个数 > 8 且当前数组的长度 > 64时,(如果以链表形式存在的数据个数> 8 ,数组<=64选择则扩容)此时此索引位置上的所数据改为使用红黑树存储。(treeifyBin()方法中binCount等于7才有机会触发红黑树,而binCount等于7时,整个链表已经有9个Node节点了。故总结:Node节点数量大于8时触发红黑树。)

HashMap重要常量:

DEFAULT_INITIAL_CAPACITY : HashMap的默认容量,16
DEFAULT_LOAD_FACTOR:HashMap的默认加载因子:0.75(太小会降低数组利用率,增加扩容频率,太大会增大哈希碰撞,降低效率)
threshold:扩容的临界值,=容量*填充因子:16 * 0.75 => 12
TREEIFY_THRESHOLD:Bucket中链表长度大于该默认值,转化为红黑树:8
MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量:64((当桶中Node的
数量大到需要变红黑树时,若hash表容量小于MIN_TREEIFY_CAPACITY时,此时应执行
resize扩容操作这个MIN_TREEIFY_CAPACITY的值至少是TREEIFY_THRESHOLD的4
倍。)
    
table:存储元素的数组,总是2的n次幂
entrySet:存储具体元素的集
size:HashMap中存储的键值对的数量
modCount:HashMap扩容和结构改变的次数。
threshold:扩容的临界值,=容量*填充因子
loadFactor:填充因子    

LinkedHashMap的底层实现原理(了解)

源码中:
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;//能够记录添加的元素的先后顺序
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}

TreeMap

向TreeMap中添加key-value,要求key必须是由同一个类创建的对象

因为要按照key进行排序:自然排序 、定制排序

两种排序方式

自然排序

@Test
    public void test1(){
        TreeMap map = new TreeMap();
        User u1 = new User("Tom",23);
        User u2 = new User("Jerry",32);
        User u3 = new User("Jack",20);
        User u4 = new User("Rose",18);

        map.put(u1,98);
        map.put(u2,89);
        map.put(u3,76);
        map.put(u4,100);

        Set entrySet = map.entrySet();
        Iterator iterator1 = entrySet.iterator();
        while (iterator1.hasNext()){
            Object obj = iterator1.next();
            Map.Entry entry = (Map.Entry) obj;
            System.out.println(entry.getKey() + "---->" + entry.getValue());

        }
    }

定制排序

 @Test
    public void test2(){
        TreeMap map = new TreeMap(new Comparator() {
            @Override
            public int compare(Object o1, Object o2) {
                if(o1 instanceof User && o2 instanceof User){
                    User u1 = (User)o1;
                    User u2 = (User)o2;
                    return Integer.compare(u1.getAge(),u2.getAge());
                }
                throw new RuntimeException("输入的类型不匹配!");
            }
        });
        User u1 = new User("Tom",23);
        User u2 = new User("Jerry",32);
        User u3 = new User("Jack",20);
        User u4 = new User("Rose",18);

        map.put(u1,98);
        map.put(u2,89);
        map.put(u3,76);
        map.put(u4,100);

        Set entrySet = map.entrySet();
        Iterator iterator1 = entrySet.iterator();
        while (iterator1.hasNext()){
            Object obj = iterator1.next();
            Map.Entry entry = (Map.Entry) obj;
            System.out.println(entry.getKey() + "---->" + entry.getValue());

        }
    }

Properties

常用来处理配置文件。key和value都是String类型

jdbc.properties文件内容

name=Tom宋红康
password=abc123

Java测试类

public static void main(String[] args)  {
        FileInputStream fis = null;
        try {
            Properties pros = new Properties();

            fis = new FileInputStream("jdbc.properties");
            pros.load(fis);//加载流对应的文件

            String name = pros.getProperty("name");
            String password = pros.getProperty("password");

            System.out.println("name = " + name + ", password = " + password);
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            if(fis != null){
                try {
                    fis.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }

            }
        }

    }

Collections工具类

Collections:操作Collection、Map的工具类

常用方法

reverse(List):反转 List 中元素的顺序
shuffle(List):对 List 集合元素进行随机排序
sort(List):根据元素的自然顺序对指定 List 集合元素按升序排序
sort(List,Comparator):根据指定的 Comparator 产生的顺序对 List 集合元素进行排序
swap(List,int, int):将指定 list 集合中的 i 处元素和 j 处元素进行交换

Object max(Collection):根据元素的自然顺序,返回给定集合中的最大元素
Object max(Collection,Comparator):根据 Comparator 指定的顺序,返回给定集合中的最大元素
Object min(Collection)
Object min(Collection,Comparator)
int frequency(Collection,Object):返回指定集合中指定元素的出现次数

void copy(List dest,List src):将src中的内容复制到dest中
boolean replaceAll(List list,Object oldVal,Object newVal):使用新值替换 List 对象的所有旧值

