DDR工作原理

2023-11-05

DDR SDRAM全称为Double Data Rate SDRAM,中文名为“双倍数据流SDRAM”。DDR SDRAM在原有的SDRAM的基础上改进而来。也正因为如此,DDR能够凭借着转产成本优势来打败昔日的对手RDRAM,成为当今的主流。本文只着重讲讲DDR的原理和DDR SDRAM相对于传统SDRAM(又称SDR SDRAM)的不同。

DDR的核心频率、时钟频率和数据传输频率:

核心频率就是内存的工作频率;DDR1内存的核心频率是和时钟频率相同的,到了DDR2和DDR3时才有了时钟频率的概念,就是将核心频率通过倍频技术得到的一个频率。数据传输频率就是传输数据的频率。DDR1预读取是2位,DDR2预读取是4位,DDR3预读取是8位。

DDR1在传输数据的时候在时钟脉冲的上升沿和下降沿都传输一次,所以数据传输频率就是核心频率的2倍。DDR2内存将核心频率倍频2倍所以时钟频率就是核心频率的2倍了,同样还是上升边和下降边各传输一次数据,所以数据传输频率就是核心频率的4倍。

DDR3内存的时钟频率是核心频率的4倍,所以数据传输频率就是核心频率的8倍了。

1

 

一、DDR的基本原理

有很多文章都在探讨DDR的原理,但似乎也不得要领,甚至还带出一些错误的观点。首先我们看看一张DDR正规的时序图。

2

从中可以发现它多了两个信号: CLK#与DQS,CLK#与正常CLK时钟相位相反,形成差分时钟信号。而数据的传输在CLK与CLK#的交叉点进行,可见在CLK的上升与下降沿(此时正好是CLK#的上升沿)都有数据被触发,从而实现DDR。在此,我们可以说通过差分信号达到了DDR的目的,甚至讲CLK#帮助了第二个数据的触发,但这只是对表面现象的简单描述,从严格的定义上讲并不能这么说。之所以能实现DDR,还要从其内部的改进说起。

3

DDR内存芯片的内部结构图

这是一颗128Mbit的内存芯片,从图中可以看出来,白色区域内与SDRAM的结构基本相同,但请注意灰色区域,这是与SDRAM的不同之处。首先就是内部的L-Bank规格。SDRAM中L-Bank 存储单元的容量与芯片位宽相同,但在DDR SDRAM中并不是这样,存储单元的容量是芯片位宽的一倍,所以在此不能再套用讲解SDRAM时 “芯片位宽=存储单元容量” 的公式了。也因此,真正的行、列地址数量也与同规格SDRAM不一样了。

以本芯片为例,在读取时,L-Bank在内部时钟信号的触发下一次传送8bit的数据给读取锁存器,再分成两路4bit数据传给复用器,由后者将它们合并为一路4bit数据流,然后由发送器在DQS的控制下在外部时钟上升与下降沿分两次传输4bit的数据给北桥。这样,如果时钟频率为100MHz,那么在I/O端口处,由于是上下沿触发,那么就是传输频率就是200MHz。

现在大家基本明白DDR SDRAM的工作原理了吧,这种内部存储单元容量(也可以称为芯片内部总线位宽)=2×芯片位宽(也可称为芯片I/O总线位宽)的设计,就是所谓的两位预取(2-bit Prefetch),有的公司则贴切的称之为2-n Prefetch(n代表芯片位宽)。

二、DDR SDRAM与SDRAM的不同

DDR SDRAM与SDRAM的不同主要体现在以下几个方面。

DDR SDRAM与SDRAM的主要不同对比表

4

5

 

DDR SDRAM与SDRAM一样,在开机时也要进行MRS,不过由于操作功能的增多,DDR SDRAM在MRS之前还多了一EMRS阶段(Extended Mode Register Set,扩展模式寄存器设置),这个扩展模式寄存器控制着DLL的有效/禁止、输出驱动强度、QFC 有效/无效等。

6

由于EMRS与MRS的操作方法与SDRAM的MRS大同小异,在此就不再列出具体的模式表了,有兴趣的话可查看相关的DDR内存资料。下面我们就着重说说DDR SDRAM的新设计与新功能。

