GBDT算法梳理

2023-11-08

1.GBDT(Gradient Boosting Decision Tree)思想

  Boosting :

  给定初始训练数据,由此训练出第一个基学习器;
  根据基学习器的表现对样本进行调整,在之前学习器做错的样本上投入更多关注;
  用调整后的样本,训练下一个基学习器;
  重复上述过程 T 次,将 T 个学习器加权结合。
 

  Gradient boosting

    Gradient boosting是 boosting 的其中一种方法,它主要的思想是,每一次建立单个学习器时,是在之前建立的模型的损失函数的梯度下降方向。

    我们知道损失函数(loss function)越大,说明模型越容易出错,如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度(Gradient)的方向上下降。

  

  GBDT

    GBDT是 GB 和 DT(Decision Tree) 的结合,就是当 GB 中的单个学习器为决策树时的情况.决策树分为两大类,回归树和分类树。前者用于预测实数值,如明天的温度、用户的年龄、网页的相关程度;后者用于分类标签值,如晴天/阴天/雾/雨、用户性别、网页是否是垃圾页面。这里要强调的是,前者的结果加减是有意义的,如10岁+5岁-3岁=12岁,后者则无意义,如男+男+女=到底是男是女?GBDT的核心就在于,每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量

  比如A的真实年龄是18岁,但第一棵树的预测年龄是12岁,差了6岁,即残差为6岁。那么在第二棵树里我们把A的年龄设为6岁去学习,如果第二棵树真的能把A分到6岁的叶子节点,那累加两棵树的结论就是A的真实年龄;
  如果第二棵树的结论是5岁,则A仍然存在1岁的残差,第三棵树里A的年龄就变成1岁,继续学。

    而分类树的结果显然是没办法累加的,所以GBDT中的树都是回归树,这点对理解GBDT相当重要

 

 

    我们通过一张图片,来说明gbdt的训练过程: 

 

 

  gbdt通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮分类器的残差基础上进行训练。对弱分类器的要求一般是足够简单,并且是低方差和高偏差的。因为训练的过程是通过降低偏差来不断提高最终分类器的精度,(此处是可以证明的)。

        弱分类器一般会选择为CART TREE(也就是分类回归树)。由于上述高偏差和简单的要求 每个分类回归树的深度不会很深。最终的总分类器 是将每轮训练得到的弱分类器加权求和得到的(也就是加法模型)。

        模型最终可以描述为:

              

 

2.负梯度拟合

我们希望找到一个 f(x) 使得 L(y, f(x)) 最小,那么 f(x) 就得沿着使损失函数L减小的方向变化,即:

f(x_{1}) = f(x) - \frac{\partial L(y, f(x))}{\partial f(x)}

同时,最新的学习器是由当前学习器 f(x) 与本次要产生的回归树 T_{1}相加得到的:

f(x_{1}) = f(x) + T_{1}

因此,为了让损失函数减小,需要令:

- \frac{\partial L(y, f(x))}{\partial f(x)} = T_{1}

即用损失函数对f(x)的负梯度来拟合回归树。

3.损失函数

这里我们再对常用的GBDT损失函数做一个总结。

    对于分类算法,其损失函数一般有对数损失函数和指数损失函数两种:

    a) 如果是指数损失函数,则损失函数表达式为

        

 

    b) 如果是对数损失函数,分为二元分类和多元分类两种,参见4节和5节。

    

    对于回归算法,常用损失函数有如下3种:

    a)均方差,这个是最常见的回归损失函数了

        

 

 

    b)绝对损失,这个损失函数也很常见

        

 

 

      对应负梯度误差为:

        

4.回归分类

 

 

5.多元分类

 

        

        对于上式,我曾详细地推导过一次,大家可以看这里-->  深度学习数学推导之Sigmoid,Softmax,Cross-entropy

 

 

 

6.正则化

  我们需要对GBDT进行正则化,防止过拟合。GBDT的正则化主要有三种方式。

    1) 第一种是步长(learning rate)。定义为,对于前面的弱学习器的迭代

                                              

 

      如果我们加上了正则化项,则有

 

     的取值范围为

     对于同样的训练集学习效果,较小的意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。

 

       2)第二种是对于弱学习器即CART回归树进行正则化剪枝。

       3) 第三种正则化的方式是通过子采样比例(subsample)。取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。如果取值为1,则全部样本都使用,等于没有使用子采样。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。推荐在[0.5, 0.8]之间。

 