@Test
    public void test1(){
        List list = new ArrayList();
        list.add(123);
        list.add(43);
        list.add(765);
        list.add(765);
        list.add(765);
        list.add(-97);
        list.add(0);

        System.out.println(list);

//        Collections.reverse(list);
//        Collections.shuffle(list);
//        Collections.sort(list);
//        Collections.swap(list,1,2);
        int frequency = Collections.frequency(list, 123);

        System.out.println(list);
        System.out.println(frequency);

    }
@Test
    public void test2(){
        List list = new ArrayList();
        list.add(123);
        list.add(43);
        list.add(765);
        list.add(-97);
        list.add(0);

        //报异常:IndexOutOfBoundsException("Source does not fit in dest")
//        List dest = new ArrayList();//dest集合默认长度为0
//        Collections.copy(dest,list);
        //正确的:
        List dest = Arrays.asList(new Object[list.size()]);
        System.out.println(dest.size());//list.size();
        Collections.copy(dest,list);

        System.out.println(dest);

    }

synchronizedXxx() 方法

Collections 类中提供了多个 synchronizedXxx() 方法,该方法可使将指定集合包装成线程同步的集合,从而可以解决多线程并发访问集合时的线程安全问题

//返回的list1即为线程安全的List
        List list1 = Collections.synchronizedList(list);

面试题

  1. 面试题:ArrayList、LinkedList、Vector三者的异同?

同: 三个类都是实现了List接口,存储数据的特点相同:存储有序的、可重复的数据

异: ArrayList:作为List接口的主要实现类;线程不安全的,效率高;底层使用Object[] elementData存储

​ LinkedList:对于频繁的插入、删除操作,使用此类效率比ArrayList高;底层使用双向链表存储

​ Vector:作为List接口的古老实现类;线程安全的,效率低;底层使用Object[] elementData存储

  1. 请问ArrayList/LinkedList/Vector的异同?谈谈你的理解?ArrayList底层是什么?扩容机制?Vector和ArrayList的最大区别?

ArrayList和LinkedList的异同

二者都线程不安全,相对线程安全的Vector,执行效率高。 此外,ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构。对于随机访问get和set,ArrayList觉得优于LinkedList,因为LinkedList要移动指针。对于新增和删除操作add(特指插入)和remove,LinkedList比较占优势,因为ArrayList要移动数据。

ArrayList和Vector的区别

Vector和ArrayList几乎是完全相同的,唯一的区别在于Vector是同步类(synchronized),属于强同步类。因此开销就比ArrayList要大,访问要慢。正常情况下,大多数的Java程序员使用ArrayList而不是Vector,因为同步完全可以由程序员自己来控制。Vector每次扩容请求其大小的2倍空间,而ArrayList是1.5倍。Vector还有一个子类Stack。

  1. 区分List中remove(int index)和remove(Object obj)
考察:区分两个重载的remove()方法,传入int类型的x,删除的是索引a处的元素,而传入integer类型的a,删除的是和a相同的元素

@Test
    public void testListRemove() {
        List list = new ArrayList();
        list.add(1);
        list.add(2);
        list.add(3);
        updateList(list);
        System.out.println(list);//
    }

    private void updateList(List list) {
//        list.remove(2);这里remove的是索引为2的元素
        list.remove(new Integer(2));这里是删除包装类中整型为2的元素
    }

运行结果:[1, 3]
  1. 重写equals和hashcode后 改变已经添加进HashSet容器里的对象的属性值 ,hashcode值改变 ,remove()方法根据hashccode值找不到这个被改变属性的对象 ,会造成删除失败 ,并且该对象的存储索引和原来没有变化。
 @Test
    public void test3(){
        HashSet set = new HashSet();
        Person p1 = new Person(1001,"AA");
        Person p2 = new Person(1002,"BB");

        set.add(p1);
        set.add(p2);
        System.out.println(set);

        p1.name = "CC";//修改了name,并且person重写了hashcode,hashcode值改变,下边remove的时候找不到原来的索引值,删不掉,set里有两个对象
        set.remove(p1);
        System.out.println(set);
        
        //精彩部分
        set.add(new Person(1001,"CC"));
        System.out.println(set);
        set.add(new Person(1001,"AA"));
        System.out.println(set);

    }
  1. HashMap的底层实现原理?
  2. HashMap 和 Hashtable的异同?
  3. CurrentHashMap 与 Hashtable的异同?
  4. Collection 和 Collections的区别?
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Java集合详解 的相关文章

随机推荐