Leetcode刷题笔记:二叉树篇(下)

2023-11-01

1. Leetcode 110 平衡二叉树

难度:⭐️⭐️(递归)/⭐️⭐️⭐️⭐️(迭代)

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。

示例 1:

给定二叉树 [3,9,20,null,null,15,7]

110.平衡二叉树

返回 true 。

方法1:递归(自上而下)

class Solution {
public:
    int height(TreeNode* root) {
        if (root == NULL) {
            return 0;
        } else {
            return max(height(root->left), height(root->right)) + 1;
        }
    }

    bool isBalanced(TreeNode* root) {
        if (root == NULL) {
            return true;
        } else {
            return abs(height(root->left) - height(root->right)) <= 1 && isBalanced(root->left) && isBalanced(root->right);
        }
    }
};

方法2:递归(自下而上)

class Solution {
public:
    int height(TreeNode* root) {
        if (root == NULL) {
            return 0;
        }
        int leftHeight = height(root->left);
        int rightHeight = height(root->right);
        if (leftHeight == -1 || rightHeight == -1 || abs(leftHeight - rightHeight) > 1) {
            return -1;
        } else {
            return max(leftHeight, rightHeight) + 1;
        }
    }

    bool isBalanced(TreeNode* root) {
        return height(root) >= 0;
    }
};

 

 方法3:迭代(自上而下)

104.二叉树的最大深度 (opens new window)中我们可以使用层序遍历来求深度,但是就不能直接用层序遍历来求高度了,这就体现出求高度和求深度的不同。

本题的迭代方式可以先定义一个函数,专门用来求高度。

这个函数通过栈模拟的后序遍历找每一个节点的高度(其实是通过求传入节点为根节点的最大深度来求的高度)

代码如下:

// cur节点的最大深度,就是cur的高度
int getDepth(TreeNode* cur) {
    stack<TreeNode*> st;
    if (cur != NULL) st.push(cur);
    int depth = 0; // 记录深度
    int result = 0;
    while (!st.empty()) {
        TreeNode* node = st.top();
        if (node != NULL) {
            st.pop();
            st.push(node);                          // 中
            st.push(NULL);
            depth++;
            if (node->right) st.push(node->right);  // 右
            if (node->left) st.push(node->left);    // 左

        } else {
            st.pop();
            node = st.top();
            st.pop();
            depth--;
        }
        result = result > depth ? result : depth;
    }
    return result;
}

然后再用栈来模拟后序遍历,遍历每一个节点的时候,再去判断左右孩子的高度是否符合,代码如下:

bool isBalanced(TreeNode* root) {
    stack<TreeNode*> st;
    if (root == NULL) return true;
    st.push(root);
    while (!st.empty()) {
        TreeNode* node = st.top();                       // 中
        st.pop();
        if (abs(getDepth(node->left) - getDepth(node->right)) > 1) { // 判断左右孩子高度是否符合
            return false;
        }
        if (node->right) st.push(node->right);           // 右(空节点不入栈)
        if (node->left) st.push(node->left);             // 左(空节点不入栈)
    }
    return true;
}

整体代码如下:

class Solution {
private:
    int getDepth(TreeNode* cur) {
        stack<TreeNode*> st;
        if (cur != NULL) st.push(cur);
        int depth = 0; // 记录深度
        int result = 0;
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop();
                st.push(node);                          // 中
                st.push(NULL);
                depth++;
                if (node->right) st.push(node->right);  // 右
                if (node->left) st.push(node->left);    // 左

            } else {
                st.pop();
                node = st.top();
                st.pop();
                depth--;
            }
            result = result > depth ? result : depth;
        }
        return result;
    }

public:
    bool isBalanced(TreeNode* root) {
        stack<TreeNode*> st;
        if (root == NULL) return true;
        st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();                       // 中
            st.pop();
            if (abs(getDepth(node->left) - getDepth(node->right)) > 1) {
                return false;
            }
            if (node->right) st.push(node->right);           // 右(空节点不入栈)
            if (node->left) st.push(node->left);             // 左(空节点不入栈)
        }
        return true;
    }
};

当然此题用迭代法,其实效率很低,因为没有很好的模拟回溯的过程,所以迭代法有很多重复的计算。

虽然理论上所有的递归都可以用迭代来实现,但是有的场景难度可能比较大。

例如:都知道回溯法其实就是递归,但是很少人用迭代的方式去实现回溯算法!