7

1、 差分时钟

差分时钟(参见上文“DDR SDRAM读操作时序图”)是DDR的一个必要设计,但CK#的作用,并不能理解为第二个触发时钟(你可以在讲述DDR原理时简单地这么比喻),而是起到触发时钟校准的作用。由于数据是在CK的上下沿触发,造成传输周期缩短了一半,因此必须要保证传输周期的稳定以确保数据的正确传输,这就要求CK的上下沿间距要有精确的控制。但因为温度、电阻性能的改变等原因,CK上下沿间距可能发生变化,此时与其反相的CK#就起到纠正的作用(CK上升快下降慢,CK# 则是上升慢下降快)。而由于上下沿触发的原因,也使CL=1.5和2.5成为可能,并容易实现。与CK反相的CK#保证了触发时机的准确性。

8

2、 数据选取脉冲(DQS)

总结DQS:它是双向信号;读内存时,由内存产生,DQS的沿和数据的沿对齐;写入内存时,由外部产生,DQS的中间对应数据的沿,即此时DQS的沿对应数据最稳定的中间时刻。

DQS是DDR SDRAM中的重要功能,它的功能主要用来在一个时钟周期内准确的区分出每个传输周期,并便于接收方准确接收数据。每一颗芯片都有一个DQS信号线,它是双向的,在写入时它用来传送由北桥发来的DQS信号,读取时,则由芯片生成DQS向北桥发送。完全可以说,它就是数据的同步信号。

在读取时,DQS与数据信号同时生成(也是在CK与 CK#的交叉点)。而DDR内存中的CL也就是从CAS发出到DQS生成的间隔,数据真正出现在数据I/O总线上相对于DQS触发的时间间隔被称为 tAC。注意,这与SDRAM中的tAC的不同。实际上,DQS生成时,芯片内部的预取已经完毕了,tAC是指上文结构图中灰色部分的数据输出时间,由于预取的原因,实际的数据传出可能会提前于DQS发生(数据提前于DQS传出)。由于是并行传输,DDR内存对tAC也有一定的要求,对于 DDR266,tAC的允许范围是±0.75ns,对于DDR333,则是±0.7ns,有关它们的时序图示见前文,其中CL里包含了一段DQS的导入期。

前文已经说了DQS是为了保证接收方的选择数据, DQS在读取时与数据同步传输,那么接收时也是以DQS的上下沿为准吗?不,如果以DQS的上下沿区分数据周期的危险很大。由于芯片有预取的操作,所以输出时的同步很难控制,只能限制在一定的时间范围内,数据在各I/O端口的出现时间可能有快有慢,会与DQS有一定的间隔,这也就是为什么要有一个tAC规定的原因。而在接收方,一切必须保证同步接收,不能有tAC之类的偏差。这样在写入时,芯片不再自己生成DQS,而以发送方传来的DQS为基准,并相应延后一定的时间,在DQS的中部为数据周期的选取分割点(在读取时分割点就是上下沿),从这里分隔开两个传输周期。这样做的好处是,由于各数据信号都会有一个逻辑电平保持周期,即使发送时不同步,在DQS上下沿时都处于保持周期中,此时数据接收触发的准确性无疑是最高的。在写入时,以DQS的高/低电平期中部为数据周期分割点,而不是上/下沿,但数据的接收触发仍为DQS的上/下沿。

9

3、 写入延迟

在上面的DQS写入时序图中,可以发现写入延迟已经不是0了,在发出写入命令后,DQS与写入数据要等一段时间才会送达。这个周期被称为DQS相对于写入命令的延迟时间(tDQSS, WRITE Command to the first corresponding rising edge of DQS),对于这个时间大家应该很好理解了。

为什么要有这样的延迟设计呢?原因也在于同步,毕竟一个时钟周期两次传送,需要很高的控制精度,它必须要等接收方做好充分的准备才行。tDQSS是DDR内存写入操作的一个重要参数,太短的话恐怕接受有误,太长则会造成总线空闲。tDQSS最短不能小于0.75个时钟周期,最长不能超过1.25个时钟周期。有人可能会说,如果这样,DQS不就与芯片内的时钟不同步了吗?对,正常情况下,tDQSS是一个时钟周期,但写入时接受方的时钟只用来控制命令信号的同步,而数据的接受则完全依靠DQS进行同步,所以 DQS与时钟不同步也无所谓。不过,tDQSS产生了一个不利影响——读后写操作延迟的增加,如果CL=2.5,还要在tDQSS基础上加入半个时钟周期,因为命令都要在CK的上升沿发出。

