Building and Installing ACE and Its Auxiliary Libraries and Services

2023-10-30

 

Synopsis

The file explains how to build and install ACE, its Network Services, test suite and examples on the various OS platforms and compilers that it has been ported to. Please consult the NEWS and ChangeLog files to see whether any recent changes to the release will affect your code. In addition, you should check out our development process. As you start working with ACE, we suggest you get copies of the C++NPv1, C++NPv2, and APG books to help guide you after you've built and installed ACE. You should also consult the ACE Frequently Made Mistakes page. If you encounter any problems or would like to request an enhancement, then use our bug tracking system to submit a report in accordance with our bug report process.

Document Index


Platforms, C++ Compilers, and Support

ACE has been ported to a large number of platforms using many different compilers over the years. The DOC group, Riverace, OCI, Remedy IT, and members of the ACE user community have all contributed ports to make ACE the successful and far-reaching toolkit it is today. Any UNIX/POSIX/Windows variation is probably an easy target platform for ACE. If you have porting questions or have a problem compiling the ACE source distribution, please contact one of the commercial support companies, or send a copy of the PROBLEM-REPORT-FORM, located in the ACE_wrappers directory, to either the ACE Newsgroup or the ace-users mailing list. The DOC groups at Washington University, UC Irvine, and Vanderbilt University provide only "best effort" support for non-sponsors for the latest release, as described in docs/ACE-bug-process.html. Thus, if you need more "predictable" help, or help with earlier versions of ACE, it's recommend that you check out the list of commercial support companies for additional assistance.

The responsibility for maintaining ACE across the wide range of supported platforms is divided among a few different groups:

  • The DOC group maintains platforms used in the course of their research and sponsored work
  • Companies that provide support (Riverace, OCI, and Remedy IT), maintain platforms they support in the course of their various service offerings
  • The ACE user community maintains any other desired platforms.
The build scoreboard records the current status of build and regression testing during development by all of the above groups. It is available to all users wishing to provide build results. Members of the ACE community that maintain ACE on platforms not maintained by the DOC group, Riverace, OCI, or Remedy IT are encouraged to provide build and regression test results for the scoreboard to ensure that all in-use platforms are represented. See the autobuild README for more information about how to set up a build; contact one of the above groups to inquire about how to get your build results recorded on the scoreboard.

Because older platforms that are not maintained tend to fall into a broken state and clutter the ACE sources with code that is no longer used, the development team reserves the right to remove ACE configuration files and source code specific to inactive platform configurations that are not listed on the scoreboard.

The table below summarizes each group's role and where you can get more detailed information. For information on TAO's platform coverage and support, please also see TAO's install document.

Groups Involved in ACE Development and Support
Group Platforms For more information
DOC Group Windows 2000, XP (MSVC++ 7.1, and 8); many versions of Linux/Intel (many compilers), Linux/IA64 (GCC). DOC sites at ISIS, UCI and Washington University
Riverace Offers ACE training, support and consulting services for many platforms including AIX, HP-UX, Linux, Solaris, and Windows. Riverace's ACE Support page.
OCI Maintains ACE on certain platforms required for their TAO software and service offerings. OCI's web site and the TAO install document
Remedy IT Maintains ACE on many platforms required for their ACE and TAO service offerings. We support AIX, Borland C++ Builder 6/2006, CodeGear C++ Builder 2007, CodeGear RAD Studio 2007, CBuilderX 1.0, MinGW, Microsoft Visual C++ 7.1/8/9, GCC, Cygwin, VxWorks 5.5.x - 6.x (kernel and rtp), OpenVMS 8.2-1 & 8.3 on Alpha and IA64, BlueCAT Linux, RedHat Linux, Fedora, MacOSX, Tru64, SuSE Linux on Alpha/IA32/EM64T/IA64, RTEMS, QNX, LynxOS 4.0/4.2, HPUX 11i v1/v2 32/64 bit on PA-RISC, and HPUX 11i v2/v3 on IA64. The Intel C++ compiler is supported on Windows 32/64bit, Linux IA32/EM64T/IA64, MacOSX. Remedy IT web site and the TAO install document
PrismTech Maintains ACE on certain platforms required for their TAO software and service offerings, including LynxOS. PrismTech's web site
ACE user community Responsible for continued maintenance and testing of platforms to which ACE has been ported, but aren't supported by the above groups. These include Digital UNIX (Compaq Tru64) 4.0 and 5.0; IRIX 6.x; UnixWare 7.1.0; Linux on PPC; OpenMVS; Tandem; SCO; FreeBSD; NetBSD; OpenBSD; Macintosh OS X; OS/9; PharLap ETS 13; QNX RTP and Neutrino 2.0; Interix (Windows Services for Unix)
Not maintained The following platforms have been ported to in the past but are no longer maintained and may be removed from ACE at any time. If you want to have support for these environments contact one of the commercial support organisations. The platforms include: Chorus; DG/UX; HP-UX 9, 10 and 11.00; pSOS; SunOS 4.x and Solaris with SunC++ 4.x; VxWorks 5.4 and earlier; Microsoft Visual C++ 5, 6, and 7.0; Borland C++ Builder 4 and 5. For up-to-date listings on platform that are deprecated and pending removal from ACE, please see the NEWS file.

Although the DOC group has provided outstanding support for ACE over the years, ACE's success has greatly increased the amount of effort required to keep up with its maintenance, answer users' questions, and give design guidance. Riverace offers world-class commercial services to support ACE users. OCI, PrismTech, and Remedy offer similar services for TAO, allowing the DOC group's primary focus to shift back to their main goal: research. The DOC group is fundamentally focused on (and funded by) advanced R&D projects. The group continues to be intimately involved in ACE+TAO development and maintenance, but with revised priorities for maintenance. The bug fixing policies followed by the DOC group are designed to strike a balance between their many research projects and their commitment to the ACE+TAO user community. Naturally, we will be happy to accept well-tested patches from the ACE+TAO user community for any platforms that aren't supported by the DOC group, Riverace, OCI or Remedy IT.


Installation prerequisites

ACE (as well as TAO and CIAO) use MPC (MakeProjectCreator) to generate files used by all supported build tools (such as GNUmakefiles for UNIX based platforms, sln and vcproj files for VC71/VC8 and Borland makefiles) on various platforms. To help new users to bootstrap quickly the release bundles of ACE (as well as TAO and CIAO) include all needed files to use the build instructions in this document.

If it is necessary to generate files for build tools for other compilers, one must run MPC to generate the appropriate files. Please see USAGE, README, and README for ACE files for details. The options that have been used to generate the above build files can be found in global.features file.


Building and Installing ACE

The following sections explain how to build ACE on:

General Rules

  • Many features in ACE can be modified by defining some macros in $ACE_ROOT/ace/config.h. These macros should always appear before including your platform specific config file.

  • However, if you want to undefine/redefine macros defined in the platform specific config file, these #undef should come after the config file.

  • If you're planning to build ACE on multiple platforms, you may want to consider cloning the source tree before you start.


Building and Installing ACE on UNIX

As of ACE 5.4, you can choose between two methods of building ACE on UNIX:
  1. GNU Autoconf
  2. Traditional ACE/GNU Make Configuration
The build process for Windows is different from both of the UNIX methods.

Building ACE with GNU Autoconf

GNU Autoconf support is available in the ACE and ACE+TAO distributions in the DOC group website. Support for Autoconf is not included in distributions that contain CIAO.

GNU Autoconf support has been partially present in a number of ACE versions. However, ACE 5.4 was the first version that supported it in earnest. The range of platforms on which GNU autoconf support is regularly tested is not as broad as for the traditional configuration method, so you should be careful to test the resulting ACE library before using it in your applications. You can review the build scoreboard to check the currently tested set of autoconfigured platforms (look for autoconf in the platform name). Any help you can lend to improve the ACE build process using GNU Autoconf would be very much appreciated. Please send any fixes to the ACE users mailing list using the standard PROBLEM-REPORT-FORM.

The kit has been bootstrapped so you do not need to install the GNU Autotools (autoconf, automake, libtool) unless you want to participate in testing and developing this process further or if you are working directly off of sources in the ACE subversion repository. To simply configure and build ACE, do:

  1. cd to the top-level ACE_wrappers directory.
  2. Create a subdirectory to hold your build's configuration and built ACE version, and then change to the new directory:
           mkdir build
    cd build
    Note that you do not run the create_ace_build.pl utility mentioned in the Cloning the Source Tree section. The configure script takes care of creating all files and links that are needed.
  3. Configure ACE for your platform by issuing the following command:
           ../configure [options]
    options can be a variable setting (such as setting CXX to your C++ compiler command) any standard GNU configure options, or any of the following ACE configure options (default values are in parentheses):
    • --enable-alloca (no): Enable alloca() support.
    • --enable-debug (yes): Build ACE with debugging support.
    • --enable-exceptions (yes): Build ACE with C++ exception support compiled in.
    • --enable-fast (no): Use the Sun C++ -fast option to build. Only used on Solaris.
    • --enable-ipv4-ipv6 (no): Enable IPv4/IPv6 migration support.
    • --enable-ipv6 (no): Enable IPv6 support.
    • --enable-inline (yes): Enable inline functions.
    • --enable-optimize (yes): Enable building optimized.
    • --enable-prof (no): Enable profiling support.
    • --enable-purify (no): Build with support for IBM Rational Purify.
    • --enable-quantify (no): Build with support for IBM Rational Quantify.
    • --enable-repo (no): Enable the GNU g++ -frepo option. Only useful for pre-3.0 g++.
    • --enable-stdcpplib (yes): Build with support for the standard C++ library, as opposed to the older iostreams library.
    • --enable-log-msg-prop (yes): Enable ACE_Log_Msg property propagation to ACE-created threads.
    • --enable-logging (yes): Enable the ACE logging macros.
    • --enable-malloc-stats (no): Compile in additional code for collecting memory allocation statistics.
    • --enable-pi-pointers (yes): Enable position-independent pointers for shared memory classes.
    • --enable-probe (no): Enable the ACE_Timeprobe class.
    • --enable-reentrant (yes): Enable use of platform's reentrant functions.
    • --enable-static-obj-mgr (yes): Enable use of a static ACE_Object_Manager.
    • --enable-threads (yes): Enable threading support.
    • --enable-verb-not-sup (no): Enable verbose ENOTSUP reports at run time.
    • --enable-trace (no): Enable ACE execution tracing support.
    • --enable-fl-reactor (no): Enable support for the ACE_FlReactor class.
    • --enable-qt-reactor (no): Enable support for the ACE_QtReactor class.
    • --enable-tk-reactor (no): Enable support for the ACE_TkReactor class.
    • --enable-xt-reactor (no): Enable support for the ACE_XtReactor class.
    • --enable-gperf (yes): Build the implementation of gperf that comes with ACE.
    • --enable-qos (no): Include the ACE_QoS library when building ACE.
    • --enable-ssl (yes): Include the ACE_SSL library when building ACE. Requires the SSL components to be available using the compiler's and linker's default search directories.
    • --with-openssl: Specifies the root directory of the OpenSSL installation; expects the specified directory to have include and lib subdirectories. To specify other locations for the header and libraries, use one or both of the following.
    • --with-openssl-include: Specify the directory containing the OpenSSL header files.
    • --with-openssl-libdir: Specify the directory containing the OpenSSL libraries.
    • --with-tli-device (/dev/tcp): Specifies the device name for opening a TLI device at run time.
  4. Build ACE by typing make.
  5. (Optional) Install ACE by typing make install.
Testing and Developing GNU Autotool Support in ACE

In order to test and develop the GNU Autotool support in ACE or bootstrap autotool support into ACE when working directly off of ACE sources in the subversion repository, you must have recent versions of GNU Autoconf, Automake and Libtool installed on your host. Once installed, autotool support may be bootstrapped into your workspace by doing the following:

cd ACE_wrappers
./bin/bootstrap
After doing so, you will be able to run the configure script.

Using the Traditional ACE/GNU Configuration

Here's what you need to do to build ACE using GNU Make and ACE's traditional per-platform configuration method:

  1. Install GNU make 3.79.1 or greater on your system (available via http anonymous ftp from ftp.gnu.org in the pub/gnu/make/ directory). You must use GNU make when using ACE's traditional per-platform configuration method or ACE won't compile.
  2. Add an environment variable called ACE_ROOT that contains the name of the root of the directory where you keep the ACE wrapper source tree. The ACE recursive Makefile scheme needs this information. There are several ways to set the ACE_ROOT variable. For example:
    TSCH/CSH: setenv ACE_ROOT /home/cs/faculty/schmidt/ACE_wrappers
    BASH or Bourne Shell: ACE_ROOT=/home/cs/faculty/schmidt/ACE_wrappers; export ACE_ROOT

    If you're building a number of versions of ACE, however, (e.g., for different OS platforms or for different releases of ACE) you might use the following approach (assuming TCSH/CSH):

    setenv ACE_ROOT $cwd
  3. Create a configuration file, $ACE_ROOT/ace/config.h, that includes the appropriate platform/compiler-specific header configurations from the ACE source directory. For example:
    #include "ace/config-linux.h"
    The platform/compiler-specific configuration file contains the #defines that are used throughout ACE to indicate which features your system supports. See the $ACE_ROOT/ace/README file for a description of these macro settings. If you desire to add some site-specific or build-specific changes, you can add them to your config.h file; place them before the inclusion of the platform-specific header file.