因为对于回溯算法已经是非常复杂的递归了,如果再用迭代的话,就是自己给自己找麻烦,效率也并不一定高。

时间复杂度:平均O(nlogn) 最坏O(n2) 空间O(n)

实现代码:递归(自上而下)/递归(自下而上)/迭代(自上而下)

2.Leetcode 257 二叉树的所有路径

难度:⭐️⭐️⭐️

257.二叉树的所有路径

 代码:递归+回溯/迭代(前序)/迭代(层序)

3.Leetcode 404 左叶子之和

难度:⭐️⭐️

计算给定二叉树的所有左叶子之和。

示例:

404.左叶子之和1

思路:

左叶子的明确定义:节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子为左叶子节点

那么判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子。

如果该节点的左节点不为空,该节点的左节点的左节点为空,该节点的左节点的右节点为空,则找到了一个左叶子,判断代码如下:

if (node->left != NULL && node->left->left == NULL && node->left->right == NULL) {
    左叶子节点处理逻辑
}

平时我们解二叉树的题目时,已经习惯了通过节点的左右孩子判断本节点的属性,而本题我们要通过节点的父节点判断本节点的属性。

代码:递归/迭代(前序一路遍历到底)/迭代(前序每次遍历时放入左右孩子)

4. Leetcode 513 找树左下角的值

难度:⭐️⭐️(迭代)/⭐️⭐️⭐️(递归)

给定一个二叉树,在树的最后一行找到最左边的值。

示例 1:

513.找树左下角的值

递归终止条件:

遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度

代码如下:

if (root->left == NULL && root->right == NULL) {
    if (depth > maxDepth) {
        maxDepth = depth;           // 更新最大深度
        result = root->val;   // 最大深度最左面的数值
    }
    return;
}

代码:迭代/递归

5. Leetcode 112  路径总和

难度:⭐️⭐️

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,

返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。

递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先 (opens new window)中介绍)
  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)

而本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回,那么返回类型是什么呢?

如图所示:

112.路径总和

图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示。

所以代码如下:

bool traversal(treenode* cur, int count)   // 注意函数的返回类型

 代码:递归/迭代

6. Leetcode 113 路径总和II

难度:⭐️⭐️⭐️⭐️

给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,

113.路径总和ii1.png

 代码:递归/迭代

7. Leetcode 106 从中序与后序遍历序列构造二叉树

难度:⭐️⭐️⭐️⭐️

106.从中序与后序遍历序列构造二叉树

那么代码应该怎么写呢?

说到一层一层切割,就应该想到了递归。

来看一下一共分几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

代码:递归(数组)/递归(数组索引)/递归(数组索引+哈希)

8. Leetcode105 从前序与中序遍历序列构造二叉树

难度:⭐️⭐️⭐️⭐️

根据一棵树的前序遍历与中序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树:

105. 从前序与中序遍历序列构造二叉树

本题和106是一样的道理。

我就直接给出代码了。

代码:递归(数组索引+哈希)

前序和中序可以唯一确定一棵二叉树。

后序和中序可以唯一确定一棵二叉树。

那么前序和后序可不可以唯一确定一棵二叉树呢?

前序和后序不能唯一确定一棵二叉树!,因为没有中序遍历无法确定左右部分,也就是无法分割。

举一个例子:

106.从中序与后序遍历序列构造二叉树2

tree1 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

tree2 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

那么tree1 和 tree2 的前序和后序完全相同,这是一棵树么,很明显是两棵树!

所以前序和后序不能唯一确定一棵二叉树!

