Java 线程池

2023-11-08

今天准备详细介绍java并发包下的Executor,以及Java提供了很多灵活的且极其方便的线程池的创建。

嗯,那就慢慢说,大家肯定都学过Socket,JavaSe的时候写聊天程序,游戏的服务器,以及Android程序自己需要提供服务器的,都会拿Socket来自己写个:

最初我们的服务器可能写成这样:

1、单线程服务器

[java]  view plain  copy
  1. package com.zhy.concurrency.executors;  
  2.   
  3. import java.io.IOException;  
  4. import java.net.ServerSocket;  
  5. import java.net.Socket;  
  6.   
  7. /** 
  8.  * 单线程Web服务器 
  9.  *  
  10.  * @author zhy 
  11.  *  
  12.  */  
  13. public class SingleThreadWebServer  
  14. {  
  15.   
  16.     public static void main(String[] args) throws IOException  
  17.     {  
  18.   
  19.         ServerSocket server = new ServerSocket(7711);  
  20.         while (true)  
  21.         {  
  22.             Socket client = server.accept();  
  23.             handleReq(client);  
  24.         }  
  25.   
  26.     }  
  27.   
  28.     /** 
  29.      * 处理请求 
  30.      * @param client 
  31.      */  
  32.     private static void handleReq(Socket client)  
  33.     {  
  34.     }  
  35.   
  36. }  

这样的服务器代码很简单,理论上也是正确的,但是在实现的环境中却很糟糕,因为它每次只能处理一个请求,如果每个请求的耗时过长,后面的请求会长时间等待或者超时错误。

于是乎,出现了下面这种写法:

2、每个请求分配一个线程的服务器

[java]  view plain  copy
  1. package com.zhy.concurrency.executors;  
  2.   
  3. import java.io.IOException;  
  4. import java.net.ServerSocket;  
  5. import java.net.Socket;  
  6. /** 
  7.  * 为每个请求分配一个线程 
  8.  * @author zhy 
  9.  * 
  10.  */  
  11. public class TaskPreThreadServer  
  12. {  
  13.     public static void main(String[] args) throws IOException  
  14.     {  
  15.         ServerSocket server = new ServerSocket(8811);  
  16.         while (true)  
  17.         {  
  18.             final Socket client = server.accept();  
  19.             new Thread()  
  20.             {  
  21.                 public void run()  
  22.                 {  
  23.                     handleReq(client);  
  24.                 };  
  25.             }.start();  
  26.         }  
  27.     }  
  28.   
  29.     protected static void handleReq(Socket client)  
  30.     {  
  31.           
  32.     }  
  33. }  

为每一个请求开辟一个线程,首先我得承认我也经常用这样的写法~但是我们还是要吐槽下这样写法的不足:

a、线程的生命周期的开销还是相当高的,大量的线程的创建将消耗大量的计算机资源

b、可创建线程的数量存在一个限制值(这个值由平台觉得,且受很多因素的制约),如果超过这个限制,可能会报OOM错误

c、在一定范围内,增加线程可以提高系统吞吐量,但是超过了这个范围,就物极必反了,只会降低程序的执行速度。

所以我们要继续改进我们的服务器代码,Executor提供了非常方便的方式:

3、基于Executor的服务器

[java]  view plain  copy
  1. package com.zhy.concurrency.executors;  
  2.   
  3. import java.io.IOException;  
  4. import java.net.ServerSocket;  
  5. import java.net.Socket;  
  6. import java.util.concurrent.Executor;  
  7. import java.util.concurrent.Executors;  
  8.   
  9. /** 
  10.  * 基于Executor的服务器 
  11.  * @author zhy 
  12.  * 
  13.  */  
  14. public class TaskExecutionServer  
  15. {  
  16.     private static final int THREAD_COUNT = 100;  
  17.     private static final Executor exec = Executors  
  18.             .newFixedThreadPool(THREAD_COUNT);  
  19.   
  20.     public static void main(String[] args) throws IOException  
  21.     {  
  22.         ServerSocket server = new ServerSocket(9911);  
  23.         while (true)  
  24.         {  
  25.             final Socket client = server.accept();  
  26.             Runnable task = new Runnable()  
  27.             {  
  28.                 @Override  
  29.                 public void run()  
  30.                 {  
  31.                     handleReq(client);  
  32.                 }  
  33.             };  
  34.             exec.execute(task);  
  35.         }  
  36.   
  37.     }  
  38.   
  39.     protected static void handleReq(Socket client)  
  40.     {  
  41.   
  42.     }  
  43. }  

