十大经典排序算法动画与解析

2023-11-05

排序算法是《数据结构与算法》中最基本的算法之一。

排序算法可以分为内部排序外部排序

内部排序是数据记录在内存中进行排序。

而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。

用一张图概括:

09ed8f31e67e0070a97e7fe6d3b82568cc0.jpg

关于时间复杂度:

  1. 平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

  2. 线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

  3. O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序

  4. 线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

关于稳定性:

  1. 稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

  2. 不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

1. 冒泡排序

1.1 算法步骤

  • 比较相邻的元素。如果第一个比第二个大,就交换他们两个。

  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

  • 针对所有的元素重复以上的步骤,除了最后一个。

  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

1.2 动画演示

1.3 参考代码

// Java 代码实现
public class BubbleSort {

    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        for (int i = 1; i < arr.length; i++) {
            // 设定一个标记,若为true,则表示此次循环没有进行交换,也就是待排序列已经有序,排序已经完成。
            boolean flag = true;

            for (int j = 0; j < arr.length - i; j++) {
                if (arr[j] > arr[j + 1]) {
                    int tmp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = tmp;

                    flag = false;
                }
            }

            if (flag) {
                break;
            }
        }
        return arr;
    }
}

2. 选择排序

2.1 算法步骤

  • 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置

  • 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

  • 重复第二步,直到所有元素均排序完毕。

2.2 动画演示

3053648-2.gif

2.3 参考代码

//Java 代码实现
public class SelectionSort {

    public int[] sort(int[] sourceArray) throws Exception {
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        // 总共要经过 N-1 轮比较
        for (int i = 0; i < arr.length - 1; i++) {
            int min = i;

            // 每轮需要比较的次数 N-i
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[j] < arr[min]) {
                    // 记录目前能找到的最小值元素的下标
                    min = j;
                }
            }

            // 将找到的最小值和i位置所在的值进行交换
            if (i != min) {
                int tmp = arr[i];
                arr[i] = arr[min];
                arr[min] = tmp;
            }

        }
        return arr;
    }
}

3. 插入排序

3.1 算法步骤

  • 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。

  • 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

3.2 动画演示

3053648-3.gif

3.3 参考代码

public class InsertSort {

    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的
        for (int i = 1; i < arr.length; i++) {

            // 记录要插入的数据
            int tmp = arr[i];

            // 从已经排序的序列最右边的开始比较,找到比其小的数
            int j = i;
            while (j > 0 && tmp < arr[j - 1]) {
                arr[j] = arr[j - 1];
                j--;
            }

            // 存在比其小的数,插入
            if (j != i) {
                arr[j] = tmp;
            }

        }
        return arr;
    }
}

4. 希尔排序

4.1 算法步骤

  • 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

  • 按增量序列个数 k,对序列进行 k 趟排序;

  • 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

4.2 动画演示

3053648-4.gif

4.3 参考代码

public class ShellSort {

    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int gap = 1;
        while (gap < arr.length) {
            gap = gap * 3 + 1;
        }

        while (gap > 0) {
            for (int i = gap; i < arr.length; i++) {
                int tmp = arr[i];
                int j = i - gap;
                while (j >= 0 && arr[j] > tmp) {
                    arr[j + gap] = arr[j];
                    j -= gap;
                }
                arr[j + gap] = tmp;
            }
            gap = (int) Math.floor(gap / 3);
        }

        return arr;
    }
}

5. 归并排序

5.1 算法步骤

  • 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

  • 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

  • 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

  • 重复步骤 3 直到某一指针达到序列尾;

  • 将另一序列剩下的所有元素直接复制到合并序列尾。

5.2 动画演示

3053648-5.gif

5.3 参考代码

public class MergeSort {

    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        if (arr.length < 2) {
            return arr;
        }
        int middle = (int) Math.floor(arr.length / 2);

        int[] left = Arrays.copyOfRange(arr, 0, middle);
        int[] right = Arrays.copyOfRange(arr, middle, arr.length);

        return merge(sort(left), sort(right));
    }

    protected int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        int i = 0;
        while (left.length > 0 && right.length > 0) {
            if (left[0] <= right[0]) {
                result[i++] = left[0];
                left = Arrays.copyOfRange(left, 1, left.length);
            } else {
                result[i++] = right[0];
                right = Arrays.copyOfRange(right, 1, right.length);
            }
        }

        while (left.length > 0) {
            result[i++] = left[0];
            left = Arrays.copyOfRange(left, 1, left.length);
        }

        while (right.length > 0) {
            result[i++] = right[0];
            right = Arrays.copyOfRange(right, 1, right.length);
        }

        return result;
    }
}

6. 快速排序

6.1 算法步骤

  • 从数列中挑出一个元素,称为 “基准”(pivot);