7.优缺点

  GBDT主要的优点有:

    1) 可以灵活处理各种类型的数据,包括连续值和离散值。

    2) 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。

    3)使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

  GBDT的主要缺点有:

    1)由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。

8.sklearn参数

sklearn.ensemble.GradientBoostingRegressor(
                loss='ls',      ##默认ls损失函数'ls'是指最小二乘回归lad'(最小绝对偏差)'huber'是两者的组合
                n_estimators=100, ##默认100 回归树个数 弱学习器个数
                learning_rate=0.1,  ##默认0.1学习速率/步长0.0-1.0的超参数  每个树学习前一个树的残差的步长
                max_depth=3,   ## 默认值为3每个回归树的深度  控制树的大小 也可用叶节点的数量max leaf nodes控制
                 subsample=1,  ##用于拟合个别基础学习器的样本分数 选择子样本<1.0导致方差的减少和偏差的增加
                min_samples_split=2, ##生成子节点所需的最小样本数 如果是浮点数代表是百分比
                min_samples_leaf=1, ##叶节点所需的最小样本数  如果是浮点数代表是百分比
                max_features=None, ##在寻找最佳分割点要考虑的特征数量auto全选/sqrt开方/log2对数/None全选/int自定义几个/float百分比
                max_leaf_nodes=None, ##叶节点的数量 None不限数量
                min_impurity_split=1e-7, ##停止分裂叶子节点的阈值
                verbose=0,  ##打印输出 大于1打印每棵树的进度和性能
                warm_start=False, ##True在前面基础上增量训练 False默认擦除重新训练 增加树
                random_state=0  ##随机种子-方便重现
)

 

9.应用场景

 GBDT几乎可用于所有回归问题(线性/非线性),相对logistic regression仅能用于线性回归,GBDT的适用面非常广。亦可用于二分类问题(设定阈值,大于阈值为正例,反之为负例)。

 

 

 

https://www.jianshu.com/p/d55f7aaac4a7

https://www.cnblogs.com/peizhe123/p/5086128.html

http://www.cnblogs.com/duan-decode/p/9889955.html

http://www.cnblogs.com/sandy-t/p/6863918.html

 

https://blog.csdn.net/qq_20412595/article/details/82589378 

 

转载于:https://www.cnblogs.com/Sugar-Chl/p/10158672.html

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

GBDT算法梳理 的相关文章

  • 利用CHAT写个easywechat4 支付回调代码

    CHAT回复 以下是 EasyWechat4 的支付回调处理的基本代码 这个代码需要放置在你的后端服务器中 主要用于接收微信支付平台发送过来的支付结果通知 php
  • 【信道估计】【MIMO】【FBMC】未来移动通信的滤波器组多载波调制方案(Matlab代码实现)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 3 参考文献 4 Matlab代码及文章
  • 欧盟反垄断主管即将会见库克,iPhone NFC功能要开放了?

    1月5日路透社报道 欧盟反垄断主管玛格丽特 维斯塔格 Margrethe Vestager 即将在下周举办会议 会见苹果 博通 英伟达等多个科技公司CEO 苹果首席执行官蒂姆 库克 Tim Cook 就在其中 欧盟反垄断想来大家应该已经不陌
  • 排序:计数排序

    一 概念 计数排序是非比较排序 是对哈希直接定址法的变形应用 二 思想 利用数组统计相同数据出现的次数 例如整型数据m出现n次 就在数组m位置记录数据为n 最后从头遍历数组打印数据即可 通俗来讲就是 数组下标即为数据 下标所指位置的值即为数
  • 【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 2 1 有 无策略奖励 2 2 训练结果1
  • 喜报|华测导航荣获“张江之星”领军型企业称号

    近日 2023年度 张江之星 企业培育名单发布 上海华测导航荣获2023年度 张江之星 领军型企业称号 据悉 张江之星 企业培育是上海科创办为落实 关于推进张江高新区改革创新发展建设世界领先科技园区的若干意见 张江高新区加快世界领先科技园区
  • 利用CHAT写实验结论

    问CHAT 通过观察放置在玻璃表面上的单个水滴 人们可以观察到水滴充当成像系统 探究这样一个透镜的放大倍数和分辨率 CHAT回复 实验报告标题 利用玻璃表面的单一水滴观察成像系统的放大倍数和分辨率 一 实验目的 通过对比和测量 研究和探索玻
  • 什么是充放电振子理论?