创建一个固定长度的线程池,既解决了单线程的阻塞问题,也解决了无限创建线程带来的内存消耗过多等问题。

4、Executors的API介绍

Java类库提供了许多静态方法来创建一个线程池:

a、newFixedThreadPool 创建一个固定长度的线程池,当到达线程最大数量时,线程池的规模将不再变化。

b、newCachedThreadPool 创建一个可缓存的线程池,如果当前线程池的规模超出了处理需求,将回收空的线程;当需求增加时,会增加线程数量;线程池规模无限制。

c、newSingleThreadPoolExecutor 创建一个单线程的Executor,确保任务对了,串行执行

d、newScheduledThreadPool 创建一个固定长度的线程池,而且以延迟或者定时的方式来执行,类似Timer;后面后单独使用Blog介绍它与Timer区别

小结一下:在线程池中执行任务比为每个任务分配一个线程优势更多,通过重用现有的线程而不是创建新线程,可以在处理多个请求时分摊线程创建和销毁产生的巨大的开销。当请求到达时,通常工作线程已经存在,提高了响应性;通过配置线程池的大小,可以创建足够多的线程使CPU达到忙碌状态,还可以防止线程太多耗尽计算机的资源。



常用的几种线程池

5.1 newCachedThreadPool
创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若
无可回收,则新建线程。
这种类型的线程池特点是:
工作线程的创建数量几乎没有限制(其实也有限制的,数目为Interger. 
MAX_VALUE), 这样可灵活的往线程池中添加线程。
如果长时间没有往线程池中提交任务,即如果工作线程空闲了指定的时间(默认为1
分钟),则该工作线程将自动终止。终止后,如果你又提交了新的任务,则线程池
重新创建一个工作线程。
在使用CachedThreadPool时,一定要注意控制任务的数量,否则,由于大量线程
同时运行,很有会造成系统瘫痪。
示例代码如下:

 1 package test;
 2 import java.util.concurrent.ExecutorService;
 3 import java.util.concurrent.Executors;
 4 public class ThreadPoolExecutorTest {
 5  public static void main(String[] args) {
 6   ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
 7   for (int i = 0; i < 10; i++) {
 8    final int index = i;
 9    try {
10     Thread.sleep(index * 1000);
11    } catch (InterruptedException e) {
12     e.printStackTrace();
13    }
14    cachedThreadPool.execute(new Runnable() {
15     public void run() {
16      System.out.println(index);
17     }
18    });
19   }
20  }
21 }
复制代码
5.1 newFixedThreadPool
创建一个指定工作线程数量的线程池。每当提交一个任务就创建一个工作线程,如
果工作线程数量达到线程池初始的最大数,则将提交的任务存入到池队列中。
FixedThreadPool是一个典型且优秀的线程池,它具有线程池提高程序效率和节省
创建线程时所耗的开销的优点。但是,在线程池空闲时,即线程池中没有可运行任
务时,它不会释放工作线程,还会占用一定的系统资源。

示例代码如下:


package test;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ThreadPoolExecutorTest {
 public static void main(String[] args) {
  ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
  for (int i = 0; i < 10; i++) {
   final int index = i;
   fixedThreadPool.execute(new Runnable() {
    public void run() {
     try {
      System.out.println(index);
      Thread.sleep(2000);
     } catch (InterruptedException e) {
      e.printStackTrace();
     }
    }
   });
  }
 }
}

因为线程池大小为3,每个任务输出index后sleep 2秒,所以每两秒打印3个数字。
定长线程池的大小最好根据系统资源进行设置如Runtime.getRuntime
().availableProcessors()。

5.1 newSingleThreadExecutor
创建一个单线程化的Executor,即只创建唯一的工作者线程来执行任务,它只会用
唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)
执行。如果这个线程异常结束,会有另一个取代它,保证顺序执行。单工作线程最
大的特点是可保证顺序地执行各个任务,并且在任意给定的时间不会有多个线程是
活动的。
示例代码如下:

复制代码
package test;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ThreadPoolExecutorTest {
 public static void main(String[] args) {
  ExecutorService singleThreadExecutor = 


Executors.newSingleThreadExecutor();
  for (int i = 0; i < 10; i++) {
   final int index = i;
   singleThreadExecutor.execute(new Runnable() {
    public void run() {
     try {
      System.out.println(index);
      Thread.sleep(2000);
     } catch (InterruptedException e) {
      e.printStackTrace();
     }
    }
   });
  }
 }


5.1 newScheduleThreadPool
创建一个定长的线程池,而且支持定时的以及周期性的任务执行,支持定时及周期
性任务执行。
延迟3秒执行,延迟执行示例代码如下:

package test;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
public class ThreadPoolExecutorTest {
 public static void main(String[] args) {
  ScheduledExecutorService scheduledThreadPool = 


Executors.newScheduledThreadPool(5);
  scheduledThreadPool.schedule(new Runnable() {
   public void run() {
    System.out.println("delay 3 seconds");
   }
  }, 3, TimeUnit.SECONDS);
 }
}

表示延迟1秒后每3秒执行一次,定期执行示例代码如下:

package test;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
public class ThreadPoolExecutorTest {
 public static void main(String[] args) {
  ScheduledExecutorService scheduledThreadPool = 


Executors.newScheduledThreadPool(5);
  scheduledThreadPool.scheduleAtFixedRate(new Runnable() {
   public void run() {
    System.out.println("delay 1 seconds, and excute every 3 


seconds");
   }
  }, 1, 3, TimeUnit.SECONDS);
 }
}

Java中的ThreadPoolExecutor类

java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因

此如果要透彻地了解Java中的线程池,必须先了解这个类。下面我们来看一下

ThreadPoolExecutor类的具体实现源码。

在ThreadPoolExecutor类中提供了四个构造方法:

public class ThreadPoolExecutor extends AbstractExecutorService {
    .....
    public ThreadPoolExecutor(int corePoolSize,int 

maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue);
 
    public ThreadPoolExecutor(int corePoolSize,int 


maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue,ThreadFactory 

threadFactory);
 
    public ThreadPoolExecutor(int corePoolSize,int 

maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> 

workQueue,RejectedExecutionHandler handler);
 
    public ThreadPoolExecutor(int corePoolSize,int 

maximumPoolSize,long keepAliveTime,TimeUnit unit,
        BlockingQueue<Runnable> workQueue,ThreadFactory 

threadFactory,RejectedExecutionHandler handler);
    ...
}
从上面的代码可以得知,ThreadPoolExecutor继承了AbstractExecutorService

类,并提供了四个构造器,事实上,通过观察每个构造器的源码具体实现,发现前

面三个构造器都是调用的第四个构造器进行的初始化工作。

下面解释下一下构造器中各个参数的含义:

corePoolSize:核心池的大小,这个参数跟后面讲述的线程池的实现原理有非常

大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待

有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者

prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意

思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况

下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个

线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任

务放到缓存队列当中;
maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表

示在线程池中最多能创建多少个线程;
keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下

,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直

到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于

corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到

线程池中的线程数不超过corePoolSize。但是如果调用了

allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于

corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;
unit:参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:

TimeUnit.DAYS;               //天
TimeUnit.HOURS;             //小时
TimeUnit.MINUTES;           //分钟
TimeUnit.SECONDS;           //秒
TimeUnit.MILLISECONDS;      //毫秒
TimeUnit.MICROSECONDS;      //微妙
TimeUnit.NANOSECONDS;       //纳秒
workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要
,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:

ArrayBlockingQueue;
LinkedBlockingQueue;
SynchronousQueue;
ArrayBlockingQueue和PriorityBlockingQueue使用较少,一般使用

LinkedBlockingQueue和Synchronous。线程池的排队策略与BlockingQueue有关


threadFactory:线程工厂,主要用来创建线程;
handler:表示当拒绝处理任务时的策略,有以下四种取值:

ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出

RejectedExecutionException异常。 
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新

尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务
具体参数的配置与线程池的关系将在下一节讲述。

从上面给出的ThreadPoolExecutor类的代码可以知道,ThreadPoolExecutor继承

了AbstractExecutorService,我们来看一下AbstractExecutorService的实现:

public abstract class AbstractExecutorService implements 

ExecutorService {
 
    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T 

value) { };
    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) 

{ };
    public Future<?> submit(Runnable task) {};
    public <T> Future<T> submit(Runnable task, T result) { };
    public <T> Future<T> submit(Callable<T> task) { };
    private <T> T doInvokeAny(Collection<? extends Callable<T>> 

tasks,  boolean timed, long nanos)
        throws InterruptedException, ExecutionException, 

TimeoutException {
    };
    public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
        throws InterruptedException, ExecutionException {
    };
    public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                           long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, 

TimeoutException {
    };
    public <T> List<Future<T>> invokeAll(Collection<? extends 

Callable<T>> tasks)
        throws InterruptedException {
    };
    public <T> List<Future<T>> invokeAll(Collection<? extends 


Callable<T>> tasks,
                                         long timeout, TimeUnit unit)
        throws InterruptedException {
    };
}
AbstractExecutorService是一个抽象类,它实现了ExecutorService接口。

我们接着看ExecutorService接口的实现:

public interface ExecutorService extends Executor {
 
    void shutdown();
    boolean isShutdown();
    boolean isTerminated();
    boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException;
    <T> Future<T> submit(Callable<T> task);
    <T> Future<T> submit(Runnable task, T result);
    Future<?> submit(Runnable task);
    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> 


tasks)
        throws InterruptedException;
    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> 

tasks,   long timeout, TimeUnit unit)
        throws InterruptedException;
 
    <T> T invokeAny(Collection<? extends Callable<T>> tasks)
        throws InterruptedException, ExecutionException;
    <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                    long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, 


TimeoutException;
}
而ExecutorService又是继承了Executor接口,我们看一下Executor接口的实现:

public interface Executor {
    void execute(Runnable command);
}
到这里,大家应该明白了ThreadPoolExecutor、AbstractExecutorService、

ExecutorService和Executor几个之间的关系了。

Executor是一个顶层接口,在它里面只声明了一个方法execute(Runnable),返回

值为void,参数为Runnable类型,从字面意思可以理解,就是用来执行传进去的

任务的;

然后ExecutorService接口继承了Executor接口,并声明了一些方法:submit、

invokeAll、invokeAny以及shutDown等;

抽象类AbstractExecutorService实现了ExecutorService接口,基本实现了

ExecutorService中声明的所有方法;

然后ThreadPoolExecutor继承了类AbstractExecutorService。

在ThreadPoolExecutor类中有几个非常重要的方法:

execute()
submit()
shutdown()
shutdownNow()
execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了

具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向

线程池提交一个任务,交由线程池去执行。

submit()方法是在ExecutorService中声明的方法,在AbstractExecutorService

就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方

法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务

执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方

法,只不过它利用了Future来获取任务执行结果(Future相关内容将在下一篇讲述)。

shutdown()和shutdownNow()是用来关闭线程池的。

还有很多其他的方法:

比如:getQueue() 、getPoolSize() 、getActiveCount()、

getCompletedTaskCount()等获取与线程池相关属性的方法,有兴趣的朋友可以自

行查阅API。

二.深入剖析线程池实现原理

在上一节我们从宏观上介绍了ThreadPoolExecutor,下面我们来深入解析一下线

程池的具体实现原理,将从下面几个方面讲解:

1.线程池状态

  2.任务的执行

  3.线程池中的线程初始化

  4.任务缓存队列及排队策略

  5.任务拒绝策略

  6.线程池的关闭

  7.线程池容量的动态调整

1.线程池状态

在ThreadPoolExecutor中定义了一个volatile变量,另外定义了几个static 

final变量表示线程池的各个状态:

volatile int runState;
static final int RUNNING    = 0;
static final int SHUTDOWN   = 1;
static final int STOP       = 2;
static final int TERMINATED = 3;
runState表示当前线程池的状态,它是一个volatile变量用来保证线程之间的可见性;