  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

6.2 动画演示

3053648-6.gif

6.3 参考代码

public class QuickSort {

    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        return quickSort(arr, 0, arr.length - 1);
    }

    private int[] quickSort(int[] arr, int left, int right) {
        if (left < right) {
            int partitionIndex = partition(arr, left, right);
            quickSort(arr, left, partitionIndex - 1);
            quickSort(arr, partitionIndex + 1, right);
        }
        return arr;
    }

    private int partition(int[] arr, int left, int right) {
        // 设定基准值(pivot)
        int pivot = left;
        int index = pivot + 1;
        for (int i = index; i <= right; i++) {
            if (arr[i] < arr[pivot]) {
                swap(arr, i, index);
                index++;
            }
        }
        swap(arr, pivot, index - 1);
        return index - 1;
    }

    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
}

7. 堆排序

7.1 算法步骤

  • 创建一个堆 H[0……n-1];

  • 把堆首(最大值)和堆尾互换;

  • 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;

  • 重复步骤 2,直到堆的尺寸为 1。

7.2 动画演示

3053648-7.gif

7.3 参考代码

public class HeapSort {

    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int len = arr.length;

        buildMaxHeap(arr, len);

        for (int i = len - 1; i > 0; i--) {
            swap(arr, 0, i);
            len--;
            heapify(arr, 0, len);
        }
        return arr;
    }

    private void buildMaxHeap(int[] arr, int len) {
        for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
            heapify(arr, i, len);
        }
    }

    private void heapify(int[] arr, int i, int len) {
        int left = 2 * i + 1;
        int right = 2 * i + 2;
        int largest = i;

        if (left < len && arr[left] > arr[largest]) {
            largest = left;
        }

        if (right < len && arr[right] > arr[largest]) {
            largest = right;
        }

        if (largest != i) {
            swap(arr, i, largest);
            heapify(arr, largest, len);
        }
    }

    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
}

8. 计数排序

8.1 算法步骤

  • 花O(n)的时间扫描一下整个序列 A,获取最小值 min 和最大值 max

  • 开辟一块新的空间创建新的数组 B,长度为 ( max - min + 1)

  • 数组 B 中 index 的元素记录的值是 A 中某元素出现的次数

  • 最后输出目标整数序列,具体的逻辑是遍历数组 B,输出相应元素以及对应的个数

8.2 动画演示

3053648-8.gif

8.3 参考代码

public class CountingSort {

    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int maxValue = getMaxValue(arr);

        return countingSort(arr, maxValue);
    }

    private int[] countingSort(int[] arr, int maxValue) {
        int bucketLen = maxValue + 1;
        int[] bucket = new int[bucketLen];

        for (int value : arr) {
            bucket[value]++;
        }

        int sortedIndex = 0;
        for (int j = 0; j < bucketLen; j++) {
            while (bucket[j] > 0) {
                arr[sortedIndex++] = j;
                bucket[j]--;
            }
        }
        return arr;
    }

    private int getMaxValue(int[] arr) {
        int maxValue = arr[0];
        for (int value : arr) {
            if (maxValue < value) {
                maxValue = value;
            }
        }
        return maxValue;
    }
}

9. 桶排序

9.1 算法步骤

  • 设置固定数量的空桶。

  • 把数据放到对应的桶中。

  • 对每个不为空的桶中数据进行排序。

  • 拼接不为空的桶中数据,得到结果

9.2 动画演示

3053648-9.gif

9.3 参考代码

public class BucketSort {

    private static final InsertSort insertSort = new InsertSort();

    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        return bucketSort(arr, 5);
    }

    private int[] bucketSort(int[] arr, int bucketSize) throws Exception {
        if (arr.length == 0) {
            return arr;
        }

        int minValue = arr[0];
        int maxValue = arr[0];
        for (int value : arr) {
            if (value < minValue) {
                minValue = value;
            } else if (value > maxValue) {
                maxValue = value;
            }
        }

        int bucketCount = (int) Math.floor((maxValue - minValue) / bucketSize) + 1;
        int[][] buckets = new int[bucketCount][0];