10

当CL=2.5时,读后写的延迟将为tDQSS+0.5个时钟周期(图中BL=2)

另外,DDR内存的数据真正写入由于要经过更多步骤的处理,所以写回时间(tWR)也明显延长,一般在3个时钟周期左右,而在DDR-Ⅱ规范中更是将tWR列为模式寄存器的一项,可见它的重要性。

11

4、 突发长度与写入掩码

在DDR SDRAM中,突发长度只有2、4、8三种选择,没有了随机存取的操作(突发长度为1)和全页式突发。这是为什么呢?因为L-Bank一次就存取两倍于芯片位宽的数据,所以芯片至少也要进行两次传输才可以,否则内部多出来的数据怎么处理?而全页式突发事实证明在PC内存中是很难用得上的,所以被取消也不希奇。

但是,突发长度的定义也与SDRAM的不一样了(见本章节最前那幅DDR简示图),它不再指所连续寻址的存储单元数量,而是指连续的传输周期数,每次是一个芯片位宽的数据。对于突发写入,如果其中有不想存入的数据,仍可以运用DM信号进行屏蔽。DM信号和数据信号同时发出,接收方在DQS的上升与下降沿来判断DM的状态,如果DM为高电平,那么之前从DQS 中部选取的数据就被屏蔽了。有人可能会觉得,DM是输入信号,意味着芯片不能发出DM信号给北桥作为屏蔽读取数据的参考。其实,该读哪个数据也是由北桥芯片决定的,所以芯片也无需参与北桥的工作,哪个数据是有用的就留给北桥自己去选吧。

5、 延迟锁定回路(DLL)

DDR SDRAM对时钟的精确性有着很高的要求,而DDR SDRAM有两个时钟,一个是外部的总线时钟,一个是内部的工作时钟,在理论上DDR SDRAM这两个时钟应该是同步的,但由于种种原因,如温度、电压波动而产生延迟使两者很难同步,更何况时钟频率本身也有不稳定的情况(SDRAM也内部时钟,不过因为它的工作/传输频率较低,所以内外同步问题并不突出)。DDR SDRAM的tAC就是因为内部时钟与外部时钟有偏差而引起的,它很可能造成因数据不同步而产生错误的恶果。实际上,不同步就是一种正/负延迟,如果延迟不可避免,那么若是设定一个延迟值,如一个时钟周期,那么内外时钟的上升与下降沿还是同步的。鉴于外部时钟周期也不会绝对统一,所以需要根据外部时钟动态修正内部时钟的延迟来实现与外部时钟的同步,这就是DLL的任务。

DLL不同于主板上的PLL,它不涉及频率与电压转换,而是生成一个延迟量给内部时钟。目前DLL有两种实现方法,一个是时钟频率测量法(CFM,Clock Frequency Measurement),一个是时钟比较法(CC,Clock Comparator)。

CFM是测量外部时钟的频率周期,然后以此周期为延迟值控制内部时钟,这样内外时钟正好就相差了一个时钟周期,从而实现同步。DLL就这样反复测量反复控制延迟值,使内部时钟与外部时钟保持同步。

12

CFM式DLL工作示意图

CC的方法则是比较内外部时钟的长短,如果内部时钟周期短了,就将所少的延迟加到下一个内部时钟周期里,然后再与外部时钟做比较,若是内部时钟周期长了,就将多出的延迟从下一个内部时钟中刨除,如此往复,最终使内外时钟同步。

13

CC式DLL工作示意图

CFM与CC各有优缺点,CFM的校正速度快,仅用两个时钟周期,但容易受到噪音干扰,并且如果测量失误,则内部的延迟就永远错下去了。CC的优点则是更稳定可靠,如果比较失败,延迟受影响的只是一个数据(而且不会太严重),不会涉及到后面的延迟修正,但它的修正时间要比CFM长。DLL功能在DDR SDRAM中可以被禁止,但仅限于除错与评估操作,正常工作状态是自动有效的。