下面的几个static final变量表示runState可能的几个取值。

当创建线程池后,初始时,线程池处于RUNNING状态;

如果调用了shutdown()方法,则线程池处于SHUTDOWN状态,此时线程池不能够接

受新的任务,它会等待所有任务执行完毕;

如果调用了shutdownNow()方法,则线程池处于STOP状态,此时线程池不能接受新

的任务,并且会去尝试终止正在执行的任务;

当线程池处于SHUTDOWN或STOP状态,并且所有工作线程已经销毁,任务缓存队列

已经清空或执行结束后,线程池被设置为TERMINATED状态。

2.任务的执行

在了解将任务提交给线程池到任务执行完毕整个过程之前,我们先来看一下

ThreadPoolExecutor类中其他的一些比较重要成员变量:

private final BlockingQueue<Runnable> workQueue;              //任务

缓存队列,用来存放等待执行的任务
private final ReentrantLock mainLock = new ReentrantLock();   //线程

池的主要状态锁,对线程池状态(比如线程池大小                            
                            //、runState等)的改变都要使用这个锁
private final HashSet<Worker> workers = new HashSet<Worker>();  //用

来存放工作集
private volatile long  keepAliveTime;    //线程存货时间   
private volatile boolean allowCoreThreadTimeOut;   //是否允许为核心线

程设置存活时间
private volatile int   corePoolSize;     //核心池的大小(即线程池中的

线程数目大于这个参数时,提交的任务会被放进任务缓存队列)
private volatile int   maximumPoolSize;   //线程池最大能容忍的线程数
private volatile int   poolSize;       //线程池中当前的线程数
private volatile RejectedExecutionHandler handler; //任务拒绝策略
private volatile ThreadFactory threadFactory;   //线程工厂,用来创建线


private int largestPoolSize;   //用来记录线程池中曾经出现过的最大线程数
private long completedTaskCount;   //用来记录已经执行完毕的任务个数
每个变量的作用都已经标明出来了,这里要重点解释一下corePoolSize、
maximumPoolSize、largestPoolSize三个变量。
corePoolSize在很多地方被翻译成核心池大小,其实我的理解这个就是线程池的
大小。举个简单的例子:
假如有一个工厂,工厂里面有10个工人,每个工人同时只能做一件任务。
因此只要当10个工人中有工人是空闲的,来了任务就分配给空闲的工人做;
当10个工人都有任务在做时,如果还来了任务,就把任务进行排队等待;
如果说新任务数目增长的速度远远大于工人做任务的速度,那么此时工厂主管可能

会想补救措施,比如重新招4个临时工人进来;
然后就将任务也分配给这4个临时工人做;
如果说着14个工人做任务的速度还是不够,此时工厂主管可能就要考虑不再接收新

的任务或者抛弃前面的一些任务了。
当这14个工人当中有人空闲时,而新任务增长的速度又比较缓慢,工厂主管可能就

考虑辞掉4个临时工了,只保持原来的10个工人,毕竟请额外的工人是要花钱的。
这个例子中的corePoolSize就是10,而maximumPoolSize就是14(10+4)。
也就是说corePoolSize就是线程池大小,maximumPoolSize在我看来是线程池的一

种补救措施,即任务量突然过大时的一种补救措施。
不过为了方便理解,在本文后面还是将corePoolSize翻译成核心池大小。
largestPoolSize只是一个用来起记录作用的变量,用来记录线程池中曾经有过的
最大线程数目,跟线程池的容量没有任何关系。
下面我们进入正题,看一下任务从提交到最终执行完毕经历了哪些过程。
在ThreadPoolExecutor类中,最核心的任务提交方法是execute()方法,虽然通过
submit也可以提交任务,但是实际上submit方法里面最终调用的还是execute()方
法,所以我们只需要研究execute()方法的实现原理即可:
public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) 