        // 利用映射函数将数据分配到各个桶中
        for (int i = 0; i < arr.length; i++) {
            int index = (int) Math.floor((arr[i] - minValue) / bucketSize);
            buckets[index] = arrAppend(buckets[index], arr[i]);
        }

        int arrIndex = 0;
        for (int[] bucket : buckets) {
            if (bucket.length <= 0) {
                continue;
            }
            // 对每个桶进行排序,这里使用了插入排序
            bucket = insertSort.sort(bucket);
            for (int value : bucket) {
                arr[arrIndex++] = value;
            }
        }

        return arr;
    }

    /**
     * 自动扩容,并保存数据
     *
     * @param arr
     * @param value
     */
    private int[] arrAppend(int[] arr, int value) {
        arr = Arrays.copyOf(arr, arr.length + 1);
        arr[arr.length - 1] = value;
        return arr;
    }
}

10. 基数排序

10.1 算法步骤

  • 将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零

  • 从最低位开始,依次进行一次排序

  • 从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列

10.2 动画演示

3053648-10.gif

10.3 参考代码

public class RadixSort {

    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int maxDigit = getMaxDigit(arr);
        return radixSort(arr, maxDigit);
    }

    /**
     * 获取最高位数
     */
    private int getMaxDigit(int[] arr) {
        int maxValue = getMaxValue(arr);
        return getNumLenght(maxValue);
    }

    private int getMaxValue(int[] arr) {
        int maxValue = arr[0];
        for (int value : arr) {
            if (maxValue < value) {
                maxValue = value;
            }
        }
        return maxValue;
    }

    protected int getNumLenght(long num) {
        if (num == 0) {
            return 1;
        }
        int lenght = 0;
        for (long temp = num; temp != 0; temp /= 10) {
            lenght++;
        }
        return lenght;
    }

    private int[] radixSort(int[] arr, int maxDigit) {
        int mod = 10;
        int dev = 1;

        for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
            // 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10)
            int[][] counter = new int[mod * 2][0];

            for (int j = 0; j < arr.length; j++) {
                int bucket = ((arr[j] % mod) / dev) + mod;
                counter[bucket] = arrayAppend(counter[bucket], arr[j]);
            }

            int pos = 0;
            for (int[] bucket : counter) {
                for (int value : bucket) {
                    arr[pos++] = value;
                }
            }
        }

        return arr;
    }
    private int[] arrayAppend(int[] arr, int value) {
        arr = Arrays.copyOf(arr, arr.length + 1);
        arr[arr.length - 1] = value;
        return arr;
    }
}

 

转载于:https://my.oschina.net/u/3664884/blog/3053648

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

十大经典排序算法动画与解析 的相关文章

随机推荐

  • 使用BOTO进行S3各种操作

    使用BOTO进行S3各种操作 BOTO是一个开源的PYTHON发布包 是AWS AMAZON WEBSERVICE 的PYTHON封装 近期 我们公司用到国内某知名公司的S3云存储服务 需要调用该公司提供的S3 PYTHON SDK 鉴于该
  • Java连接MySQL数据库(多种连接方法)

    当我们掌握Java的基础知识后就可以学习一些Java的高级技术 或特性 了 例如 集合 多线程 网络编程 数据库技术 并发等等 其中数据库技术在Java的学习中也是相当重要的 今天就简单介绍一下Java与MySQL数据类的 1 提前准备 下
  • 亚马逊云科技实时 AI 编程助手 Amazon CodeWhisperer,开发快人一步!

    Amazon CodeWhisperer 是一款 AI 编码配套应用程序 可在 IDE 中生成整行代码和完整的函数代码建议 以帮助您更快地完成更多工作 在本系列文章中 我们将为您详细介绍 Amazon CodeWhisperer 的相关信息
  • 传输层——TCP报文头介绍

    16位源端口号 16位目的端口号 32位序列号 32位确认序列号 4位头部长度 保留6位 U R G A C K P S H R S T S Y N F I N 16位窗口大小 16位检验和 16位紧急指针 可选项 数据 源端口 长度为16
  • flex布局(骰子布局)

    1 应该都知道使用VS来敲写页面的第一步就是新建文件夹 也可以建文件夹 这是指只有html没有css与js才可以的 然后 可以在VS中打开文件夹 也可以直接把文件夹拖进去 这有两种方法 任意一种就行了 建议你直接拖进去 因为方便 2 这次的
  • Apache配置文件httpd.conf的理解

    httpd conf 是Apache使用的主要配置文件 1 文件位置 一般在 C wamp64 bin apache apache2 4 51 conf 2 是注释符号 1 解释每一指令的作用 2 指令模板 有时去掉 就能使用 3 Unix
  • Surprise库使用总结