    CHAT回复 充放电振子模型 Charging Reversal Oscillator Model 是一种解释ENSO现象的理论模型 这个模型把ENSO现象比喻成一个 热力学振荡系统 在这个模型中 ENSO现象由三个组成部分 充电 Char
  • 基于java的ssh医院在线挂号系统设计与实现

    基于java的ssh医院在线挂号系统设计与实现 I 引言 A 研究背景和动机 基于Java的SSH医院在线挂号系统设计与实现的研究背景和动机 随着信息技术的迅速发展和应用 医院在线挂号系统已成为医院管理的重要组成部分 传统的挂号方式存在许多
  • 多模态、长文本、智能体,智谱AI推出GLM-4模型全家桶,发布即上线!

    点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入 2024年01月16日 智谱AI首届技术开放日 Zhipu DevDay 在北京中关村国家自主创新示范区展示中心成功举办 现场 智谱AI团队全面展示了其投身于大模型事业三年多来所
  • 强烈推荐收藏!LlamaIndex 官方发布高清大图,纵览高级 RAG技术

    近日 Llamaindex 官方博客重磅发布了一篇博文 A Cheat Sheet and Some Recipes For Building Advanced RAG 通过一张图给开发者总结了当下主流的高级RAG技术 帮助应对复杂的生产场
  • 如何快速申请GPT账号?

    详情点击链接 如何快速申请GPT账号 一OpenAI 1 最新大模型GPT 4 Turbo 2 最新发布的高级数据分析 AI画图 图像识别 文档API 3 GPT Store 4 从0到1创建自己的GPT应用 5 模型Gemini以及大模型
  • 机器学习算法实战案例:BiLSTM实现多变量多步光伏预测

    文章目录 1 数据处理 1 1 导入库文件 1 2 导入数据集 1 3 缺失值分析 2 构造训练数据
  • 做大模型也有1年多了,聊聊这段时间的感悟!

    自ChatGPT问世以来 做大模型也有1年多了 今天给大家分享这一年后的感悟 过去一年应该是AI圈最万千瞩目的一年了 大家对大模型 OpenAI ChatGPT AI Native Agent这些词投入了太多的关注 以至于有一年的时间好像经
  • 如何用GPT进行论文润色与改写?

    详情点击链接 如何用GPT GPT4进行论文润色与改写 一OpenAI 1 最新大模型GPT 4 Turbo 2 最新发布的高级数据分析 AI画图 图像识别 文档API 3 GPT Store 4 从0到1创建自己的GPT应用 5 模型Ge
  • 2023最新pytorch安装(超详细版)

    前言 一 判断是否有Nvidia 英伟达显卡 二 CPU版 2 1 安装Anaconda 2 2 创建虚拟环境 2 3安装pytorch 2 4 验证pytorch是否安装成功 三 GPU版 3 1 安装Anaconda 3 2 创建虚拟环
  • 回望计算机视觉会议ICCV的31年

    作者 原野寻踪 编辑 汽车人 原文链接 https zhuanlan zhihu com p 670393313 点击下方 卡片 关注 自动驾驶之心 公众号 ADAS巨卷干货 即可获取 点击进入 自动驾驶之心 全栈算法 技术交流群 本文只做
  • CorelDRAW2024官方中文版重磅发布更新

    35年专注于矢量设计始于1988年并不断推陈出新 致力为全球设计工作者提供更高效的设计工具 CorelDRAW 滋养并见证了一代设计师的成长 在最短的时间内交付作品 CorelDRAW的智能高效会让你一见钟情 CorelDRAW 全称 Co
  • 3D点云检测神技 | UFO来了!让PointPillars、PV-RCNN统统涨点!

    作者 AI驾驶员 编辑 智驾实验室 点击下方 卡片 关注 自动驾驶之心 公众号 ADAS巨卷干货 即可获取 点击进入 自动驾驶之心 3D目标检测 技术交流群 本文只做学术分享 如有侵权 联系删文 在这篇论文中提出了一个关于在3D点云中检测未
  • AI 赋能绿色制冷,香港岭南大学开发 DEMMFL 模型进行建筑冷负荷预测

    近年来 城市化进程加速所带来的碳排放量骤增 已经严重威胁到了全球环境 多个国家均已给出了 碳达峰 碳中和 的明确时间点 一场覆盖全球 全行业的 绿色革命 已经拉开序幕 在一众行业中 建筑是当之无愧的能耗大户 其中又以暖通空调 Heating

随机推荐