代码:递归(数组索引+哈希表)

9. Leetcode 654 最大二叉树

难度:⭐️⭐️⭐️

给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:

  • 二叉树的根是数组中的最大元素。
  • 左子树是通过数组中最大值左边部分构造出的最大二叉树。
  • 右子树是通过数组中最大值右边部分构造出的最大二叉树。

通过给定的数组构建最大二叉树,并且输出这个树的根节点。

示例 :

654.最大二叉树

提示:

给定的数组的大小在 [1, 1000] 之间。

这道题整体思路和上一道构造二叉树的题目类似。

代码:递归/单调栈(待补充)

10. Leetcode 617 合并二叉树

难度:⭐️⭐️⭐️

给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。

你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。

示例 1:

617.合并二叉树

注意: 合并必须从两个树的根节点开始。

代码:递归/迭代/递归(指针的指针)

11. Leetcode 700 二叉搜索树中的搜索

难度:⭐️

给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。

例如,

700.二叉搜索树中的搜索

在上述示例中,如果要找的值是 5,但因为没有节点值为 5,我们应该返回 NULL。

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树

这就决定了,二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。

代码:递归/迭代

12. Leetcode 98 验证二叉搜索树

难度:⭐️⭐️⭐️

给定一个二叉树,判断其是否是一个有效的二叉搜索树。

假设一个二叉搜索树具有如下特征:

  • 节点的左子树只包含小于当前节点的数。
  • 节点的右子树只包含大于当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

98.验证二叉搜索树

要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。

有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。

这道题目比较容易陷入两个陷阱:

  • 陷阱1

不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了

写出了类似这样的代码:

if (root->val > root->left->val && root->val < root->right->val) {
    return true;
} else {
    return false;
}

我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。所以以上代码的判断逻辑是错误的。

例如: [10,5,15,null,null,6,20] 这个case:

二叉搜索树

节点10大于左节点5,小于右节点15,但右子树里出现了一个6 这就不符合了!

  • 陷阱2

样例中最小节点 可能是int的最小值,如果这样使用最小的int来比较也是不行的。

此时可以初始化比较元素为longlong的最小值。

问题可以进一步演进:如果样例中根节点的val 可能是longlong的最小值 又要怎么办呢?文中会解答。

如果测试数据中有 longlong的最小值,怎么办?

不可能在初始化一个更小的值了吧。 建议避免 初始化最小值,如下方法取到最左面节点的数值来比较。

代码如下:

class Solution {
public:
    TreeNode* pre = NULL; // 用来记录前一个节点
    bool isValidBST(TreeNode* root) {
        if (root == NULL) return true;
        bool left = isValidBST(root->left);

        if (pre != NULL && pre->val >= root->val) return false;
        pre = root; // 记录前一个节点

        bool right = isValidBST(root->right);
        return left && right;
    }
};

最后这份代码看上去整洁一些,思路也清晰。

代码:递归/递归+数组/迭代

13.Leetcode 530 二叉搜索树的最小绝对差

难度:⭐️⭐️

给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。

示例:

530二叉搜索树的最小绝对差

提示:树中至少有 2 个节点。

代码:递归+数组/递归+双指针/迭代+双指针

14. Leetcode 501 二叉搜索树中的众数

难度:⭐️⭐️(迭代/递归)/⭐️⭐️⭐️(morris)

给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。

假定 BST 有如下定义:

  • 结点左子树中所含结点的值小于等于当前结点的值
  • 结点右子树中所含结点的值大于等于当前结点的值
  • 左子树和右子树都是二叉搜索树

例如:

给定 BST [1,null,2,2],

501. 二叉搜索树中的众数

返回[2].