    文章目录 Surprise库 1 加载数据模块 2 模型训练前的数据划分模块 2 1 交叉验证数据划分 2 2 训练集测试集划分 3 构建算法模块 3 1 记号说明 3 2 基于统计的算法 3 3 基于近邻 协同过滤 的方法 3 3 1 相
  • stata回归?固定效应模型(组内变换OR LSDV最小二乘法)

    面板数据分析与Stata应用笔记整理自慕课上浙江大学方红生教授的面板数据分析与Stata应用课程 笔记中部分图片来自课程截图 笔记内容还参考了陈强教授的 高级计量经济学及Stata应用 第二版 一 面板数据的定义 面板数据 panel da
  • 笔记本左Ctrl键失灵

    这两天发现笔记本的左Ctrl键单按失灵 无法使用快捷键 很是麻烦 一开始以为按键坏了 打算去官方店维修 但使用在线网站测试 先按其余任意按键的同时 再按左Ctrl 它有反应 可以使用在线键盘测试 zFrontier 装备前线对键盘按键进行在
  • vben admin框架 useForm 时间选择器 开始时间,结束时间解析.懒人方法

    因为搜索部分需要一个创建时间范围 因为DatePicker返回的是一个数组 开始自己在useTable 中的beforeFetch中拦截请求 然后解析参数 重组参数 这样有好多表格组件的时候 就需要写多个beforeFetch 然后闲来无事
  • 《新程序员002》图书正式上市! 从“新数据库时代”到“软件定义汽车”

    20年前 伴随着互联网打开信息化大门 技术人成为新时代的开拓者 在时代的召唤下 CSDN于2001年推出国内首个面向IT人员的专业杂志 程序员 成为一代代开发者的技术启蒙 20年后的今天 人工智能 云计算 大数据等新兴技术被赋予撬动新一轮产
  • 最有效的方法来增加在Map中的值

    关于这个是在一个博客上看到的 就像试一下 测试结果出人意料 看到这个标题可能还是觉得有点抽象 那么首先来一段代码 int count map containsKey string map get string 0 map put strin
  • 给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组。

    给定一个包含 n 个整数的数组 nums 判断 nums 中是否存在三个元素 a b c 使得 a b c 0 找出所有满足条件且不重复的三元组 注意 答案中不可以包含重复的三元组 例如 给定数组 nums 1 0 1 2 1 1 4 满足
  • Linux的chmod

    chmod 命令是 Linux 系统中的一个重要命令 用于更改文件或目录的访问权限 chmod 命令可以设置文件或目录的所有者 所属组和其他用户的读 写 执行权限 通过 chmod 命令 用户可以控制文件或目录的访问权限 以保护重要数据不被
  • KVM学习(一)vnc连接

    完整流程Windows连接CentOS7 这个KVM系列是我的本科毕业设计 边学边做 长期更新 1 安装vncserver 首先看下实验环境 windows上跑的vmware虚拟机 vncserver安装在虚拟机上 虚拟机已经安装好了gno
  • 游戏服务器维护是干啥的,网络游戏的服务器维护都是在做些什么?

    来 我作为前网易游戏从业人员来说说真正服务器维护时候在做什么 服务器维护分成两种 紧急维护和日常维护 1 紧急维护 紧急维护一般就是硬件故障或者严重Bug 这个时候是各个团队最紧张的时候 每个团队都忙个不停 运营团队会发布公告 安慰玩家 统
  • 黑马JAVA P174 线程池概述、线程池的7个参数详解

  • Java Spring注解二:参数请求@RequestParam和@RequestBody

    作为一名crud boy 关于web请求 接口处理基本是家常便饭 涉及到这些中间肯定少不了请求参数 毕竟要根据请求参数才能进行相应的操作 返回预想的结果 一般来说我们web请求参数是不能直接通过http请求来代码识别的 所以你必须要通过注解
  • 关于上采样方法总结(插值和深度学习)

    一 简介 上采样的技术是图像进行超分辨率的必要步骤 最近看到了CVPR2019有一些关于上采样的文章 所以想着把上采样的方法做一个简单的总结 看了一些文章后 发现上采样大致被总结成了三个类别 1 基于线性插值的上采样 2 基于深度学习的上采
  • 十大经典排序算法动画与解析

    2019独角兽企业重金招聘Python工程师标准 gt gt gt 排序算法是 数据结构与算法 中最基本的算法之一 排序算法可以分为内部排序和外部排序 内部排序是数据记录在内存中进行排序 而外部排序是因排序的数据很大 一次不能容纳全部的排序