14

转自一些论坛:

1.并行匹配主要是考虑到负载过重,属于信号完整性的问题;如果接口下就1~2片DDR可以考虑串阻匹配的

2.由于DDR2的电平HSTL电平的,也就是时钟是伪差分的方式,没必要按3W做,等长是必要的,最好做VTT

理论上3W,指两线中心间距=3*线到地平面距离

一般的3W原则,采用的是,两线中心间距=3*线宽

根据JEDEC[1]建议DDR2的最高工作电压是1.9V,并且建议对于要求内存稳定使用的环境绝不能超过此值(例如服务器或其他任务关键设备)。此外,JEDEC规定内存模块必须在受到永久损害前承受2.3V的电压。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

DDR工作原理 的相关文章

  • 为什么 ARM 使用两条指令来屏蔽一个值?

    对于以下功能 uint16 t swap const uint16 t value return value lt lt 8 value gt gt 8 为什么带 O2 的 ARM gcc 6 3 0 会产生以下程序集 swap unsig
  • 手臂 g++ 中缺少一些东西

    我安装了 CodeSourcery g 工具链并尝试编译一个简单的 hello world 程序 include
  • 理解这部分手臂的汇编代码

    syntax unified thumb cpu cortex m4 arch armv7e m fpu fpv4 sp d16 Changes from unprivileged to privileged mode thumb func
  • 将ELF文件加载到内存中

    我正在尝试将 elf 文件放入内存然后执行它 步骤如下 1 要放入内存的文件 int main printf Hello world n return 0 2 编译它gcc o hello hello c static ELF Header
  • 如何在 ARM 架构上从 RAM 运行代码

    我正在对 ARM Cortex R4 进行编程 并且有一些二进制文件 我想从 TCRAM 执行它们 只是为了看看性能的提升是否足够好 我知道我必须编写一个函数来将二进制文件复制到 RAM 这可以通过链接器脚本来完成 并且知道二进制文件的大小
  • ARM Neon:如何从 uint8x16_t 转换为 uint8x8x2_t?

    我最近发现了关于vreinterpret q dsttype src类型转换运算符 https stackoverflow com a 43519190 2436175 但是 这似乎不支持所描述的数据类型的转换这个链接 http infoc
  • 在 ARM 处理器上执行存储在外部 SPI 闪存中的程序

    我有一个 ARM 处理器 能够与外部闪存芯片连接 写入芯片的是为 ARM 架构编译的程序 可供执行 我需要知道如何将这些数据从外部闪存获取到 ARM 处理器上以供执行 我可以提前运行某种复制例程 将数据复制到可执行内存空间吗 我想我可以 但
  • 哪些变量类型/大小在 STM32 微控制器上是原子的?

    以下是 STM32 微控制器上的数据类型 http www keil com support man docs armcc armcc chr1359125009502 htm http www keil com support man d
  • RAM 存储二进制数和汇编语言的冒泡排序

    我必须使用 ARM v7 执行一个例程 在 RAM 内存中存储 10 个二进制数 然后使用冒泡排序对这些数字从高到低进行排序 我应该如何开始 func bubbleSortAscendingU32 ldr r3 r0 4 mov r1 9
  • ARM Cortex A8 PMNC 读取在启用后也给出 0.. 有什么想法/建议吗?

    MODULE LICENSE GPL MODULE DESCRIPTION user mode access to performance registers int init arm init void unsigned int valu
  • C 嵌入式应用程序中 time() 函数的问题

    我在用time 在 ARM 微控制器上 处理器一到达此函数就会重新启动 奇怪的是 当我处于调试模式时 代码运行得很好 但一旦我想将其应用到独立模式 我就会遇到重置 我是否忽略了什么 这个功能有替代品吗 代码部分是这样的 include
  • 可以使用Visual Studio 2012构建ARM桌面程序吗?