提示:如果众数超过1个,不需考虑输出顺序

进阶:你可以不使用额外的空间吗?(假设由递归产生的隐式调用栈的开销不被计算在内)

既然是搜索树,它中序遍历就是有序的

如图:

501.二叉搜索树中的众数1

代码:递归+哈希/递归+双指针/迭代+双指针/迭代+morris+双指针

补充:morris时间复杂度为O(n)推导

以下为推理过程概述: 1.对于左右一边倒的二叉搜索树,很容易求得时间复杂度为O(n)

2.对于均匀分布的二叉搜索树(类似完全二叉树),倒数第二层有n/4个节点,Morris遍历时最多往下遍历一层(左子树的最右结点);倒数第三层有n/8个节点,Morris遍历时最多往下遍历两层(左子树最右结点),以此类推。。

所以morris遍历predecessor这部分的总时间复杂度: T(n)=(n/4)*1 +(n/8)2+...+1(logn) 令n=n/2 T(n/2)=(n/8)*1 +(n/16)2+...+(1/2)(logn) 两式相减,得 T(n/2)=(n/4)1 +(n/8)1+(n/16)1+...+(1)1-(1/2)(logn) =[(n/4)(1-(1/2)^(logn -1)]/(1-1/2) -(1/2)(logn) =n/2 - (1/2)(logn) =O(n)

实际上,画出全部遍历predecessor轨迹后可以发现,每个节点最多被一条遍历轨迹覆盖(这条轨迹会遍历两次,即第一次和第二次经过middle结点时,都会向下遍历一次),因此morris遍历predecessor总时间复杂度<O(2n)=O(n)。

15. Leetcode 236 二叉树的最近公共祖先

难度:⭐️⭐️⭐️⭐️

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉树:  root = [3,5,1,6,2,0,8,null,null,7,4]

236. 二叉树的最近公共祖先

示例 1: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 输出: 3 解释: 节点 5 和节点 1 的最近公共祖先是节点 3。

示例 2: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 输出: 5 解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉树中。

遇到这个题目首先想的是要是能自底向上查找就好了,这样就可以找到公共祖先了。

那么二叉树如何可以自底向上查找呢?

回溯啊,二叉树回溯的过程就是从低到上。

后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。

接下来就看如何判断一个节点是节点q和节点p的公共祖先呢。

首先最容易想到的一个情况:如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。 即情况一:

判断逻辑是 如果递归遍历遇到q,就将q返回,遇到p 就将p返回,那么如果 左右子树的返回值都不为空,说明此时的中节点,一定是q 和p 的最近祖先。

那么有录友可能疑惑,会不会左子树 遇到q 返回,右子树也遇到q返回,这样并没有找到 q 和p的最近祖先。

这么想的录友,要审题了,题目强调:二叉树节点数值是不重复的,而且一定存在 q 和 p

但是很多人容易忽略一个情况,就是节点本身p(q),它拥有一个子孙节点q(p)。 情况二:

其实情况一 和 情况二 代码实现过程都是一样的,也可以说,实现情况一的逻辑,顺便包含了情况二。

因为遇到 q 或者 p 就返回,这样也包含了 q 或者 p 本身就是 公共祖先的情况。

这一点是很多录友容易忽略的,在下面的代码讲解中,可以再去体会。

代码:递归+回溯/递归+哈希表

16. Leetcode 235 二叉搜索树的最近公共祖先

难度:⭐️⭐️

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树:  root = [6,2,8,0,4,7,9,null,null,3,5]

235. 二叉搜索树的最近公共祖先

示例 1:

  • 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
  • 输出: 6
  • 解释: 节点 2 和节点 8 的最近公共祖先是 6。

示例 2:

  • 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
  • 输出: 2
  • 解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉搜索树中。

做过二叉树:公共祖先问题 (opens new window)题目的同学应该知道,利用回溯从底向上搜索,遇到一个节点的左子树里有p,右子树里有q,那么当前节点就是最近公共祖先。

那么本题是二叉搜索树,二叉搜索树是有序的,那得好好利用一下这个特点。

在有序树里,如果判断一个节点的左子树里有p,右子树里有q呢?