    There are config files for most versions of UNIX. If there isn't a version of this file that matches your platform/compiler, you'll need to make one. Please send email to the ace-users list if you get it working so it can be added to the master ACE release.

  4. Create a build configuration file, $ACE_ROOT/include/makeinclude/platform_macros.GNU, that contains the appropriate platform/compiler-specific Makefile configurations, e.g.,
    include $(ACE_ROOT)/include/makeinclude/platform_linux.GNU
    This file contains the compiler and Makefile directives that are platform/compiler-specific. If you'd like to add make options, you can add them before including the platform-specific configuration.

    NOTE! There really is not a # character before 'include' in the platform_macros.GNU file. # is a comment character.

  5. Note that because ACE builds shared libraries, you'll need to set LD_LIBRARY_PATH (or equivalent for your platform) to the directory where binary version of the ACE library is built into. For example, you probably want to do something like the following:
    % setenv LD_LIBRARY_PATH $ACE_ROOT/lib:$LD_LIBRARY_PATH
  6. When all this is done, hopefully all you'll need to do is type:
    % make
    at the ACE_ROOT directory. This will build the ACE library, tests, the examples, and the sample applications. Building the entire ACE release can take a long time and consume lots of disk space, however. Therefore, you might consider cd'ing into the $ACE_ROOT/ace directory and running make there to build just the ACE library. As a sanity check, you might also want to build and run the automated "one-button" tests in $ACE_ROOT/tests. Finally, if you're also planning on building TAO, you should build the gperf perfect hash function generator application in $ACE_ROOT/apps/gperf.
  7. If you need to regenerate the ace/Svc_Conf_y.cpp file, you'll need to get GNU Bison. However, you should rarely, if ever, need to do this.

Building and Installing ACE on Windows

This section contains instructions for building ACE on Microsoft Windows with a variety of compilers and development environments.

First, if you are upgrading from an older release, the recommended practice is to start with a clean directory. Unpacking the newer release over an older one will not clean up any old files, and trying to use the environment's "Clean" command will probably not account for all existing files.


Building and Installing ACE on Windows with Microsoft Visual Studio

ACE contains project files for Microsoft Visual Studio .NET 2003 (VC7.1) and Visual Studio 2005 (VC8). Visual Studio 2005 supports building for desktop/server Windows as well as for Windows CE and Windows Mobile. Since not all users will be interested in the CE/Mobile capability, these platforms have separate solution and project files from the desktop/server Windows. Furthermore, VC7.1 and VC8 use different file formats but the same file suffixes (.sln and .vcproj). To support both environments, ACE supplies files with different names for the different development and target platforms. The platform/name mapping is shown below. All solution files have a .sln suffix and all project files have a .vcproj suffix.

The free Visual C++ 2005 Express Edition will work in place of the traditional Visual Studio 2005 editions. Please note that there are additional setup steps needed to install the Windows Platform SDK and to make VC++ aware of it. All of the steps documented here need to be done before ACE will build. All the other notes in this document that are for VC8 also apply to the express edition. MFC, 64-bit, and CE/mobile options are not available with the express edition. 64-bit binaries can be built with the tools included in the Platform SDK, using nmake as the build system.
Mapping of Platform to Solution/Project File Name
Platform File Name
VC7.1 name_vc71
VC8 for desktop/server name_vc8
VC8 for Windows CE/Mobile name_WinCE

If you happen to open a VC7.1 file from within VC8, it will offer to convert the file to the newer format for you. With the stock VC8, do not do this; Visual Studio will crash while attempting to convert the large solution and project files to build ACE. Simply refuse the conversion and open the file with the correct format. Note that Microsoft has fixed this problem. See https://msdn.microsoft.com/visualc/downloads/default.aspx for information.

  1. Uncompress the ACE distribution into a directory, where it will create a ACE_wrappers directory containing the distribution. The ACE_wrappers directory will be referred to as ACE_ROOT in the following steps -- so ACE_ROOT/ace would be C:/ACE_wrappers/ace if you uncompressed into the root directory.

  2. Create a file called config.h in the ACE_ROOT/ace directory that contains:

    #include "ace/config-win32.h"

  3. The static, DLL and MFC library builds are kept in different workspaces. Files with names *_Static contain project files for static builds. Workspaces for static and DLL builds will be available through the stock release at DOC group's website. The workspaces for MFC are not available and have to be generated using MPC. Please see MPC's README for details.

  4. Now load the solution file for ACE (ACE_ROOT/ACE.sln).

  5. Make sure you are building the configuration (i.e, Debug/Release) the one you'll use (for example, the debug tests need the debug version of ACE, and so on). All these different configurations are provided for your convenience. You can either adopt the scheme to build your applications with different configurations, or use ace/config.h to tweak with the default settings on NT.
    Note: If you use the dynamic libraries, make sure you include ACE_ROOT/lib in your PATH whenever you run programs that uses ACE. Otherwise you may experience problems finding ace.dll or aced.dll.

  6. If you want to use the standard C++ headers (iostream, cstdio, ... as defined by the C++ Standard Draft 2) that comes with MSVC, then add the line:

    #define ACE_HAS_STANDARD_CPP_LIBRARY 1

    before the #include statement in ACE_ROOT/ace/config.h.

  7. To use ACE with MFC libraries, also add the following to your config.h file. Notice that if you want to spawn a new thread with CWinThread, make sure you spawn the thread with THR_USE_AFX flag set.

    #define ACE_HAS_MFC 1

    By default, all of the ACE projects use the DLL versions of the MSVC run-time libraries. You can still choose use the static (LIB) versions of ACE libraries regardless of run-time libraries. The reason we chose to link only the dynamic run-time library is that almost every NT box has these library installed and to save disk space. If you prefer to link MFC as a static library into ACE, you can do this by defining ACE_USES_STATIC_MFC in your config.h file. However, if you would like to link everything (including the MSVC run-time libraries) statically, you'll need to modify the project files in ACE yourself.

  8. Static version of ACE libraries are built with ACE_AS_STATIC_LIBS
    defined. This macro should also be used in application projects that link to static ACE libraries

    Optionally you can also add the line

    #define ACE_NO_INLINE

    before the #include statement in ACE_ROOT/ace/config.h to disable inline function and reduce the size of static libraries (and your executables.)

  9. ACE DLL and LIB naming scheme:

    We use the following rules to name the DLL and LIB files in ACE when using MSVC.

    "Library/DLL name" + (Is static library ? "s" : "") + (Is Debugging enable ? "d" : "") + {".dll"|".lib"}

More information for ACE/TAO on MSVC can be found here. The doxygen version of this document is available under Related Topics in the ACE Library.

ACE TESTS

The tests are located in ACE_ROOT/tests. There is also a solution in that directory to build all the tests (tests.sln)

Once you build all the tests (Batch Build works well for this), you can run perl script run_test.pl in the tests directory to try all the tests.

BUILDING ACE ON A WIN32 MACHINE THAT LACKS A NETWORK CARD

You may want to run ACE on a non-networked machine. To do so, you must install TCP/IP and configure it to ignore the absence of a network card. This is one method:

  1. Run Control Panel
  2. Choose Network from Control Panel
  3. Add Adapter: MS Loopback Adapter
  4. Configure MS Loopback Adapter with 802.3 (default)
  5. Add Protocol: TCP/IP Protocol
  6. Configure TCP/IP Protocol with a valid IP address and subnet mask. Leave everything else at the default settings.
  7. Add Service: Workstation
  8. Exit and Restart System
  9. Run Control Panel again
  10. Choose Services from Control Panel
  11. The following services are not necessary and may be set to Disabled Startup:
    Alerter
    Computer Browser
    Net logon
    Messanger
  12. Choose Network from Control Panel
  13. Confirm the following setup. This is all you need to run ACE:
    Installed Software:
    Computer Browser
    MS Loopback Adapter Driver
    TCP/IP Protocol
    Workstation
    Installed Adapter Cards:
    MS Loopback Adapter

WIN32 ALPHA CONFIGURATIONS

The project files for Visual C++ no longer contain any configurations targetted to Windows NT on the DEC Alpha. Below are the steps needed to recreate the Alpha configurations:

  1. Load the project on the Alpha machine.
  2. Go to the Build menu and then select Configurations.
  3. Select the project that you want to convert.
  4. Click on Add.
  5. Select the x86 configuration to "Copy settings from" (either Debug or Release versions).
  6. Prepend "Alpha " to the beginning of the name under "Configuration".
  7. Click OK.
  8. Close the "Configurations" window.
  9. Now go to the Project settings.
  10. For the General Settings, change the output directories to standard ACE output directories. Intermediate Directories are "Debug" and "Release" in most cases. The Output Directories are blank, except for Release versions of executables, in which it is also "Release".
  11. For the C/C++ Settings, make sure that the Code Generation's runtime library is set to "Multithreaded DLL" or "Debug Multithreaded DLL".

Note: MSVC 6 has a bug where if a .dsp is converted from version 5 to 6 on x86, the Alpha configuration can get corrupted. This seems to happen when additional include or library directories are specified using backslashes instead of forward slashes. If this occurs, the easiest way to fix it is to recreate it.


 

Building and Installing ACE on Windows with Borland C++

If you are building for a machine without a network card, you may want to check here first.

  1. Uncompress the ACE distribution into a directory, where it will create an ACE_wrappers directory containing the source. The ACE_wrappers directory will be referred to as ACE_ROOT in the following steps -- so ACE_ROOT/ace would be C:/ACE_wrappers/ace if you uncompressed into the root directory.

  2. Create a file called config.h in the ACE_ROOT/ace directory that contains:

    #include "ace/config-win32.h"

  3. Open a Command Prompt (DOS Box).

  4. Set the ACE_ROOT environment variable to point to the ACE_wrappers directory. For example:

    set ACE_ROOT=C:/ACE_wrappers

  5. Set the BCBVER environment vairable to the main version of your Borland C++ compiler. 6 is the value for Borland C++ Builder 6, 8 the value for Borland C++ Builder 2006. 4 and 5 are also possible options but not supported anymore.

    set BCBVER=6

  6. Change to the ACE_ROOT/ace directory.

  7. Build release DLLs for ACE by going:

    make -f Makefile.bor all

  8. You can build several different versions of ACE by setting environment variables before you run make:

    Set the environment variable below to build a debug version of ACE
    set DEBUG=1

    Set the environment variable below to build a static version of ACE
    set STATIC=1

    Set the environment variable below to build a unicode version of ACE
    set UNICODE=1

    Set the environment variable below to build a version of ACE with Codeguard support. Should only be used when DEBUG is also set
    set CODEGUARD=1

    Set the environment variable below to build a version of ACE optimized for a certain CPU. For this there are special compiler flags (-3/-4/-5/-6), see the Borland help for more info.
    set CPU_FLAG=-6

    Set the environment variable below to build a version of ACE using the C++BuilderX preview compiler. This compiler isn't supported at this moment but by setting this environment variable the new compiler is used and you can expirement with this compiler.
    set CBX=1

    You can then start the build with the command
    make -f Makefile.bor all

    You may also enable the options by passing them as command line options to make, for example:
    make -f Makefile.bor -DDEBUG all

  9. Optionally install the ACE header files, libraries and executables for use in your applications. Here we are installing them into C:/ACETAO:

    make -f Makefile.bor -DINSTALL_DIR=C:/ACETAO install

These instructions do not cover all possible build configurations. Please see http://www.tenermerx.com/programming/corba/tao_bcb/index.html for more detailed information on building and using ACE+TAO with Borland C++ Builder.

Note that when you run make in a sub directory you give make -f Makefile.bor all. The all is needed to make sure the complete project is build.

The Borland C++ Builder 4.0/5.0/6.0/2006 port has been done by Jody Hagins, Christopher Kohlhoff and Johnny Willemsen.

ACE TESTS

Before you can build the tests you need to build the protocols directory. Change the directory to ACE_ROOT/protocols and start the build with:

make -f Makefile.bor all

The tests are located in ACE_ROOT/tests, change to this directory. You build then the tests with the following command:

make -f Makefile.bor all

Once you build all the tests, you can run the automated test script using:

perl run_test.pl

in the tests directory to try all the tests. You need to make sure the ACE bin and lib directory (in this case ACE_ROOT/bin and ACE_ROOT/lib) are on the path before you try to run the tests.


Building and Installing ACE on Win32 with MinGW/ MSYS

If you are building for a machine without a network card, you may want to check here first.