    我正在使用 Visual Studio 2012 beta 我的桌面 win32 程序在 ARM 架构中编译得很好 升级到 Visual Studio 2012 RC 后 编译器无法工作并出现以下错误 不支持为 ARM 平台编译桌面应用程序
  • 如何在 Android 设备上运行 VS Code [重复]

    这个问题在这里已经有答案了 我有 Galaxy Tab S6 它具有替代笔记本电脑的很酷的功能 例如连接鼠标和键盘 但不幸的是它运行 Android 操作系统 并且没有很多开发应用程序可用于 Android 所以我想是否有一个选项可以在至少
  • 产生并处理软件中断

    有人可以告诉我如何在Linux下生成软件中断然后用request irq处理它吗 或者也许这是不可能的 您可以使用软中断来代替 您可以通过编辑 include linux interrupt h 来定义您的 sofirq 然后使用函数 ra
  • 在 Intel 机器上构建 Apple Silicon 二进制文件

    如何在 macOS 11 Intel 上编译 C 项目以在 Silicon 上运行 我当前的构建脚本很简单 configure make sudo make install 我尝试过使用 host and target标志与aarch64
  • DS-5:什么是 FVP、RTSM、基础模型、AEM 模型、快速模型、CADI?

    DS 5 模拟器使用了很多术语 如 FVP RTSM 快速模型 基础模型 AEM 模型 CADI Arm的文档中提供的解释不是很清楚 这些术语的含义是什么 作为 DS 5 的最终用户我应该关心哪些术语 Model 软件模拟的行业术语 就 A
  • 使用 NEON 内在函数除以浮点数

    我当时正在处理四个像素的图像 这是在armv7对于 Android 应用程序 我想分一个float32x4 t向量由另一个向量组成 但其中的数字与大约不同0 7 to 3 85 在我看来 除法的唯一方法是使用右移 但这是针对一个数字2 n
  • 什么是遗留中断?

    我正在开发一个项目 试图弄清楚 ARM 架构的全局中断控制器中如何处理中断 我正在使用 pl390 中断控制器 我看到有一条线被称为传统中断 它绕过了分配器逻辑 假设有 2 个中断可以被编程为传统中断 任何人都可以帮助解释一下什么是遗留中断
  • 设备树不匹配:.probe 从未被调用

    我无法理解设备树的工作原理 或者具体来说为什么该驱动程序无法初始化 这是在 android 版本 3 10 的 rockchip 供应商内核中 驱动程序 看门狗 rk29 wdt c 为了可读性而减少 static const struct
  • 英特尔的最后分支记录功能是英特尔处理器独有的吗?

    最后分支记录是指存储与最近执行的分支相关的源地址和目标地址的寄存器对 MSR 的集合 它们受英特尔酷睿 2 英特尔至强和英特尔凌动处理器系列的支持 http css csail mit edu 6 858 2012 readings ia3

随机推荐

  • 注意记录Struts2关于值栈的理解,解决重复用户登录的问题

    充分体会这句话的含义
  • 查看ssh端口号_centos7修改默认ssh端口以及问题排查

    1 修改ssh端口号的方法 修改 sudo vi etc ssh sshd config 重启 sudo systemctl restart sshd service 重启后报错 Job for sshd service failed be
  • 以ed结尾的单词

    1 规则动词词尾加 ed有三种读音 1 1 以清辅音结尾 加 ed 在清辅音后读作 t 如 ask asked look looked help helped watch watched stop stopped work worked p
  • python离群点检测_python 离群点检测

    1 importnumpy as np2 importpandas as pd3 from sklearn cluster importKMeans4 importmatplotlib pyplot as mp5 6 7 defget da
  • [Python]Anaconda连接mysql数据库,生成的200个激活码保存在数据库

    Anaconda连接Mysql数据库 主要分为两步 1 安装mysql 这里注意mysql的版本不要超过5 5 可直接在百度栏搜索出现的mysql版本是最新的 要加上版本进行搜索 我给出我下载的链接 mysql 5 5 20 winx64
  • 创建一个crontab专用docker容器

    背景 K8S的一个POD通过PVC挂在了一个ceph rbd盘 但是希望可以通过脚本定期读取和操作rbd盘里的数据 我们不希望将crontab和app进程放到同一个容器内 并且RBD只支持单个节点的读写挂载 所以没办法通过其它POD来完成这
  • Linux MQTT 物联网通信