因为是有序树,所有 如果 中间节点是 q 和 p 的公共祖先,那么 中节点的数组 一定是在 [p, q]区间的。即 中节点 > p && 中节点 < q 或者 中节点 > q && 中节点 < p。

那么只要从上到下去遍历,遇到 cur节点是数值在[p, q]区间中则一定可以说明该节点cur就是q 和 p的公共祖先。 那问题来了,一定是最近公共祖先吗

如图,我们从根节点搜索,第一次遇到 cur节点是数值在[p, q]区间中,即 节点5,此时可以说明 p 和 q 一定分别存在于 节点 5的左子树,和右子树中。

235.二叉搜索树的最近公共祖先

此时节点5是不是最近公共祖先? 如果 从节点5继续向左遍历,那么将错过成为q的祖先, 如果从节点5继续向右遍历则错过成为p的祖先。

所以当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[p, q]区间中,那么cur就是 p和q的最近公共祖先。

理解这一点,本题就很好解了。

而递归遍历顺序,本题就不涉及到 前中后序了(这里没有中节点的处理逻辑,遍历顺序无所谓了)。

如图所示:p为节点6,q为节点9

235.二叉搜索树的最近公共祖先2

可以看出直接按照指定的方向,就可以找到节点8,为最近公共祖先,而且不需要遍历整棵树,找到结果直接返回!

代码:递归/迭代

17. Leetcode 701 二叉搜索树中的插入操作

难度:⭐️

给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据保证,新值和原始二叉搜索树中的任意节点值都不同。

注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回任意有效的结果。

701.二叉搜索树中的插入操作

提示:

  • 给定的树上的节点数介于 0 和 10^4 之间
  • 每个节点都有一个唯一整数值,取值范围从 0 到 10^8
  • -10^8 <= val <= 10^8
  • 新值和原始二叉搜索树中的任意节点值都不同

这道题目其实是一道简单题目,但是题目中的提示:有多种有效的插入方式,还可以重构二叉搜索树,一下子吓退了不少人,瞬间感觉题目复杂了很多。

其实可以不考虑题目中提示所说的改变树的结构的插入方式。

如下演示视频中可以看出:只要按照二叉搜索树的规则去遍历,遇到空节点就插入节点就可以了。

例如插入元素10 ,需要找到末尾节点插入便可,一样的道理来插入元素15,插入元素0,插入元素6,需要调整二叉树的结构么? 并不需要。

只要遍历二叉搜索树,找到空节点 插入元素就可以了,那么这道题其实就简单了。

接下来就是遍历二叉搜索树的过程了。

代码:递归/迭代+双指针

18. Leetcode 450 删除二叉搜索树中的节点

难度:⭐️⭐️⭐️⭐️(拼接子树)/⭐️⭐️⭐️⭐️⭐️(交换节点后删除)

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

首先找到需要删除的节点; 如果找到了,删除它。 说明: 要求算法时间复杂度为 O(h),h 为树的高度。

示例:

450.删除二叉搜索树中的节点

方法1:拼接子树

这里就把二叉搜索树中删除节点遇到的情况都搞清楚。

有以下五种情况:

  • 第一种情况:没找到删除的节点,遍历到空节点直接返回了
  • 找到删除的节点
    • 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
    • 第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
    • 第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
    • 第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。

第五种情况有点难以理解,看下面动画:

动画中的二叉搜索树中,删除元素7, 那么删除节点(元素7)的左孩子就是5,删除节点(元素7)的右子树的最左面节点是元素8。

将删除节点(元素7)的左孩子放到删除节点(元素7)的右子树的最左面节点(元素8)的左孩子上,就是把5为根节点的子树移到了8的左孩子的位置。

要删除的节点(元素7)的右孩子(元素9)为新的根节点。.

这样就完成删除元素7的逻辑,最好动手画一个图,尝试删除一个节点试试。

方法2:交换节点后删除

这里我在介绍一种通用的删除,普通二叉树的删除方式(没有使用搜索树的特性,遍历整棵树),用交换值的操作来删除目标节点。

代码中目标节点(要删除的节点)被操作了两次:

  • 第一次是和目标节点的右子树最左面节点交换。
  • 第二次直接被NULL覆盖了。

思路有点绕,感兴趣的同学可以画图自己理解一下。

代码如下:(关键部分已经注释)

class Solution {
public:
    TreeNode* deleteNode(TreeNode* root, int key) {
        if (root == nullptr) return root;
        if (root->val == key) {
            if (root->right == nullptr) { // 这里第二次操作目标值:最终删除的作用
                return root->left;
            }
            TreeNode *cur = root->right;
            while (cur->left) {
                cur = cur->left;
            }
            swap(root->val, cur->val); // 这里第一次操作目标值:交换目标值其右子树最左面节点。
        }
        root->left = deleteNode(root->left, key);
        root->right = deleteNode(root->right, key);
        return root;
    }
};

这个代码是简短一些,思路也巧妙,但是不太好想,实操性不强,推荐第一种写法!

//注:力扣官方题解中提供了另一种交换节点的思路,只需要交换一次(root和root->right's leftmost node),然后直接调用deleteNode(root->right, leftmost node->val)巧妙的将其删除(包含了如果leftmost node包含右孩子时的裁剪处理),这种方法不需要将root一直swap到叶子节点,只需要swap一次到root->right's leftmost node即可(无需考虑其是否包含右孩子)。具体代码见下方:递归+交换节点。

代码:递归+拼接子树/递归+交换节点/迭代+拼接子树/迭代+交换节点

19. Leetcode 669 修剪二叉搜索树

难度:⭐️⭐️⭐️

给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。

669.修剪二叉搜索树

669.修剪二叉搜索树1

直接想法就是:递归处理,然后遇到 root->val < low || root->val > high 的时候直接return NULL,一波修改,赶紧利落。

不难写出如下代码:

class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if (root == nullptr || root->val < low || root->val > high) return nullptr;
        root->left = trimBST(root->left, low, high);
        root->right = trimBST(root->right, low, high);
        return root;
    }
};

然而[1, 3]区间在二叉搜索树的中可不是单纯的节点3和左孩子节点0就决定的,还要考虑节点0的右子树

我们在重新关注一下第二个示例,如图:

669.修剪二叉搜索树

所以以上的代码是不可行的!

从图中可以看出需要重构二叉树,想想是不是本题就有点复杂了。

其实不用重构那么复杂。

在上图中我们发现节点0并不符合区间要求,那么将节点0的右孩子 节点2 直接赋给 节点3的左孩子就可以了(就是把节点0从二叉树中移除),如图:

669.修剪二叉搜索树1

理解了最关键部分了我们再递归三部曲:

  • 确定递归函数的参数以及返回值

这里我们为什么需要返回值呢?

因为是要遍历整棵树,做修改,其实不需要返回值也可以,我们也可以完成修剪(其实就是从二叉树中移除节点)的操作。

但是有返回值,更方便,可以通过递归函数的返回值来移除节点。

这样的做法在二叉树:搜索树中的插入操作 (opens new window)二叉树:搜索树中的删除操作 (opens new window)中大家已经了解过了。

代码如下:递归/迭代

20. Leetcode 108 将有序数组转换为二叉搜索树

难度:⭐️

将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。

本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。

示例:

108.将有序数组转换为二叉搜索树

本题其实要比二叉树:构造二叉树登场! (opens new window)和 二叉树:构造一棵最大的二叉树 (opens new window)简单一些,因为有序数组构造二叉搜索树,寻找分割点就比较容易了。

分割点就是数组中间位置的节点。

那么为问题来了,如果数组长度为偶数,中间节点有两个,取哪一个?

取哪一个都可以,只不过构成了不同的平衡二叉搜索树。

例如:输入:[-10,-3,0,5,9]

如下两棵树,都是这个数组的平衡二叉搜索树:

108.将有序数组转换为二叉搜索树

如果要分割的数组长度为偶数的时候,中间元素为两个,是取左边元素 就是树1,取右边元素就是树2。

这也是题目中强调答案不是唯一的原因。 理解这一点,这道题目算是理解到位了

代码:递归+前序​​​​​​​/递归+中序/迭代

21. Leetcode 538 把二叉搜索树转换为累加树

难度:⭐️⭐️

一看到BST就要想到中序遍历,有序数组的累加就很容易了,对应树的遍历过程操作即可

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左右子树也必须是二叉搜索树。

示例 1:

538.把二叉搜索树转换为累加树

  • 输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
  • 输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

  • 输入:root = [0,null,1]
  • 输出:[1,null,1]

示例 3:

  • 输入:root = [1,0,2]
  • 输出:[3,3,2]

示例 4:

  • 输入:root = [3,2,4,1]
  • 输出:[7,9,4,10]

提示:

  • 树中的节点数介于 0 和 104 之间。
  • 每个节点的值介于 -104 和 104 之间。
  • 树中的所有值 互不相同 。
  • 给定的树为二叉搜索树。

一看到累加树,相信很多小伙伴都会疑惑:如何累加?遇到一个节点,然后再遍历其他节点累加?怎么一想这么麻烦呢。

然后再发现这是一棵二叉搜索树,二叉搜索树啊,这是有序的啊。

那么有序的元素如何求累加呢?

其实这就是一棵树,大家可能看起来有点别扭,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13],是不是感觉这就简单了。

为什么变成数组就是感觉简单了呢?

因为数组大家都知道怎么遍历啊,从后向前,挨个累加就完事了,这换成了二叉搜索树,看起来就别扭了一些是不是。

那么知道如何遍历这个二叉树,也就迎刃而解了,从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了

遍历顺序如图所示:

538.把二叉搜索树转换为累加树

本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。

pre指针的使用技巧,我们在二叉树:搜索树的最小绝对差 (opens new window)二叉树:我的众数是多少? (opens new window)都提到了,这是常用的操作手段。

  • 递归函数参数以及返回值

这里很明确了,不需要递归函数的返回值做什么操作了,要遍历整棵树。

同时需要定义一个全局变量pre,用来保存cur节点的前一个节点的数值,定义为int型就可以了。

代码:递归/迭代 

补充题:

22. Leetcode 109 有序链表转换二叉搜索树

难度:⭐️⭐️

链表相比数组无法随机访问,所以可以利用BST中序遍历为有序数组的特性,依次将遍历到的节点赋值给链表中对应的值。

代码:递归+中序

二叉树终于刷完了,内容量赶上前几章的总和了。。后面的章节也要加油,争取尽快刷完!

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Leetcode刷题笔记:二叉树篇(下) 的相关文章

随机推荐

  • Eclipse出现Widget is disposed错误

    在Eclipse中切换正常磨损和Debug模式的时候出现了这种问题 可以通过关闭toggle breakcrumb 来屏蔽这种错误 如图所示
  • 单片机串行口

    http www cnblogs com xianghang123 archive 2011 03 22 1991093 html 单片机串行口 MCS 51单片机的串行口具有两条独立的数据线 发送端TXD和接收端RXD 它允许数据同时往两
  • STM32从标准库转到HAL遇到的问题(持续更新)

    一 GPIO配置 1 写入高低电平报错use of undeclared identifier 以下代码在define过程中不报错 define A HAL GPIO WritePin GPIOA GPIO Pin 7 GPIO PIN R
  • web前端向java后端传递model的几种方法

    1 通过fastjson传值 前端代码 post test modelStr JSON stringify data collection collection function ret do something 后端代码 RequestM
  • yolov3为什么对大目标检测不好_基于改进YOLOv3的交通场景小目标检测方法与流程...

    本发明提出一种基于改进yolov3的交通场景小目标检测方法 解决yolov3网络过深问题 提高对小目标检测的精确度和速度 一定程度上避免训练神经网络出现的过拟合现象 属于智能交通领域 背景技术 在交通目标识别应用中 小目标的识别与跟踪是研究
  • 【SQL注入-02】SQL注入点的简单判断

    目录 1 实验环境 2 准备工作 3 判断是否存在SQL注入点及注入的类型 4 结论 1 实验环境 实验靶场 虚拟机 IP为172 16 1 1 本节实验靶场是在win2008系统上基于phpstudy搭建的一个简单网站 win2008及p
  • 区块链学习笔记1