Building and installing ACE on MinGW uses a mix of a UNIX building process and Win32 configuration files. Also, as MinGW uses GNU g++, you may want to take a look at the Compiling ACE with GNU g++ section.

You will need the MinGW build tools and libraries, downloable from http://www.mingw.org.
For our build we require the packages MinGW and MSYS.

  1. Install the MinGW tools into a common directory, say c:/mingw.

  2. Install the MSYS tools into a common directory, say c:/msys.

  3. Open a MSYS shell. Set your PATH environment variable so your MinGW's bin directory is first:
           % export PATH=/c/mingw/bin:$PATH
  4. Add an ACE_ROOT environment variable pointing to the root of your ACE wrappers source tree:
           % export ACE_ROOT=/c/work/mingw/ACE_wrappers
    From now on, we will refer to the root directory of the ACE source tree as $ACE_ROOT.

  5. Create a file called config.h in the $ACE_ROOT/ace directory that contains:
           #include "ace/config-win32.h"
  6. Create a file called platform_macros.GNU in the $ACE_ROOT/include/makeinclude directory containing:
           include $(ACE_ROOT)/include/makeinclude/platform_mingw32.GNU
    In the above text, don't replace $(ACE_ROOT) with the actual directory, GNU make will take the value from the environment variable you defined previously.

    If you lack Winsock 2, add the line

           winsock2 = 0
    before the previous one.

  7. In the MSYS shell, change to the $ACE_ROOT/ace directory and run make:
           % cd $ACE_ROOT/ace
    % make

    This should create libACE.dll (the Win32 shared library) and libACE.dll.a (the Win32 import library for the DLL). Note that the name for the ACE DLL follows the MinGW convention, which itself resembles UNIX.

    If you want static libs also, you may run:

           % make static_libs=1
  8. The same rules for Win32 search of DLLs apply for MinGW. If you want to run some ACE programs from the MSYS shell, you may need to add the directory for libACE.dll to your PATH:
           % export PATH=/c/work/mingw/ACE_wrappers/ace:$PATH
ACE TESTS

The tests are located in $ACE_ROOT/tests. After building the library, you can change to that directory and run make:

       % cd $ACE_ROOT/tests
% make

Once you build all the tests, you can run run_tests.pl in the tests directory to try all the tests:

       % perl run_test.pl

If you are using ACE as a DLL, you will need to modify your PATH variable as explained above.

You may want to check $ACE_ROOT/tests/README for the status of the various tests on MinGW and the different Windows flavors.


Building and Installing ACE on Win32 with Cygwin

If you are building for a machine without a network card, you may want to check here first.

Building and installing ACE on Cygwin uses the UNIX building process. Also, as Cygwin uses GNU g++, you may want to take a look at the Compiling ACE with GNU g++ section.

You will need the Cygwin build tools and libraries, downloable from http://www.cygwin.com. For our build we require the following packages besides the packages the setup selects by default:

gcc (version 3.3.3), cygserver, make, perl, binutils.
  1. Install Cygwin (this can be easy downloading and running setup.exe from the Cygwin site). For working with ACE we recommend to select DOS as default text file type.

  2. Open a Cygwin shell. Set your PATH environment variable so your Cygwin bin directory is first:
           % export PATH=//c/cygwin/bin:$PATH

    Note Cygwin uses ``/'' as directory separator, and ``//X'' as a notation for Win32 drive X. Note also that you can't use ``c:/cygwin/bin'' because, for Cygwin, ``:'' is path separator character, as in UNIX.

  3. Add an ACE_ROOT environment variable pointing to the root of your ACE wrappers source tree:
           % export ACE_ROOT=c:/work/cygwin/ACE_wrappers

    Note here you can't use the ``//X'' Cygwin notation as this is seen by Cygwin's compiler and it doesn't support that (it does support ``/'' as directory separator however).

    From now on, we will refer to the root directory of the ACE source tree as $ACE_ROOT.

  4. Create a file called config.h in the $ACE_ROOT/ace directory that contains:
           #include "ace/config-cygwin32.h"
  5. Create a file called platform_macros.GNU in the $ACE_ROOT/include/makeinclude directory containing:
           include $(ACE_ROOT)/include/makeinclude/platform_cygwin32.GNU
    In the above text, don't replace $(ACE_ROOT) with the actual directory, GNU make will take the value from the environment variable you defined previously.
  6. On the Cygwin shell, change to the $ACE_ROOT/ace directory and run make:
           % cd $ACE_ROOT/ace
    % make

    This should create libACE.dll (the Win32 shared library) and libACE.dll.a (the Win32 import library for the DLL). Note the name for the ACE DLL on Cygwin follows the UNIX convention.

    If you want static libs also, you may run:

           % make static_libs=1
  7. The same rules for Win32 search of DLLs apply for Cygwin. If you want to run some ACE programs from the Cygwin shell, you may need to add the directory for libACE.dll to your PATH:
           # export PATH=//c/work/cygwin/ACE_wrappers/ace:$PATH
    If you are using MPC-generated Makefiles, then the DLLs have been placed in the lib directory instead of ace and thus your PATH addition would need to look like this:
           # export PATH=//c/work/mingw/ACE_wrappers/lib:$PATH
ACE TESTS

The tests are located in $ACE_ROOT/tests. After building the library, you can change to that directory and run make:

       % cd $ACE_ROOT/tests
% make

Once you build all the tests, you can run run_tests.pl in the tests directory to try all the tests:

       % perl run_test.pl

If you are using ACE as a DLL, you will need to modify your PATH variable as explained above.

You may want to check $ACE_ROOT/tests/README for the status of the various tests on Cygwin and the different Windows flavors.


Building and Installing ACE on Win32 with Interix

Interix comes with a BSD style make; you need GNU make. Make builds easily under Interix or there is a prebuilt package at:

http://www.interopsystems.com/tools/warehouse.htm

If you are building for a machine without a network card, you may want to check here first.

This port was built and tested under Interix 3.5. a.k.a. Windows Services for UNIX 3.5.

To build follow the Traditional ACE/GNU Make Configuration instructions replacing the following include directives:

#include "ace/config-win32-interix.h"

for the config.h header

and:

include $(ACE_ROOT)/include/makeinclude/platform_win32_interix.GNU

for your platform_macros.GNU file.

ACE should build fine with just 'make', the only other option tried thus far is 'make static_libs_only=1' which also works. Any other options may not work.

ACE TESTS

The tests are located in $ACE_ROOT/tests. After building the library, you can change to that directory and run make:

% cd $ACE_ROOT/tests
% make

Once you build all the tests, you can run run_test.pl in the tests directory to try all the tests:

% run_test.pl

If you are using ACE as a shared library, you will need to modify your LD_LIBRARY_PATH as explained inTraditional ACE/GNU Make Configuration.


Building and Installing ACE on VxWorks

For the most part, you should be able to follow the instructions above to build ACE and applications that use it. Start with the Unix instructions above to build ACE and the applications that use it. Please see below for more information on building ACE on NT hosts for VxWorks targets.

A few notes on VxWorks builds (thanks to Paul von Behren and Remedy IT for these notes):

  • VxWorks builds are done with a cross compiler, i.e., the compiles are done on a workstation creating object modules which are downloaded and loaded into the VxWorks target system.

  • C++ object modules must be post-processed by a VxWorks utility called "munch" to set up calls to static constructors and destructors. ACE integrates the makefile includes/rules files distributed with VxWorks to achieve maximum compatibility and reuse the target specifications and buildcommands defined by Windriver itself. The original ACE support for VxWorks included a perl script called $ACE_ROOT/bin/ace_ld, which was called from the Makefiles, replacing the traditional ld step. Although this script is currently still available it is not used anymore.
    You must have perl installed to use ace_ld. If perl is not on your path, you'll have to set PERL_PATH to the full path (including perl.exe), either in your $(ACE_ROOT)/include/makeinclude/platform_macros.GNU or in your environment.

  • Wind River provides GCC/G++ cross-compilers for the supported target platforms. The executables are named cc<target> and g++<target>; for example, ccppc and g++cpp for PowerPC targets.

You'll have to let ACE know the target type at compile time. There are several ways to do this; please see the $ACE_ROOT/include/makeinclude/platform_vxworks5.5.x.GNU platform file for detailed information.

The VxWorks platform_vxworks*.GNU files are set up so that shared libraries are not built on VxWorks, by default. Only static libraries, with .a extension, are built. Therefore, it's not necessary to set the LD_LIBRARY_PATH environment variable on your host system when building for VxWorks targets. Please note, however, if you use TAO on VxWorks that you will need to set your LD_LIBRARY_PATH to find the TAO IDL compiler libraries (installed in the ace directory) on the host.

These non-default VxWorks kernel configuration #defines are required with ACE:

#define INCLUDE_CPLUS           /* include C++ support */
#define INCLUDE_CPLUS_IOSTREAMS /* include iostreams classes */
#define INCLUDE_POSIX_ALL /* include all available POSIX functions */
For completeness, here are the non-default #defines that we used for VxWorks 5.3.1/g++ 2.7.2:
#define INCLUDE_CPLUS           /* include C++ support */
#define INCLUDE_CPLUS_IOSTREAMS /* include iostreams classes */
#define INCLUDE_CONFIGURATION_5_2 /* pre-tornado tools */
#define INCLUDE_DEBUG /* pre-tornado debugging */
#define INCLUDE_LOADER /* object module loading */
#define INCLUDE_NET_SYM_TBL /* load symbol table from network */
#define INCLUDE_SYM_TBL_SYNC /* synchronize host and target symbol tables */
#define INCLUDE_NFS /* nfs package */
#define INCLUDE_PING /* ping() utility */
#define INCLUDE_POSIX_ALL /* include all available POSIX functions */
#define INCLUDE_RDB /* remote debugging package */
#define INCLUDE_RLOGIN /* remote login */
#define INCLUDE_RPC /* rpc package */
#define INCLUDE_SECURITY /* shell security for network access */
#define INCLUDE_SHELL /* interactive c-expression interpreter */
#define INCLUDE_SHOW_ROUTINES /* show routines for system facilities*/
#define INCLUDE_SPY /* spyLib for task monitoring */
#define INCLUDE_STARTUP_SCRIPT /* execute start-up script */
#define INCLUDE_STAT_SYM_TBL /* create user-readable error status */
#define INCLUDE_SYM_TBL /* symbol table package */
#define INCLUDE_UNLOADER /* object module unloading */
#define INCLUDE_WINDVIEW /* WindView command server */
Also, automatic construction/destruction of static objects should be enabled.

If you use TAO, it's also a good idea to increase the NUM_FILES parameter from its default of 50 to, say, 1000.

Please note that those VxWorks kernel configuration parameters are set in the VxWorks configAll.h file. You must rebuild your VxWorks kernel after modifying that file.

If you're first getting started with ACE and/or VxWorks, I recommend just building the ACE library and tests first. (Some of the ACE examples, in System_V_IPC, don't build on VxWorks yet.) Then try running the tests. Please see $ACE_ROOT/tests/README for the latest status of the ACE tests on VxWorks.

Please note that the main entry point is renamed to ace_main (configurable via ACE_MAIN) on VxWorks with g++, to comply with its restriction against using main. In addition, ACE_HAS_NONSTATIC_OBJECT_MANAGER is enabled by default to cleanly support construction and destruction of static objects. Please see the Non-static ACE_Object_Manager discussion for the important implication of this feature.

ACE threads (VxWorks tasks) can be named, for example, by supplying a non-null argument to the Thread_Manager spawn routines. However, names beginning with "==ace_t==" are forbidden because that prefix is used internally by ACE.

You can spawn a new task to run ace_main, using either VxWorks sp, or ACE'S spa. spa can be used from the VxWorks shell to pass arguments to ace_main. Its usage is:


spa ace_main, "arg1" [, ...]
All arguments must be quoted, even numbers. You can start also ace_main without spawning another thread by using:


spaef ace_main, "arg1" [, ...]
ACE also provides the function vx_execae which is capable of running ace_main in a separate thread, wait for the task to finish and return the return code from ace_main:

int vx_execae (FUNCPTR acemain,char* arguments, int prio = 0, int opt = 0, int stacksz = 0);

You could call this from the VxWorks shell like:


my_rc = vx_execae ace_main, "-o server.ior -ORBDottedDecimalAddresses 1"

When prio, opt or stacksz are omitted or specified as 0 default values will be used. See the VxWorks shell documentation for the defaults for prio and opt. For stacksz the default is ACE_NEEDS_HUGE_THREAD_STACKSIZE. The arguments string will be parsed and passed on to ace_main as a regular argc and argv.

Be aware of the fact that when you execute ace_main directly from the VxWorks shell argc will be zero and argv* will also be zero. Using argv[0] will not return the program name, but will result in a crash.
The ACE helper functions spa, spaef and vx_execae prevent this problem by building a regular argc and argv which also contain a valid argv[0] element.