    目录 MQTT 报文 MQTT 简介 MQTT 协议 上 MQTT 通信基本原理 连接MQTT 服务端 MQTT 客户端连接服务端的两个步骤 CONNECT 请求报文 CONNACK 回复报文 断开连接 发布消息 订阅主题与取消订阅主题 P
  • Qt源码分析之QObject

    在分析源码之前 我们先来介绍下Pimpl机制 Pimpl机制介绍 Pimpl private implementation 字面意思是私有实现 具体实现是将类的 假设类A 私有数据和函数放入一个单独的类 假设类Pimpl 中 然后在类A的头
  • dubbo——管理员指南

    原文地址 http blog csdn net wilsonke article details 39935801 2014 10 09 18 36 3613人阅读 评论 0 收藏 举报 目录 管理员指南 安装手册 示例提供者安装 示例消费
  • FFT (快速傅里叶变换)

    FFT FFT FFT的全称是 Fast Fourier Transform 即快速傅里叶变换 傅里叶变换是复变函数的重要内容 傅里叶变换分为离散和连续傅里叶变换 傅里叶变换实现从时域到频域的转换 是信号与系统重要的分析工具 连续傅里叶变换
  • 设备管理 USB ID

    发现个USB ID站点 对于做设备管理识别的小伙伴特别实用 http www linux usb org usb ids 附录 List of USB ID s Maintained by Stephen J Gowdy
  • pytorch低版本找到并安装torch_geometric对应版本

    一 找到官网的安装命令 不同版本的torch geometric 对应的安装命令不完全一致 因此我们需要首先找到所需torch geometric版本的正确安装命令 然后再去找对应的版本 目前torch geometric官网上只有pyto
  • Win10环境下CPU+GPU版本基于YOLOv5的行人检测研究(包括Anaconda安装超详细)

    安装Anaconda 直达链接Anaconda 点击get started 点击Download Anaconda Installers 点击Download 然后保存执行文件即可 开始安装Anaconda 双击执行文件 Anaconda3
  • Java中的“+“运算符

    前言 前面已经对各类运算符有了一个总的认知 运算符用处很多 一 关于Java中的 运算符 1 当 两边确定都是数字的话一定是进行加法运算 2 当 两边的数据是字符串 1个 一定会进行字符串的连接运算 并且连接过后运算结果一 定 还是一个字符
  • 关于IP分片的一篇小论文

    关键字 IP分片 MTU MSS 引言 分片是分组交换的思想体现 也是IP协议解决的两个主要问题之一 在IP协议中的分片算法主要解决不同物理网络最大传输单元 MTU 的不同造成的传输问题 但是分组在传输过程中不断地分片和重组会带来很大的工作
  • 使用C语言操作环境变量

    获取环境变量内容 char getenv char name 参数 name欲获取的环境变量名称 返回值 环境变量值 NULL表示没有找到环境变量 设置环境变量 int putenv char string 参数 string环境变量字符串
  • linuxsed替换字符串后保存_字符串方法——replace()

    1 字符串方法 replace str replace old new max 参数说明 Parameters old 被替换的字符串 new 新字符串 替换原来的old字符串 max 可选参数 替换不超过max次 例子 Example s
  • 什么是抖动?什么叫抖动

    什么是抖动 什么叫抖动 抖动的定义是 数字信号的各个有效瞬时对其当时的理想位置的短期性偏离 这意味着抖动是不希望有的数字信号的相位调制 相位偏离的频率称为抖动频率 与抖动有密切关系的第二个参数称为漂移 把它定义为 数字信号的各个有效瞬间相对
  • [NOI Online #3 入门组 T3]买表【二进制优化dp背包】

    题目链接 很可惜的一点就是 我正赛的时候好像把a和k看反了 于是一直想不到如何做 打了个暴力分 现在想想 暴力分也错了 因为a和k真的很关键 使得最后300变成200分 人生第一场OI就这样草草结束 或许这就是OI选手的刺激所在吧 得亏我不
  • DDR工作原理

    DDR SDRAM全称为Double Data Rate SDRAM 中文名为 双倍数据流SDRAM DDR SDRAM在原有的SDRAM的基础上改进而来 也正因为如此 DDR能够凭借着转产成本优势来打败昔日的对手RDRAM 成为当今的主流