    1 什么是区块链 区块链是通过去中心 化去信任的方式集体维护一个可靠数据库的技术方案 参与系统中的任意多个节点把系统一段时间内的全部的信息 数据通过密码学算法计算和记录到一个数据块 区块block 并且生成该区块的指纹用于链接下一个区块和校
  • Hadoop三种运行模式详解

    5 1 本地运行模式 本地运行模式不需要额外的设置 只需要执行响应的jar包就可以了 不需要任何的集群配置 本地运行模式其实也是一种单节点模式 Hadoop提供了两个案例 我们执行这两个案例 5 1 1 官方 grep 案例 这个案例是提供
  • Fast Global Registration 快速全局配准

    目录 1 算法过程 2 基于四元约束关系集的生成 3 基于关系集目标函数的构建 4 目标函数的优化 本文出自CSDN点云侠 爬虫自重 把自己当个人 1 算法过程 Fast Global Registration算法利用四元约束剔除匹配的关系
  • 字符串去掉小数点后取整数

    字符串去掉小数点后取整数 String str 70 2 if str contains int indexOf str indexOf str str substring 0 indexOf int matchRateInt Intege
  • VS 项目中查找中文正则表达式

    u4E00 u9FA5 u4E00 u9FA5 直接在VS中用Ctrl F或者Ctrl Shift F 在 查找内容 中输入 u4E00 u9FA5 u4E00 u9FA5 然后在 查找选项 使用正则表达式 打钩 就能找出所有这些中文字符串
  • ios gzip 压缩字符串

    1 import zlib h 2 libz 1 2 5 tbd 3 NSData gzipDeflate NSString str NSData data str dataUsingEncoding NSUTF8StringEncodin
  • CeiT阅读笔记

    CeiT Incorporating Convolution Designs into Visual Transformer 纯Transformer架构通常需要大量的训练数据和额外的监督才能获得与卷积神经网络CNNs相当的性能 为了克服这
  • Docker容器访问宿主机网络

    业务请求量小的时候 我们会把一些工程部署到同一台机器上 这些工程之间也会相互访问 如果是http的接口 我们最方便的是使用localhost带地本机的ip 不过结合docker容器后出现了问题 docker容器中localhost表示容器的
  • IDEA项目实践——JavaWeb简介以及Servlet编程实战

    系列文章目录 IDEA项目实践 创建Java项目以及创建Maven项目案例 使用数据库连接池创建项目简介 IDEWA项目实践 mybatis的一些基本原理以及案例 IDEA项目实践 动态SQL 关系映射 注解开发 IDEA项目实践 Spri
  • C# 系统应用之清除Cookies、IE临时文件、历史记录

    本文主要是项目 个人电脑使用记录清除软件 系类文章中关于清除浏览器Cookies IE临时文件 最近使用历史记录等内容 该篇文章的基本思想路线是首先了解上网历史记录的Windows中常用文件路径 再通过文件delete方法删除该文件下内容
  • leetcode86 分割链表

    题目 给你一个链表的头节点 head 和一个特定值 x 请你对链表进行分隔 使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前 你应当 保留 两个分区中每个节点的初始相对位置 示例 输入 head 1 4 3 2 5 2 x 3
  • LeetCode-216-组合总和Ⅱ

    题目链接 LeetCode 216 组合总和 解题思路 回溯算法 注意事项注释中有 代码实现 class Solution 和为 n 个数为 k 求的是组合 不要求顺序 递归的深度是 k public List
  • 2019.9.4 key-value stores 和 timestamps

    这一章先是将key value stores 其实这个就是对应的关系型数据库的以schema为基础的存储原理 一般的nosql就是用的这种 特点就是没有什么明显的schema 除了key以外就是一大坨的value 不需要有什么整齐的格式 讲
  • Leetcode刷题笔记:二叉树篇(下)

    1 Leetcode 110 平衡二叉树 难度 递归 迭代 给定一个二叉树 判断它是否是高度平衡的二叉树 本题中 一棵高度平衡二叉树定义为 一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1 示例 1 给定二叉树 3 9 20 nu