Building Shared Libraries for VxWorks.

NOTE: Since VxWorks support is currently being reworked with an initial focus on static builds the support for shared builds is momentarily broken. This will be remedied(!) as soon as possible.

ACE supports shared libraries for VxWorks, but only with the g++ compiler. To build shared libraries instead of the default static libraries, added shared_libs=1 (not shared_libs_only=1) to either your ACE_wrappers/include/makeinclude/platform_macros.GNU or your make invocation. Then, be sure to load the ACE (and any other) shared library before loading your executable(s).

A shared library for VxWorks uses the same code as for a static (non-shared) library. However, calls to static constructors/ destructors are added. The code in the shared library must be reentrant if you shared it between programs (tasks). The ACE library meets this requirement.

Shared libraries reduce build time, executable size, and load time of the executable. But, you must manually load the shared library before loading your executable(s) with a command such as:


-> ld < libACE.so
Shared libraries can be unloaded the same way an executable (module) is unloaded.

NOTE: Shared libraries on VxWorks aren't the same as shared libraries on other operating systems. In particular, there is no support for creating copies of writeable global (static) data in the shared library. This includes the singleton ACE_Object_Manager instance pointer. If you share global data between separate programs, they may not work properly. See the discussion of shared code and reentrancy in the VxWorks' Programmers Guide.

Instead of trying to run separate programs onto a VxWorks target, we recommend creating just one program, and spawning a thread for each task. The TAO IDL_Cubit test collocation test is a good example.

Linking ACE and/or TAO Libraries into the VxWorks Kernel.

It's easy to link your ACE and/or TAO libraries into the VxWorks kernel. Just build shared versions, but disable the munch step. The easiest way to do that is to set the LD make variable to the name of your linker. For example, to build a libACE.so for PowerPC that can be linked into the kernel:
% cd $ACE_ROOT/ace
% make LD=ldppc shared_libs=1
After building the shared lib, link it into the kernel by setting the MACH_EXTRA make variable in the kernel configuration Makefile. Then, build the kernel using make exe.

Using the one-button ACE tests with VxWorks.

It is possible to generate a script to execute all ACE tests. You can do this by executing
% perl run_test.pl -v -o > run_test.vxworks
The ACE tests write their output files in a directory named log/, below the current ( tests) directory.

To run the tests from the build directory on an NT host where you crossbuild your VxWorks ACE/TAO you can set up the Target Server File System (TSFS) in your Target Server configuration. If you f.i. set the root for the TSFS to the root directory of your builddisk you can set the default directory for the target by issueing the following command from a Host shell: '@cd "/tgtsvr/{path to ACE}/ACE_wrappers/tests"'. The '@' addition makes sure this command is executed for the target environment and not the local host shell environment. If you also issue the command 'cd {path to ACE}/ACE_wrappers/tests' you can execute the generated one button testscript like: '< run_test.vxworks'.

Running the ACE tests automatically from the ACE autobuild tool using Target Server and Host shell options is also supported.

If you don't have NFS included in your VxWorks kernel, you can use these steps, provided by Clarence M. Weaver, to run the tests and capture their output:

  1. What I did was create a log directory on the boot NT host of my VxWorks target.

  2. I copied all the test applications and the run_test.vxworks script to the parent of the log directory.

  3. Using the target shell not the host shell, I "cd" to the directory containing the script and test programs.

  4. Invoked the script using < run_test.vxworks from this target shell.

Kirk Davies provided this approach for running the ACE tests on Tornado II:
  • Under Tornado II, I set up the Target Server File System (TSFS), and the test logs get written to the log subdirectory under that.

  • You have to set an environment variable before running the tests:
    putenv("ACE_TEST_DIR=/tgtsvr")

Building ACE on Tornado/NT hosts for VxWorks targets.

The following, very useful information was contributed by Chris Ryan and Paul von Behren. Please submit corrections, additions, or clarifications to the the ACE mailing list.

NOTE:The make (version 3.74) that is provided with Tornado 2.2 cannot be used to build ACE. A working version is available from the WindRiver support site, download the make3_80.gvk_patches and the make3_80.tor2_2.new_dependency_rules package and install them.

Using the Cygnus tools, this approach works:

  • You'll build both your NT and VxWorks executables in the same workspace (directory hierarchy). This works because the NT compiler and ACE's Makefiles put their output in different directories.

  • Set up your ACE_wrappers/include/makeinclude/platform_macros.GNU as usual for VxWorks. See the g++/VxWorks platform file for more information.

  • Create an ACE_wrappers/ace/config.h file that looks something like the following.
    #if defined (_MSC_VER)  ||  defined (__BORLANDC__)
    # include "ace/config-win32.h"
    #else
    # include "ace/config-vxworks5.x.h"
    #endif

  • Set your ACE_ROOT, CPP_LOCATION, WIND_BASE, and WIND_HOST_TYPE environment variables.

  • Build for NT, then build for VxWorks.

A few additional Windows Notes, from Paul von Behren:

  • Cygnus has created a Win32 API which is compatible with a "generic" Unix environment. Using this library, they have ported a large collection of GNU tools to WinNT/95 - including a port of gcc/g++. See http://www.cygnus.com/misc/gnu-win32/ A related link is ftp://ftp.cygnus.com/pub/gnu-win32/latest/

  • To set up the command-prompt build environment, run Tornado/host/x86-win32/bin/TorVars.bat. This is done implicitly within the Tornado IDE.

  • To run ace_ld, you still need perl installed - see http://www.activestate.com/software/default.htm for Windows perl.

  • The Tornado IDE will use a standard Makefile for project builds, but does not have a GUI interface for managing the Makefile. By default, it will use rules from Makefile in the current directory and you can configure it to add certain Makefile targets to the project. If you have ACE_ROOT defined before starting Tornado, you can specify an ACE Makefile as a Tornado target and Tornado will then call make from the menu.

And Chris Ryan's instructions for building for VxWorks targets on Windows NT hosts:
  1. Path setting that seems to be working is:

          /tornado/host/x86-win32/bin:
    /tornado/host/x86-win32/lib/gcc-lib/i386-wrs-vxworks/cygnus-2.7.2-960126:
    /tornado/host/x86-win32/i386-wrs-vxworks/bin:
    /ace/ace_wrappers/bin:
    /gnuwin32/b18/H-i386-cygwin32/bin:
    /gnuwin32/b18/tcl/bin:
    /WINNT/system32:
    /WINNT:
    /WINNT/system32/nls/ENGLISH:
    /bin
    Other environment variables:

          WIND_BASE=/tornado
    SHELL=/bin/sh.exe
    TERM=pcbios
    TAO_ROOT=/ace/ACE_wrappers.vxworks/TAO
    CPP_LOCATION=/Program Files/DevStudio/VC/bin/CL.EXE
    GCC_EXEC_PREFIX=/tornado/host/x86-win32/lib/gcc-lib/
    WIND_HOST_TYPE=x86-win32
    ACE_ROOT=/ace/ACE_wrappers.vxworks
  2. /tornado is the root of the Tornado install ($WIND_BASE).
  3. /gnuwin32 is the root of a Cygnus GNU download and install.
  4. /bin content is:

          aced.dll
    cygwin.dll
    perl.exe
    rm.exe
    sh.exe
    true
    aced.dll is produced in an ACE NT source tree according to documented procedure for Windows VC++ ACE build. cygwin.dll is from the Cygnus GNU software download and install.
  5. Basically, follow documented procedure for ACE build/install on UNIX platform. Create a $ACE_ROOT/ace/config.h that looks like:

          #include "config-vxworks5.x.h"
    And create a $ACE_ROOT/include/makeinclude/platform_macros.GNU that looks like:

          WIND_BASE = /tornado
    WIND_HOST_TYPE = x86-win32
    CPU = I80486
    include $(ACE_ROOT)/include/makeinclude/platform_vxworks5.5.x.GNU
  6. When using cygnus windows GNUTools on WinNT you have to start make with "--unix" option, otherwise WinNT shell cmd.exe is responded and not sh.exe, i.e.,
     make --unix static_libs=1

TAO on NT Tornado host, VxWorks target.

  1. Build ACE and TAO_IDL in the NT tree as already documented. Be sure to build ACE's gperf on NT, in ACE_wrappers/apps/gperf/src.

  2. Build $TAO_ROOT/tao
          CPP_LOCATION=/Program Files/DevStudio/VC/bin/CL.exe
    cd $TAO_ROOT/tao
    /gnuwin32/b18/H-i386-cygwin32/bin/make
  3. Build orbsvcs.
          CPP_LOCATION=/Program Files/DevStudio/VC/bin/CL.exe
    cd $TAO_ROOT/orbsvcs/orbsvcs
    /gnuwin32/b18/H-i386-cygwin32/bin/make
  4. Build $TAO_ROOT/tests

Jaffar Shaikh's Notes for Building ACE and TAO for VxWorks on NT host

Scenario: I was building the ACE and TAO for VxWorks on NT. The target system was a PPC860 based chassis and another a NT host based card.

Host System:

NT 4.0 workstation with 128 M RAM, 266MHz Pentium.

Software Needed For Building TAO

1) Active State's ActivePerl from http://www.activestate.com/software/default.htm

2) Tornado 2.2.1 from Windriver.

3) Cygwin GNU to build TAO. It is available for NT as a freeware from the Cygwin site

The Cygwin Make (version 3.75) can only build the TAO not the Tornado II make (version 3.74)

Environment Variables:

On NT the environment Variables are set as follows, (from Control Panel-> System -> Environment)

I added following Environment variable entries to PATH

C:/Perl/bin/;

C:/tornado/host/x86-win32/bin;

C:/tornado/host/x86-win32/powerpc-wrs-vxworks/bin;

C:/tornado/host/x86-win32/lib/gcc-lib/powerpc-wrs-vxworks/cygnus-2.7.2-960126;

C:/Corba/Ace_wrappers/bin;

C:/Cygwin/bin;

C:/Cygwin/usr/bin;

C:/bin

Additional Environmental variables and the values,

CPU=PPC860

LD_LIBRARY_PATH=

SHELL=/bin/sh.exe

ACE_ROOT=/Corba/ACE_wrappers

WIND_BASE=/tornado

SHELL=/bin/sh.exe

TERM=pcbios

TAO_ROOT=/Corba/ACE_wrapper/Tao

CPP_LOCATION=/Program Files/Microsoft Visual Studio/VC98/Bin/CL.exe

GCC_EXEC_PREFIX=/tornado/host/x86-win32/lib/gcc-lib/

WIND_HOST_TYPE=x86-win32

PERL_PATH=/perl/bin/perl.exe

Directories of importance

C:/Corba <-- Ace_wrappers (uzipped)

C:/tornado <-- Tornado installed

C:/Perl <-- Perl installed

C:/Cygwin <-- Cygwin installed

C:/bin <-- Copy these files,

Ace.dll, <-- After you build Ace

gperf.exe <-- After you build gperf

Cygwin1.dll, <-- After you install Cygwin

perl.exe, <-- After you install Perl

rm.exe <-- After you install Cygwin

sh.exe <-- After you install Cygwin

true <-- After you install Cygwin

Create Files

1) C:/Corba/ACE_Wrappers/ace/config.h

with entry

#if defined (_MSC_VER) || (__BORLANDC__)

#include "ace/config-win32.h"

#else

#define ACE_HAS_IP_MULTICAST

#include "ace/config-vxworks5.x.h"

#endif

2) C:/Corba/ACE_wrappers/include/makeinclude/platform_macros.GNU

WIND_BASE = /tornado

WIND_HOST_TYPE = x86-win32

include $(ACE_ROOT)/include/makeinclude/platform_vxworks5.5.x.GNU

ACE_COMPONENTS=FOR_TAO (you may choose this option to build ACE library that supports TAO)

Steps to Build

1) Build Ace.dll under NT

In MS Visual C++ open C:/Corba/ACE_wrappers/ace.sln And build Ace DLL

Copy Ace.dll in C:/bin

2) Build gperf utility under NT

In MS Visual C++ open C:/Corba/ACE_wrappers/apps/gperf/src/gperf.sln. Build gperf.exe

Copy gperf.exe to C:/bin

3) Mount Directries in Cygwin

Click on Cygnus Solutions -> Cygwin Bash Shell

Mount following directories by using mount command.

create respective directories first then use mount command

e.g. Create /Corba directory then use $mount -s "C:/Corba" /Corba

C:/Corba mount to /Corba

C:/tornado mount to /tornado

C:/Perl mount to /perl

C:/Cygwin mount to /cygwin

C:/bin mount to /bin

C:/Program Files mount to /Program Files

4) Build ACE in Cygwin

$cd /Corba/ACE_wrappers/ace

$make static_libs=1

This will build your ace library libACE.a for VxWorks. If you use option shared_libs=1 then the build will be libACE.so. The other options are same as follows.

5) Build TAO in Cygwin

$cd $TAO_ROOT/tao

$make debug=0 optimize=1 static_libs_only=1 minimum_orb=1

for shared libs use shared_libs=1

The minimum Tao does not have following components,

Dynamic Skeleton Interface

Dynamic Invocation Interface

Dynamic Any

Interceptors

Interface Repository

Advanced POA features

CORBA/COM interworking

You may play around with above options to find suitable build for your needs. For example when you give option debug=1 all the debug symbols will be created and the build will huge in size. The debug symbols are necessary when you want to debug your code.



Building and Installing ACE Network Services

The following explains how to build the ACE network services on UNIX and Win32.

Building and Installing ACE Network Services on UNIX

Building and installing ACE Network Services on UNIX is relatively simple (the process for Win32 is different). Here's what you need to do:

  1. Build and install ACE on UNIX as described earlier. If ACE is built at the root of the ACE source tree (and ACE has been ported to your platform, of course) the netsvcs static and shared object libraries should be built automatically. In addition, the server driver program (main) contained in $ACE_ROOT/netsvcs/servers/main.cpp should also be compiled and ready to run.

  2. Set your LD_LIBRARY_PATH environment variable to where the binary version of the ACE netsvcs library. For example, you probably want to do something like the following


    % setenv LD_LIBRARY_PATH $ACE_ROOT/ace:$ACE_ROOT/lib:$LD_LIBRARY_PATH

  3. By default, if the shared object library is built, the services are linked into the main driver program dynamically. To specify which services should be linked in and executed, edit the $ACE_ROOT/netsvcs/servers/svc.conf file. During your editing, you should update information (such as the default service port numbers) that affects the initialization of services in this file. Refer to the Service Configurator documentation to learn how the configuration file is parsed and how the services are dynamically linked and executed. In addition, refer to the Network Services documentation to learn more about how to configure each network service.

  4. If you only want to link the services statically, simply remove or rename the svc.conf file.


Building and Installing ACE Network Services on Win32

Once again, there are supplied project for Visual C++ 7.1 or later for the Network Services.


Building and Installing the ACE_SSL Library

The first step for all platforms is to build and install the OpenSSL distribution. The ACE_SSL library must then be built according to the instructions below.

Unix

  1. Make sure the OpenSSL header file directory is in your compiler's include path, and that OpenSSL libraries are in your library link/load path (e.g. LD_LIBRARY_PATH). If you installed OpenSSL into a set of directories unknown by the compiler, set the SSL_ROOT environment variable to point to the top level directory of your OpenSSL distribution, i.e. the one containing OpenSSL's include and lib directories.
  2. Build ACE as described above. When building ACE, add ssl=1 to your make command line invocation, or add it to your platform_macros.GNU file.
  3. Build the ACE_SSL library in the $ACE_ROOT/ace/SSL directory. The ACE_ROOT environment variable should be set prior to this point.

Microsoft Visual Studio

  1. Set the SSL_ROOT environment variable to the location of the directory containing the OpenSSL inc32 and out32dll directories.
  2. Add ssl=1 to your MPC $ACE_ROOT/bin/MakeProjectCreator/config/default.features or $ACE_ROOT/local.features file, and re-run MPC to add support for building the ACE_SSL library to your MSVC++ workspaces and projects.
  3. Open the ACE.sln solution, and refer to the ACE build and installation instructions above for details on creating a config.h configuration header for this platform. Once the config.h file has been created, build the ACE_SSL project.

Borland C++

Support for building ACE's ACE_SSL library and TAO's SSLIOP pluggable protocol with Borland C++ does exist.

  1. Set the SSL_ROOT environment variable to the location of the directory containing the OpenSSL inc32 and out32 directories.
  2. Add ssl=1 to your MPC $ACE_ROOT/bin/MakeProjectCreator/config/default.features or $ACE_ROOT/local.features file, and re-run MPC to add support for building the ACE_SSL library to your Borland C++ makefiles.
  3. Build ACE and TAO.

Building and Using GUI Reactors Libraries

There is a general method for building and using ACE_Reactors for various GUI libraries.

Building GUI Reactor Library

  1. Try to generate build files using MPC. Inspect the output of MPC to find out which features are necessary to build given reactor. Add these features to ACE_wrappers/bin/MakeProjectCreator/*.features file, or pass them directly to MPC using -features command line option. For example, for FlReactor the procedure consists of five steps
    1. In the first pass one gets that x11 (X11 libraries) is missing.
      $ mwc.pl -type gnuace Skipping ACE_FlReactor (ace_flreactor.mpc), it requires x11.
    2. Ensure that X11 libraries are installed, then pass x11=1 feature to MPC.
    3. In the second pass one gets that gl (OpenGL library) is missing.
      $ mwc.pl -type gnuace -features x11=1 ace.mwc Skipping ACE_FlReactor (ace_flreactor.mpc), it requires gl.
    4. Ensure that OpenGL libraries are installed, then pass gl=1 feature to MPC.
    5. In the third pass one gets that fl (Fast Light Toolkit) is missing.
      $ mwc.pl -type gnuace -features x11=1,gl=1 ace.mwc Skipping ACE_FlReactor (ace_flreactor.mpc), it requires fl.
    6. Ensure that Fast Light Toolkit libraries are installed, then pass fl=1 feature to MPC.
    7. In the fourth pass one gets that ace_flreactor feature is missing
      $ mwc.pl -type gnuace -features x11=1,gl=1,fl=1 ace.mwc Skipping ACE_FlReactor (ace_flreactor.mpc), it requires ace_flreactor.
    8. Allow MPC to generate makefiles for FlReactor by setting ace_flreactor=1 feature.
    9. In the last pass one obtains files for building FlReactor.
      $ mwc.pl -type gnuace -features x11=1,gl=1,fl=1,ace_flreactor=1 ace.mwc
    Currently to simplify MPC generation some of features are turned on by default in ACE_wrappers/bin/MakeProjectCreator/global.features. For examples to generate files related with Fl one has to provide only fl=1 feature. To obtain a more fine grained controll over MPC generation process one may modify ACE_wrappers/bin/MakeProjectCreator/*.features files.
  2. Required build files are generated now, it is enough then to invoke build tool. For example for under MPC::gnuace one has to call make fl=1. For MPC::vc7 target all features are encoded in generated project files, thus it is enough to compile ACE using MSVC.
The build procedure leads to a specific GUI Reactor library. For example, for Qt and Linux one gets libQtReactor.so, while for Windows the results are shared QtReactor.dll and import QtReactor.lib libraries or their variants depending on build options. When compiling TAO also GUI related libraries are created like libTAO_QtResource.so.

Using GUI Reactor Library

Here one has at least three use cases:
  1. Applications with their own build system. To use ACE support for GUI one has to include specific GUI headers and link with specific ACE_[GUI]Reactor library. When using TAO support for GUI one has also to link with specific TAO_[GUI]Resource library.
  2. Applications with build system using MPC. In general, it is better to create specific base projects for using ACE GUI support in such application. Base projects provided by ACE ACE_wrappers/bin/MakeProjectCreator/[ace,tao]_[gui][reactor,resource].mpb may be an examples of how to do this.
  3. Internal ACE applications like tests or examples. MPC project for internal ACE application using GUI support should be derived from ace_[gui]reactor.mpb base projects. To employ TAO support for GUI one should derive the project from tao_[gui]resource.mpb These base projects ensure that all necessary libraries are linked to the application, specifies features necessary to build a project and moreover impose a build order consistant with ACE. For example, the application project using XtReactor should be derived from ace_xtreactor.mpb.

Notes on specific GUI Reactors

  • QtReactor
  • The build is controlled by ace_qtreactor [1 by default] feature. To build this reactor one has to provide feature qt [0 by default] (Qt library). Moreover, it is assumed that Qt was installed in a standard way and QTDIR points to Qt installation folder. To build TAO support for Qt one should use tao_qtresource [1 by default] feature.
  • XtReactor
  • The build is controlled by ace_xtreactor [1 by default] feature. To build this reactor one has to provide the following features: x11 [1 by default] (X11 libraries) and xt [1 by default] (X11 Toolkit). Moreover, some examples and tests related with XtReactor needs additionall features namely either motif [0 by default] (Motif/Lesstif libraries) or athena [0 by default] (Athena widgets). To build TAO support for xt one should use tao_xtresource [1 by default] feature.
  • TkReactor
  • The is controlled by ace_tkreactor [1 by default] feature. To build this reactor one has to provide tk [0 by default] (Tcl libraries) feature. To build TAO support for Tk one should use tao_tkresource [1 by default] feature.
  • FlReactor
  • The build is controlled by ace_flreactor [1 by default] feature. To build this reactor one has to provide the following features: x11 [1 by default] (X11 libraries), gl [1 by default] (OpenGl) and fl [0 by default] (Fast Light Toolkit). To build TAO support for Fl one should use tao_flresource [1 by default] feature. MS Windows: The paths to fltkdll and OpenGL32 libraries, as well as fltk header files should be setup manually for succesfull compilation. Obviosuly, x11switch is ignored for this platform.

Installation Notes

  • Windows (Windows NT, 2000, XP, 2003, etc., and Windows '9x/ME)

    Please see the Non-static ACE_Object_Manager discussion below.

  • Windows CE

    Take a look at (CE-status.txt) for up-to-date information about ACE on Windows CE and Windows Mobile.

  • Solaris 7, 8, 9, and 10 using Sun ONE Studio 8 (C++ 5.5) or higher, Centerline C++ 2.x, GNU gcc 2.95 and later.

    All the source code and tests should build and run without any problems on Solaris 7, 8, and 9 platforms using the above Sun C++ compilers. There are likely to be build problems with older versions or different patchlevels of Sun C++. Likewise, on Solaris with g++ you may need to use GNU as instead of /usr/ccs/bin/as, if you want -gstabs+ and -pipe support. Thanks to Susan Liebeskind <shl@janis.gtri.gatech.edu> for providing the following useful information:

    By default, ACE uses both the Solaris and POSIX thread interface. To disable use of the Solaris thread interface, add -D_POSIX_PTHREAD_SEMANTICS to the CFLAGS in your $(ACE_ROOT)/include/makeinclude/platform_macros.GNU. See the Solaris Intro (3) man page for more information.

    To disable ACE thread support completely, build with the threads=0 make flag. See the Makefile Flags section below for more information on make flags.

    If you use g++ on Solaris 7, you might need to rebuild it on a SunOS 5.7 (Solaris 7) host. Some versions of g++ provide replacements for system header files. The replacements on older SunOS systems are not compatible with the SunOS 5.7 system headers.

  • AIX

    ACE is currently supported on AIX 5.2 and higher using IBM's Visual Age C++ 6 and XL C++ 7 compilers as well as g++ 3.2.

    The ace/config-aix-5.x.h file is recommended for all compilers on all AIX 5L versions. The Asynchronous I/O functionality is disabled by default because its use requires the system administrator to explicitly enable it in the kernel using SMIT. If this has been done and you want to enable asynchronous I/O support in ACE, add: #define ACE_HAS_AIO_CALLS to your config.h file before including ace/config-aix-5.x.h.

    The Visual Age 6.0.0.3 and 6.0.0.4 do have some bugs that makes them unusable for building TAO. TAO has been tested with 6.0.0.12 and had no problems with that version.

    For your platform_macros.GNU file, you should use platform_aix_ibm.GNU when building ACE with any of the IBM compilers and platform_aix_g++.GNU when building ACE with g++.

    BTW, here's a technique from Rob Jordan <jordan@hursley.ibm.com> that can reduce the size of the ACE libraries by about one third, and can also be applied to applications. It works by optimising the sharing of template functions, which are created in an "unusual" way under AIX. It also speeds up compilation.

    Here's how to optimise the ACE library generation:

    Look at the ace/GNUmakefile.ACE in $ACE_ROOT/ace. Create a file called ACE_All_Src.cpp, and add a line to #include each of the source files listed under FILES= in the GNUmakefile. Create a file called ACE_All_Tmp.h and add a line to #include each of the .h files listed under TEMPLATE_FILES= in the GNUmakefile. Now update the GNUmakefile so that FILES=ACE_All_Src and TEMPLATE_FILES=ACE_All_Tmp.

  • Linux

    ACE has been ported to Linux on Intel, Alpha, and PowerPC platforms. If you use a RedHat 5.x distribution, it's best to use RedHat 5.1 or later. ACE works without any modifications on RedHat 5.1 and later, and on Debian 2.1 on both Intel and Alpha. Use the platform_linux.GNU and ace/config-linux.h in your platform_macros.GNU and config.h files, respectively. The same files can be used on PowerPC, with LinuxPPC 1999 (R5), with glibc 2.1.1.

    If you run out of memory, it's easy to add virtual memory on Linux. Please see the mkswap man page. You'll need at least 256 to 300 Mb of virtual memory (RAM + swap) to compile all of ACE+TAO. The System Resource Requirements section has some suggestions on how to reduce the memory requirement.

    The glibc 2.0 dynamic loader isn't thread safe. If you want to use the Invocation API you'll have to set LD_BIND_NOW=true. If you want to use dlopen, you should use RTLD_NOW. The dynamic loader in glibc 2.1 is thread safe.

    NOTE: The TAO NameService uses IP multicasting by default, though it is not required. IP multicast on Linux requires the following:

    • Enable IP multicast in the Linux kernel. It is enabled in the default RedHat 5.1 kernel. In older distributions, you can enable it by rebuilding your kernel with CONFIG_IP_MULTICAST enabled.

    • Enable IP multicast in ACE. It is enabled by default in ace/config-linux-common.h. If you don't use IP multicast, add #define ACE_HAS_IP_MULTICAST 0 to your ace/config.h before building ACE.

    • There must be a network interface that is up and supports multicast. If you have linuxconf, it's easiest to use that to add a network route for multicast (224.0.0.0) on one of your network interfaces, such as eth0. If you don't have or use linuxconf, try adding a multicast routing table entry using something like this:

                   # route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

    Some of the ACE tests fail on older, pre-glibc2 Linux platforms, such as RedHat 4.2. The problems are with threads and thread-specific storage.

  • SCO UNIX

    ACE has been ported to SCO UNIX using the GNU g++ 2.7.2 compiler. Arturo Montes <mitosys@colomsat.net.co> maintains this code. In addition, he also maintains a version of FSU pthreads.

  • SGI IRIX 5.x and 6.x

    ACE used to build fine using the SGI C++ and GNU GCC compilers for IRIX 5.x. It has been ported to IRIX 6.x using the SGI MipsPro 7.1 C++ compiler; be aware that in IRIX 6.2 there is a number of patches that have to be installed and exceptions appear to fail with the O32 ABI. Please check the config files for the details.

  • OSF/1 3.2 and 4.0 (a.k.a. Digital UNIX 4.0)

    The Digital UNIX C++ 5.4 through 5.7 compilers have problems with ACE's templates. They compile the lib and most of the test programs, although they warn about template usage. Most tests run, some dump core. If you use a 5.x version of cxx, be sure to set the CXX_VER variable to CXX_5, either on your make command line or in an environment variable. The ACE Makefiles assume by default that the cxx version is 6.x or later.

    CXX 6.0 and 6.1 are much improved over 5.x: V6.0-020, V6.1-025, and later build all of ACE cleanly. All of the tests in $(ACE_ROOT)/tests run successfully with CXX 6.0 and CXX 6.1. Please note that problems have been reported with some versions of CXX 6.1, notably versions -021 and earlier. It's best to use V6.1-022 or later.

    NOTE: if you use Digital UNIX 4.0f or later, you must use ace/config-tru64.h instead of ace/config-osf1-4.0.h. ace/config-tru64.h can be used for all supported compilers on any version of Digital UNIX after and include 4.0. And, with 4.0f and later when using Digital CXX, you must use include/makeinclude/platform_tru64_cxx.GNU instead of include/makeinclude/platform_osf1_4.0.GNU.

  • FreeBSD

    FreeBSD is a fast evolving platform. However, it has the advantage of having standard releases. At this moment, ACE is only perodically tested against -stable (3.1R) and we rely a lot on FreeBSD users' feedbacks.

    Notice that on older FreeBSD, ld.so only looks for so libraries with version number appended. ACE makefiles create symlinks for most shared libraries if versioned_so is defined to 1 in $ACE_ROOT/ace with appropriate ACE version. However, this does not work for libACE.so itself so you have to create it manually (If you figure out how to do this, please let us know) like this:

    ln -sf $ACE_ROOT/ace/libACE.so $ACE_ROOT/ace/libACE.so.4.5

    On newer FreeBSD (3.0 or later,) this is no longer necessary.

  • NetBSD

    Like older FreeBSD, NetBSD's ld.so also requires versioned .so files.

  • OpenBSD

    ACE has been ported to OpenBSD 3.1 and GNU g++ 2.95.3.

    As with FreeBSD and NetBSD, OpenBSD requires versioned .so files. This is currently handled by the build files and no additional work is needed.

    ACE has been ported to OpenBSD with and without pthreads enabled. When using pthreads, though, C++ exceptions must be disabled. This is a known problem with the current release of OpenBSD (see www.openbsd.org, bug #1750). ACE emulated exceptions work fine.

    Compiling TAO may require the user data segment size restrictions and possibly other options to be increased. This is done by modifying the default user class in /etc/login.conf or by adding a new class and modifying the master passwer file accordingly.

  • UnixWare

    Steve Huston <shuston@riverace.com> has ported ACE to work with UnixWare 2.01 and g++.

    Ganesh Pai <gpai@voicetek.com> subsequently did the port for version 2.1.2, also with g++.

    Phil Mesnier < mesnier_p@ociweb.com> updated the port to support UnixWare 7.1.0, with help from Michael Meissnitzer < michael.meissnitzer@siemens.at>, Christian Klepp < christian.klepp@siemens.at > and Engelbert Staller < engelbert.staller@siemens.at> Building ACE (and TAO) on Unixware 7.1.0 requires a very specific g++ build environment. In particular, you must build and install g++ 2.95.2, along with binutils 2.9.1. The order (and the declaration of configuration) is extremely important. Using the gcc compiler provided on the Skunkware CD on a pentium system, here is the recipe I used to build a working environment (as root):

      mkdir /usr/local/newgnu
    < ftp and untar binutils-2.9.1 >
    < ftp and untar gcc-2.95.2 >
    mkdir -p build/binutils build/gcc
    cd build/binutils
    ../../binutils-2.9.1/configure i386-sco-sysv4
    gmake # takes a long time
    gmake install # this creates /usr/local/i386-sco-sysv4/...
    mkdir /usr/local/i486-pc-sysv5/bin
    cd /usr/local/i486-pc-sysv5/bin
    for a in /usr/local/i386-sco-sysv4/bin/*; do ln -s $a .; done
    #links all the newly installed utilities

    cd /usr/local/newgnu/build/gcc
    ../../gcc-2.95.2/configure --with-gnu-as --with-gnu-ld
    gmake bootstrap # takes a long time
    gmake install
    mkdir /usr/local/i586-UnixWare7.1.0-sysv5/bin
    for a in /usr/local/i386-sco-sysv4/bin/*; do ln -s $a .; done
    Once done, ACE and TAO will successfully build and link.

  • LynxOS

    ACE builds and runs properly on LynxOS 4.0 for Intel and PowerPC targets. LynxOS 2.x and 3.x are no longer supported. If you run out of memory on LynxOS, these might help:

    • Increase the limits in /etc/starttab, then reboot system. We use these limits:
      # Data, stack, and core file limits (in Kbytes)
      80000
      16000
      102400

    • Enable or expand virtual memory, with something like:
      # mkcontig /swap 320
      # prio 17 vmstart /swap
      See the mkcontig and vmstart man pages, and /bin/rc.

    Please see the comments in the ACE platform_lynxos.GNU file for information on, and an example of, tailoring for your particular platform.

    NOTE: if you want to use IP multicast on LynxOS, be sure to add this line to your /net/rc.network, and reboot:


    /bin/route add "224.0.0.0" "$my_name"
  • VxWorks

    David Levine <levine@cs.wustl.edu> has ported ACE to VxWorks 5.2/5.3/5.3.1/5.4 with the GreenHills 1.8.8/1.8.9, g++ and diab compilers that are distributed with VxWorks/Tornado. It is not possible to use VxWorks 5.4 and earlier with ACE anymore because the compilers delivered with 5.4 and earlier don't support the C++ features ACE needs.

    At this moment Remedy IT is upgrading and stabilizing ACE/TAO support for Tornado 2.2/VxWorks 5.5.1. Since the existing support for previous VxWorks version has been unsupported and broken for some time and most (potential) users seem to have upgraded to VxWorks 5.5.1 no backporting effort is done. See also here.

    Tornado 2.2/VxWorks 5.5.1 support IP multicast. That is not enabled by default in ACE for VxWorks, because it depends on your kernel configuration. To enable it, add #define ACE_HAS_IP_MULTICAST to your ace/config.h.

    NOTE: In order for the ACE Broadcast and Multicast tests to work the VxWorks kernel should receive the packages it sends out locally. By default this is not supported. To enable this behaviour you need to include the IFF_SIMPLEX flag for your required NIC driver. See the following Windriver SPR 4542 for more information.

    In addition to all of the other benefits of ACE, it helps work around some deficiencies with VxWorks. The problems are:

    1. The program entry point cannot be called "main" with g++. ACE renames it to "ace_main" (configurable via ACE_MAIN) on VxWorks. While this may seem trivial, it is important with legacy code. ACE itself ran into this problem.

    2. argc/argv isn't used with VxWorks entry points. ACE provides a wrapper function that transparently converts shell command line arguments to argc/argv form. See below for details.

    Please note that ACE uses one of the spare fields in the Wind River task control block, spare4, for thread-specific storage. This field is specified in only one place, in ace/OS_NS_Thread.inl, so it can easily be changed to one of the other spare fields, if necessary.

    ACE destroys dynamically allocated singletons in the ACE library. But, they may not properly destroy some static objects. If you have trouble running a program multiple times, it may be necessary to unload the module, using unld, and reload it between runs. Alternatively, you could try calling cplusDtors and then cplusCtors between runs.

  • MVS OpenEdition

    All of ACE has been ported to OpenEdition by Chuck Gehr <gehr@sweng.stortek.com>. The ACE library, all the tests and most of the examples and apps build clean. There are still some problems that need to be ironed out:

    MVS does not support the dynamic linking dl...() calls that the Service Configurator uses to dynamically link services at run time. As a result, all the examples and apps that use a svc.conf file (for dynamically configuring service objects) do not work, however, most of these apps can be built/run statically. Also, the Svc_Conf_l.cpp and Svc_Conf_y.cpp files are generated using flex and yacc on a ascii (not ebcdic) machine and as a result they don't work very well with ebcdic svc.conf files. We should be able to regenerate these files on MVS but MVS doesn't have flex. This is something that needs to be done.

    Some of the tests do not execute properly. This is a minority and over time the goal is to get to 100%.

    The make scheme for some of the apps still doesn't work perfectly on MVS. This is mainly due to the way shared libraries are handled on MVS. See additional build tips for MVS for more on this.

  • QNX Neutrino

    ACE has been ported to QNX Neutrino 2.0. We cross-compile for Neutrino on a QNX4 host using g++ 2.8.1, using the ace/config-qnx-neutrino.h and include/makeinclude/platform_qnx_neutrino.GNU configuration files. Many of the ACE tests succeed, though some fail. As the porting effort progresses, we hope to eliminate these failures. If you know of fixes, please send them to us.

  • QNX RTP

    ACE has been ported to QNX RTP . We compile for QNX RTP using the GCC compiler shipped with the distribution, using the ace/config-qnx-rtp.h and include/makeinclude/platform_qnx_rtp_gcc.GNU configuration files. Many of the ACE tests succeed, though some fail. As the porting effort progresses, we hope to eliminate these failures. If you know of fixes, please send them to us.

    WARNING: Under the current version of QNX RTP ACE fails if compiled with inline=0 .

  • RTEMS

    The support for RTEMS has been reviVed from version x.5.4. This version was the first version that build again out of the box on RTEMS. Compilation and testing was done for RTEMS with and without networking support. The ACE GNU makefiles do automatically detect whether networking support is available or not. Besides the standard config.h/platform_macros.GNU file you will need to set RTEMS_MAKEFILE_PATH to point to the location of your RTEMS installation, see below for an example.

    export RTEMS_MAKEFILE_PATH=/opt/rtems/CPU-rtems/BSP

    When building without network support you will need the ace_for_tao subsetting functionality enabled. For this add ace_for_tao = 1 to your bin/MakeProjectCreator/config file and regenerate the GNU makefiles as described here.

  • PharLap ETS

    ACE has been ported to Ardence's PharLap ETS version 13. The port was originally done for Pharlap 9.1 and MSVC 6, but has been updated to Pharlap ETS 13 with Visual Studio .NET 2003 (VC7.1).

    To build for PharLap, you'll need to use MPC to generate .sln/.vcproj files with the ETS configurations. For example:

    cd /ace/ACE_wrappers
    perl bin/mwc.pl -type vc71 -relative ACE_ROOT=C:/ace/ACE_wrappers -relative TAO_ROOT=C:/ace/ACE_wrappers/TAO -value_template configurations='"ETS Debug"' -value_template configurations+='"ETS Release"' -name_modifier *_ETS TAO_ACE.mwc
    That command will generate the same .sln and .vproj files as for regular Windows builds with VC7.1, but they'll have names with an _ETS suffix and will include the "ETS Debug" and "ETS Release" configurations.

    After generating the needed VC7.1 files, use the ace/config-pharlap.h configuration file, and the instructions for building on Windows. Building the ACE library is the same as for regular Windows platforms, except you choose one of the PharLap ETS configurations to build within Visual Studio. For an example of how to build binaries, see the tests directory. The tests_pharlap_msvc.lnk file is a LinkLoc commands file that the ACE tests are built with. It is likely that local sites may need to adjust this file for their target environment.

    When executing programs on the target system, it is possible that not all of the VC++ support DLLs are resident on the target. In particular, the debug-supporting DLLs may not be present. If you require these, be sure to add those needed. For example, on the standard LabVIEW RT 8.2 distribution using Pharlap ETS, the following DLLs must be copied to the target before being able to run Debug programs:

    • msvcp71d.dll
    • msvcr71d.dll

    To build ACE for National Instruments' LabVIEW RT, use the Pharlap ETS information above, but add the following line to your config.h file:

          #define ACE_PHARLAP_LABVIEW_RT
    This setting makes the necessary adjustments for LabVIEW's implementation of Pharlap ETS. By default, the ACE tests log their output/results to the system console on Pharlap ETS. To change this behavior and make the test output log to a file in the log directory under the current working directory while executing, add the following line to your config.h file:
          #define ACE_PHARLAP_TESTLOG_TO_FILE
    This setting has no affect on TAO tests which always write test output to stdout.
  • Mac OS X (10.2.x)

    ACE builds and runs on Mac OS X 10.2.x, but the following are needed to build it:

    1. The latest version of the Apple Developer Tools (December 2002)

    2. The dlcompat library (obtained either through Fink or SourceForge)

    When creating $ACE_ROOT/ace/config.h for Mac OS X, you need to add the following if you obtained dlcompat via Fink:

    #define ACE_NEEDS_DL_UNDERSCORE

    You'll also need to do:

    setenv DYLD_LIBRARY_PATH $ACE_ROOT/ace:$ACE_ROOT/lib

    setenv MACOSX_DEPLOYMENT_TARGET 10.2

    Currently, all ACE tests pass except Process_Mutex_Test and MEM_Stream_Test. Also, Mac OS X doesn't yet support *nix aio_* calls, and ACE does not know anything about Mach.

    The work to port ACE to Mac OS X was done by several people, John Zorko <j.zorko@att.net> is only one of them.


Compiling ACE with GNU g++

If you use the GNU GCC g++ compiler please note the following:
  • ACE/TAO needs g++ 2.95.x or better. Older versions are not usable anymore

  • Make sure to update your gcc config.status file. This file is produced when installing gcc; it specifies where to install the binary files that gcc uses. For example, it specifies whether to use Solaris's /usr/ccs/bin binary utils or GNU binary utils. The config.status file is an output of the gcc configure script; it is preferable to use the --prefix option to configure instead of hacking its output.

  • If you are getting weird link errors when building libACE on Solaris you are probably using the GNU linker. Try using the Sun linker (/usr/ccs/bin/ld) instead. Note that gcc first looks for the GNU linker if it is installed along with gcc. The only way to not use the GNU linker is to delete it from the installation or to build your own compiler with no linker. Be aware that you still need the libraries and includes of gcc.

    NOTE: if you do use the GNU linker, you might need to change the -G flag to -shared in the SOFLAGS definition in your include/makeinclude/platform_macros.GNU.

  • Don't get too confused about contradictory statements in the gcc documentation. It was written by different people...

  • Make sure that the linker invoked by gcc produces code that initializes static objects. Please see gcc's documentation for using collect2.


What Do I Need to Build for TAO?

Toshio Hori <toshi@etl.go.jp> provided these suggestions on building just what's needed for (a subset of) TAO:

I usually make:

    $ACE_ROOT/ace,
$ACE_ROOT/apps/gperf,
$TAO_ROOT/tao,
$TAO_ROOT/TAO_IDL, and
$TAO_ROOT/orbsvcs/orbsvcs
and the whole make takes less than an hour on my Solaris 7 for intel, Pentium-III/550MHz, 256MB memory, 512MB swap machine. (Top secret: I renice the 'make' process to the highest priority, -20... ;-) To save time and space, I set
    TAO_ORBSVCS = Naming Time Trader ImplRepo
in $ACE_ROOT/include/makeinclude/platform_macros.GNU also. See TAO's orbsvcs library customization instructions for more information.


System Resource Requirements

The amount of system resources required to build ACE and TAO varies greatly. The required system resources are influenced by OS and compiler platform, build options, and component configurations. As a rough guide, the typical peak memory requirement can be well over 512 MB (notably, for TAO's orbsvcs). Depending on your OS and compiler configuration, an entire build of ACE and TAO can use well over 4 GB of disk space. It's usually not necessary to build all of ACE and TAO, though.

Much less disk space is required for just the libraries. For example, see the ACE library subset sizes.

If you run out of memory when building, you might consider trying some or all of these suggestions:

  • Enable or increase virtual memory. If you're on a Linux or LynxOS platform, please see the appropriate sections above.

  • Disable/enable optimization and/or debugging. See the Makefile Flags discussion for information on how to do that via ACE's Makefiles.

  • If you're using g++, try removing -pipe from CFLAGS in your include/makeinclude/platform_macros.GNU file.

  • Restrict the components that you build. For ACE and TAO, see the discussion of ACE_COMPONENTS in the ACE subsets page. For TAO's orbsvcs, see the discussion of TAO_ORBSVCS in orbsvcs Library configuration information.

    If disk space is a problem, disabling debugging should greatly reduce object code, and therefore, library size. This is especially true with g++.

    Toshio Hori <toshi@etl.go.jp> provided these tips for reducing disk space usage:

    To save space on a Unix machine, I usually run 'find . -name /*.sln -o -name /*.vcproj -o -name /*.bor | xargs rm -f' in $ACE_ROOT at first after I untar the distribution. They are meaningless in my environment (Files named '*.sln' and '*.vcproj' are used for MSVC++ and files named '*.bor' are for Borland C++ Builder.)

    Finally, to save space, may want to run 'make clean' after 'make'. It removes generated object files and leaves libraries/executables intact. If you want to remove any of the libraries/executables, as well, try 'make realclean'.


General MPC information

The Makefile Project Creator (MPC) is a tool that takes platform and building tool generic files (mpc files) as input, which describe basic information needed to generate a "project" file for various build tools, including Make, NMake, Visual C++ 6, Visual C++ 7, etc. Please see USAGE, README for documentation on MPC.

A common usage for creating a Windows workspace containing just the core ACE and TAO libraries and executables is the following:


C:> cd %TAO_ROOT%
C:> %ACE_ROOT%/bin/mwc.pl -type vc71 TAO_ACE.mwc
Replace vc71 with whatever project type you want to use. On Linux and other UNIX platform use the gnuace type:


% cd $TAO_ROOT
% $ACE_ROOT/bin/mwc.pl -type gnuace TAO_ACE.mwc
this creates the appropriate GNUmakefiles. Additional information on how to obtain, configuration, and build ACE+TAO using MPC appear at the OCI FAQ.

If you are attempting to generate project files using MPC, and you get the following error message:

ERROR: Unable to find the MPC modules in /builds/ACE_wrappers/MPC.
You can set the MPC_ROOT environment variable to the location of MPC.
You need to do one of the following:
  1. If you have already obtained MPC, either move it underneath the ACE_wrappers directory or set your MPC_ROOT environment variable to point to the full path of MPC.
  2. Check out MPC from the DOC Group subversion repository and set your MPC_ROOT environment variable.
You can check out MPC from the doc_group subversion server using the following command.
svn co svn://svn.dre.vanderbilt.edu/DOC/MPC/trunk MPC
The README and USAGE files in the MPC/docs directory are an up-to-date source of documentation, however it is not a complete set of documentation. The TAO Developer's Guide from OCI starting with the 1.3a version contains more information about MPC.

The MPC chapter from the TAO Developer's Guide is available at http://downloads.ociweb.com/MPC/. Some of MPC has changed since this version, but it is largely accurate. An updated version will be available as newer versions of the TAO Developer's Guide are released. In the meantime, please see the README and USAGE files in the MPC directory.

Working with ACE in Eclipse

The Eclipse CDT C++ development environment can be used to develop ACE applications. You can configure a new CDT project to build ACE using either a local source distribution or checking out ACE from CVS in Eclipse. These are the steps to create the CDT project to build ACE.

To create an Eclipse project for ACE starting from CVS:

  1. In the "CVS Repository Exploring" perspective, navigate to the module containing ACE.
  2. Checkout the module using "Check Out As" and select the "project configured using the New Project Wizard" option.
  3. Select "Standard Make C++ Project" for the project type.
  4. Follow the steps outlined above, up to the point of running make, for building ACE on your platform. Use "path_to_your_eclipse_workspace"/"project_name" as your $ACE_ROOT.
  5. If you had to regenerate the makefiles using MPC, select the root folder for your poject and use the import wizard to add them to your project.
  6. Select the root folder for the project and use the "Create Make Target" wizard to setup the appropriate make command and options.
  7. Select the root folder and run "Build Make Target." This will build ACE.

To create an Eclipse project for ACE from a local source distribution:

  1. Launch the "New Project Wizard" in Eclipse.
  2. Select "Standard Make C++ Project" for the project type.
  3. On the project name page, uncheck the "use default" location option and replace the default path with the path to your source distribution.
  4. Follow the steps, up to the point of running make, for building ACE on your platform.
  5. If you had to regenerate the makefiles using MPC, select the root folder for your poject and use the import wizard to add them to your project.
  6. Select the root folder for the project and use the "Create Make Target" wizard to setup the appropriate make command and options.
  7. Select the root folder and run "Build Make Target." This will build ACE.

Advanced Topics


Non-static ACE_Object_Manager

The ACE_Object_Manager can be instantiated as a static object, can be instantiated on the stack of the main program thread, or can be explicitly instantiated and destroyed by the application with ACE::init () and ACE::fini (). The comments in the header file, ace/Object_Manager.h, as well as Section 1.6.3 in The ACE Programmer's Guide provide more detail.

NOTE: Special requirements are imposed on applications if the ACE_Object_Manager is instantiated, by ACE, on the stack of the main thread. This behavior is selected by defining ACE_HAS_NONSTATIC_OBJECT_MANAGER in ace/config.h. Again, see the ACE Object_Manager header file, ace/Object_Manager.h for more information. One of these requirements is discussed here, because it is so important. Please note that ACE_HAS_NONSTATIC_OBJECT_MANAGER is defined in the distributed ACE config.h headers for VxWorks and Win32.

The important requirement is that the program must declare its main function with two arguments, even if they're not used, and with int return type:


int
main (int, char *[])
If you don't declare main exactly that way, then you'll see a link error about ace_main_i being undefined.

Alternatively, this feature can be disabled by commenting out the #define ACE_HAS_NONSTATIC_OBJECT_MANAGER in the ace/config.h. But, that will make repeated testing more difficult on VxWorks. And, you'd either have to call static constructors and destructors manually or unload/load the program between runs. On Win32, disabling the feature can possibly lead to shutdown difficulties.

WARNING: ACE_HAS_NONSTATIC_OBJECT_MANAGER assumes that your main function is named main. Any violation of this assumption is at your peril. If you really need to call your entry point something other than main, you'll need to construct and destroy the ACE_Object_Manager. The best way to do that is to call ACE::init () and ACE::fini (). Or, see the #define of main (int, char *[]) in ace/OS_main.h to see how ACE does that for entry points named main.


Cloning the Source Tree

On UNIX platforms, we typically like to support multiple platform builds using the same ACE source tree. This idiom is supported by ACE using the $ACE_ROOT/bin/create_ace_build.pl script. To clone the source tree, create ./build and ./build/{your build name} subdirectories under the ACE_wrappers directory. Then invoke the create_ace_build.pl script to clone the source tree using soft links from your build directory back to the actual sources. Here is an example:

% cd ACE_wrappers
% mkdir build build/build-SunOS5
% perl bin/create_ace_build.pl -a -v build-SunOS5
% cd build/build-SunOS5
% setenv ACE_ROOT $cwd
% make

This will establish a complete tree of links. In addition, make sure you set your LD_LIBRARY_PATH to $ACE_ROOT/lib:$LD_LIBRARY_PATH on SVR4 UNIX platforms.

When you do a make in the $ACE_ROOT directory you will be producing object code that is not stored in the same place as the original source tree. This way, you can easily build another platform in a parallel tree structure.

See the comments at the top of the create_ace_build.pl script for further usage information.


Additional Build Tips for MVS

For all intents and purpose, MVS OpenEdition (OE) is another flavor of UNIX, therefore, the instructions under Building and Installing ACE on Unix can be used along with the following additional tips:

You can get a copy of GNU make that has been ported to MVS OpenEdition from the IBM OpenEdition web site. ACE's make scheme generates compile commands that have options and operands interspersed. By default, the c89/cc/c++ compiler expects all options to precede all operands. To get around this, you must set a special compiler environment variable (_CXX_CCMODE) to 1 which tells the compiler to allow options and operands to be interspersed.

Note that the environment variable LD_LIBRARY_PATH is called LIBPATH on MVS.

Shared objects are built a little different on MVS than on other UNIX implementations. This has been accounted for in the makefiles that come with ACE When the linker (via the cxx command) builds the libACE.so file it will also create a file called libACE.x. This is a side-deck file and it must be included in subsequent link edits with application code. For more information on this see the C/C++ MVS Programming Guide. If you want to build your application statically, i.e., using libACE.a instead of libACE.so, you can set ACELIB to ACELIB_STATIC in platform_mvs.GNU.

When the libACE.so file is built (via the MVS pre-linker and binder), you will get a rc=4 from the pre-linker. This is ok. This is due to some warnings about unresolved references which should get resolved during the link step. Note, however, there shouldn't be any unresolved references from the binder (linkage editor). You can get pre-link and link maps by uncommenting the PMAP and LMAP lines in the platform_mvs.GNU file.


Makefile Flags

GNU make provides many options to customize its operation. See its documentation for more information. One example is that for multi-cpu UNIX machines you will be able to build faster if you use:


% make -j n

which allows parallel compilation. The number n should typically be the number of CPUs. It is likely that builds will be faster even on single-CPU UNIX machines with make -j 2.

ACE further supports the following flags. They can be enabled either on the command line, e.g., "make purify=1", or added to your platform_macros.GNU. To disable the option, set the flag to null, e.g., "make debug=". Some flags support setting to 0 disable, e.g., "make debug=0". debug=1 is enabled in the platform files that are released with ACE.

Please note that the effects of a flag may be platform specific. Also, combinations of certain flags may or may not be allowed on specific platforms, e.g., debug=1 opt=1 is supported by g++ but not all other C++ compilers.

If you use Purify or Quantify: purify or quantify must be on your PATH. By default, ACE puts the Purify/Quantify caches below /tmp. To override that, set the PURE_CACHE_BASE_DIR variable, either in your environment or on the make make command line, to the destination directory for your instrumented libraries.

Flag             Description
---- -----------
debug Enable debugging; see DCFLAGS and DCCFLAGS.
exceptions Enable exception handling (not supported by all platforms).
include_env Support old-style ACE_TRY_ENV declarations in methods.
This switch is necessary for compiling TAO applications
in the native exception configuration that were written
for TAO versions before 1.2.2.
In TAO 1.2.2, new macros were introduced that supercede
the direct ACE_TRY_ENV declarations. These are the
ACE_ENV_ARG macros that are defined in ace/CORBA_macros.h
and are documented in docs/exceptions.html.
This switch only affects the exceptions=1 configuration.
It is for backward compatibility only.
There will be warnings about unused _ACE_environment_variable
parameters when using include_env=1.
If possible, do not use it, but instead change your TAO
applications to use the ACE_ENV_ARG macros.
fast Enable -fast option, e.g., with Sun C++.
inline Enable ACE inlining. Some platforms enable inlining by
default, others do not.
optimize Enable optimization; see OCFLAGS and OCCFLAGS.
pace Enable PACE as the underpinnings of ACE_OS.
probe Enable ACE_Timeprobes.
profile Enable profiling; see PCFLAGS and PCCFLAGS.
purify Purify all executables.
quantify Quantify all executables.
repo Use GNU template repository (g++ with repo patches only).
rtti Enable run-time type identification. On some platforms,
it is enabled by default, so this is ignored.
shared_libs Build shared libraries. Ignored if static_libs_only is set.
static_libs Build shared libraries. Ignored if shared_libs_only is set.
shared_libs_only Only build shared libraries. Ignored if no SHLIBs are
specified by the Makefile, as in performance-tests/Misc.
static_libs_only Only build static libraries.
threads Build with thread support.
xt Build with Xt (X11 Toolkit) support.
fl Build with FlTk (Fast Light Toolkit) support.
tk Build with Tk (Tcl/Tk) support.
qt Build with Qt (Trolltech Qt) support.
ssl Build with OpenSSL support.
rapi Build with RAPI
split Build the library by first splitting up the ACE source
to several files, with one object code entity for each
source file. This allows an application that is linked
with ACE to extract _exactly_ what it needs from the
library, resulting in a smaller executable. Setting this
to 1 overrides debug to 0.

Usually, users do not need to be concerned with make targets.
Just enter "make" on the command line to build. A few notable
targets are listed below.

Target Description
------ -----------
show_statics Lists all static objects in object files built for
current directory. Only supported for g++.
show_uninit Lists all uninitialized in object files built for
current directory. Only supported for g++.


Building from Subversion (anonymous access)

If users are building from our Subversion repository the GNUmakefiles, and project files for building on various platforms will not be available. Subversion users are expected to generate them using MPC before building ACE, TAO or CIAO. We point out some suggestions below to get bootstrapped quickly.
  • You can checkout different subsets from the Subversion repository.
    • To checkout ACE with MPC:

      svn co svn://svn.dre.vanderbilt.edu/DOC/Middleware/sets-anon/ACE .

    • To checkout ACE+TAO with MPC:

      svn co svn://svn.dre.vanderbilt.edu/DOC/Middleware/sets-anon/ACE+TAO .

    • To checkout ACE+TAO+CIAO with MPC:

      svn co svn://svn.dre.vanderbilt.edu/DOC/Middleware/sets-anon/ACE+TAO+CIAO .

  • Please make sure that you have perl installed, preferably perl 5.8 or higher. Users on Win32 based platforms are recommended to use Active State Perl. We use active state perl without problems. We have ran into problems trying to use the cygwin version of perl on Win32 based platforms.

  • To build ACE and associated tests, examples, and associated utility libraries with GNUmakefiles, you must generate GNUmakefiles with MPC:

    $ACE_ROOT/bin/mwc.pl -type gnuace ACE.mwc

    On Windows, with Visual C++ 8, you must generate solution and project files with MPC:

    $ACE_ROOT/bin/mwc.pl -type vc8 ACE.mwc

    On Windows, with Visual C++ 7, you must generate solution and project files with MPC:

    $ACE_ROOT/bin/mwc.pl -type vc71 ACE.mwc

  • If you want to build TAO+CIAO and its associated libraries please see TAO-INSTALL and CIAO-INSTALL for details.

Back to the ACE home page.

Last modified: Wed Jul 5 17:26:22 EST 2006
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Building and Installing ACE and Its Auxiliary Libraries and Services 的相关文章

随机推荐

  • px、em、rem

    px em rem简介 px像素 Pixel 相对长度单位 相对于显示屏幕分辨率 em 相对长度单位 相对于父元素设置的font size 页面层级越深 em的换算就越复杂 rem 相对长度单位 相对于HTML根元素设置的font size
  • 重装系统(安装版)——磁盘分区——Windows启动过程——\\.\PhysicalDrive1的操作失败

    搜罗整理自csdn博客 百度百科 远景论坛 无忧论坛等 1 PhysicalDrive1的操作失败 这是由于U盘既作磁盘 添加磁盘时使用U盘作为磁盘即PhysicalDrive1 又作USB连接设备即真正的U盘 当虚拟机启动时 就会检测到这
  • [Python从零到壹] 四十七.图像增强及运算篇之腐蚀和膨胀详解

    欢迎大家来到 Python从零到壹 在这里我将分享约200篇Python系列文章 带大家一起去学习和玩耍 看看Python这个有趣的世界 所有文章都将结合案例 代码和作者的经验讲解 真心想把自己近十年的编程经验分享给大家 希望对您有所帮助
  • bootstraptable 删除指定多行_Python Pandas处理Excel多列到多行转换

    Excel能够实现的功能 目前Pandas都能够实现 倘若你已经能够熟练运用Pandas的 宽转长 wide to long 和透视表pivot table 函数 建议您直接跳过本文 需求说明 需求是将材料变更的多列记录数据转成多行 演示数
  • C++复习笔记--STL的基本概念和使用

    目录 1 STL基本概念 2 STL六大组件 2 1 容器的基本概念 2 2 算法的基本概念 2 3 迭代器的基本概念 3 代码实例 3 1 vector容器的使用 3 2 使用vector容器存储自定义类型 3 3 容器嵌套容器 1 ST
  • Angular4--【数据绑定】

    数据绑定 事件绑定 属性绑定 很多人对于DOM属性还是HTML属性易混 那我们首先来区分一下HTML和DOM 少量的HTML和DOM属性之前存在着1 1的映射 比如id 有些HTML属性没有对应的DOM属性 有些DOM属性没有对应的HTML
  • 10年测试专家深度解读接口测试

    01 对于接口测试来说 项目测试用例的重复运行首先是表现在单个测试用例的独立性方面的 也就是说 每一个测试用例的运行除了依赖被测对象和对应的数据库环境外 是不依赖于其他任何测试用例的 并且这个测试用例执行完毕后 对系统来说 也是没有任何痕迹
  • Linux查看端口占用情况的几种方式

    Linux查看端口占用情况的几种方式 概述 测试环境为Centos7 9 本文简单给出了几种检测端口的例子 一 查看本机端口占用 1 netstat 安装netstat yum y install net tools 检测端口占用 nets
  • /proc/sys/kernel/printk 打印log设置

    proc sys kernel printk Printk 共有4个参数 Cat proc sys kernel printk 7 4 1 7 1 第一个参数 7表示小于7优先级消息才会被输出到控制台 2 第二个参数4 表示默认的print
  • JAVA--Object(对象序列化)

    一 定义 把一个Object对象直接转化为字节流 让后把字节流直接写入本地硬盘或者网络中 如果需要对某个对象实现序列化 必须实现Serializable接口 Serialzable为空接口 起标识作用 transient修饰的成员无法被序列
  • 用Eclipse插件Git,让Repository回滚到之前的版本

    软件 1 Eclipse Neon 3 Release 4 6 3 2 Git Eclipse自带Git插件 Git远程仓库回滚的方法有两种 一 只回滚提交的代码 步骤如下 1 获取代码到最新版本 2 项目 鼠标右键 team show i
  • 什么是内存屏障?为什么需要内存屏障?

    1 什么是内存屏障 为什么需要内存屏障 首先 为了性能编译器和处理器都会对指令进行重排序 什么是内存屏障 内存屏障是一条指令 该指令可以对编译器 软件 和处理器 硬件 的指令重排做出一定的限制 比如 一条内存屏障指令可以禁止编译器和处理器将
  • Flutter 跨平台编程

    特点 Flutter 是一个令人兴奋的新软件开发工具包 可让您同时面向多个平台 因此您可以从一个代码库构建适用于 iOS Android 甚至 Web 和桌面的应用程序 与现代 Web 技术类似 Flutter 使用声明式方法进行 UI 开
  • C++数据封装 介绍和实现方法

    C 中的数据封装是一种OOP概念 它允许开发人员将数据和操作数据的函数组合在一起 并对外部隐藏数据细节 这样可以使代码更加安全 因为外部用户无法直接访问类的私有数据成员 以下是在C 中实现数据封装的一些步骤 创建一个类 首先 创建一个类来表
  • vmare连接远程服务器的问题

    测试环境 两端都是VMware Workstation 12 Pro 1 需要共享虚拟机 在虚拟机上点击右键 gt Manage gt Share 后面按照操作设置 2 远程服务器的443是用来做登录认证的 需要对外开放 如果远程服务器在内
  • mysql学习 day05

    今天 先继续完成了对约束的学习 约束 列级约束 表级约束 语法 create table 表名 字段名 字段类型 列级约束 字段名 字段类型 列级约束 表级约束 注意 列级约束和表级约束的区别 位置 支持 列级约束 列的后面 除了外键 表级
  • 盲盒商城源码,潮乎盲盒小程序,猜客魔盒/叮当魔盒/王大盒前端uni后端Laravel,全开源源码

    产品技术栈以及环境配置 服务器环境 linux 宝塔 建议最小配置 2h 4G 5M 后台开发语言 后端Laravel框架开发 反向代理服务器 nginx 前端开发框架 uniapp vue 支持四端同步数据 数据库 mysql 5 6 需
  • 计算一个字符串中包含另一个字符串的个数

    strong 有时候我们需要在一个长字符串中匹配我们需要的字符 这里我就写了一个方法 用来统计 我们要匹配的字符在长字符串中出现的次数 strong 计算一个字符串中包含另一个字符串的个数 param param str1 param pa
  • 基于WiFi的宿舍智能安防系统

    word完整版可点击如下下载 gt gt gt gt gt gt gt gt 基于WiFi的宿舍智能安防系统 rar 自然语言处理文档类资源 CSDN下载1 资源内容 毕业设计lun wenword版10000字 开题报告 任务书2 学习目
  • Building and Installing ACE and Its Auxiliary Libraries and Services

    Synopsis The file explains how to build and install ACE its Network Services test suite and examples on the various OS p