{
        if (runState == RUNNING && workQueue.offer(command)) {
            if (runState != RUNNING || poolSize == 0)
                ensureQueuedTaskHandled(command);
        }
        else if (!addIfUnderMaximumPoolSize(command))
            reject(command); // is shutdown or saturated
    }
}
上面的代码可能看起来不是那么容易理解,下面我们一句一句解释:
首先,判断提交的任务command是否为null,若是null,则抛出空指针异常;
接着是这句,这句要好好理解一下:
if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command))
由于是或条件运算符,所以先计算前半部分的值,如果线程池中当前线程数不小于
核心池大小,那么就会直接进入下面的if语句块了。
如果线程池中当前线程数小于核心池大小,则接着执行后半部分,也就是执行
addIfUnderCorePoolSize(command)
如果执行完addIfUnderCorePoolSize这个方法返回false,则继续执行下面的if语

句块,否则整个方法就直接执行完毕了。

如果执行完addIfUnderCorePoolSize这个方法返回false,然后接着判断:

if (runState == RUNNING && workQueue.offer(command))
如果当前线程池处于RUNNING状态,则将任务放入任务缓存队列;如果当前线程池

不处于RUNNING状态或者任务放入缓存队列失败,则执行:

addIfUnderMaximumPoolSize(command)
如果执行addIfUnderMaximumPoolSize方法失败,则执行reject()方法进行任务

拒绝处理。
回到前面:

if (runState == RUNNING && workQueue.offer(command))
这句的执行,如果说当前线程池处于RUNNING状态且将任务放入任务缓存队列成功

,则继续进行判断:

if (runState != RUNNING || poolSize == 0)
这句判断是为了防止在将此任务添加进任务缓存队列的同时其他线程突然调用

shutdown或者shutdownNow方法关闭了线程池的一种应急措施。如果是这样就执行

ensureQueuedTaskHandled(command)
进行应急处理,从名字可以看出是保证 添加到任务缓存队列中的任务得到处理。

我们接着看2个关键方法的实现:addIfUnderCorePoolSize和

addIfUnderMaximumPoolSize:

private boolean addIfUnderCorePoolSize(Runnable firstTask) {
    Thread t = null;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        if (poolSize < corePoolSize && runState == RUNNING)
            t = addThread(firstTask);        //创建线程去执行

firstTask任务   
        } finally {
        mainLock.unlock();
    }
    if (t == null)
        return false;
    t.start();
    return true;
}
这个是addIfUnderCorePoolSize方法的具体实现,从名字可以看出它的意图就是

当低于核心吃大小时执行的方法。下面看其具体实现,首先获取到锁,因为这地方

涉及到线程池状态的变化,先通过if语句判断当前线程池中的线程数目是否小于核

心池大小,有朋友也许会有疑问:前面在execute()方法中不是已经判断过了吗,

只有线程池当前线程数目小于核心池大小才会执行addIfUnderCorePoolSize方法

的,为何这地方还要继续判断?原因很简单,前面的判断过程中并没有加锁,因此

可能在execute方法判断的时候poolSize小于corePoolSize,而判断完之后,在其

他线程中又向线程池提交了任务,就可能导致poolSize不小于corePoolSize了,

所以需要在这个地方继续判断。然后接着判断线程池的状态是否为RUNNING,原因

也很简单,因为有可能在其他线程中调用了shutdown或者shutdownNow方法。然后

就是执行
t = addThread(firstTask);
这个方法也非常关键,传进去的参数为提交的任务,返回值为Thread类型。然后接

着在下面判断t是否为空,为空则表明创建线程失败(即poolSize>=corePoolSize

或者runState不等于RUNNING),否则调用t.start()方法启动线程。

我们来看一下addThread方法的实现:

private Thread addThread(Runnable firstTask) {
    Worker w = new Worker(firstTask);
    Thread t = threadFactory.newThread(w);  //创建一个线程,执行任务   
    if (t != null) {
        w.thread = t;            //将创建的线程的引用赋值为w的成员变量 
  
        workers.add(w);
        int nt = ++poolSize;     //当前线程数加1       
        if (nt > largestPoolSize)
            largestPoolSize = nt;
    }
    return t;
}
在addThread方法中,首先用提交的任务创建了一个Worker对象,然后调用线程工

厂threadFactory创建了一个新的线程t,然后将线程t的引用赋值给了Worker对象

的成员变量thread,接着通过workers.add(w)将Worker对象添加到工作集当中。

下面我们看一下Worker类的实现:

private final class Worker implements Runnable {
    private final ReentrantLock runLock = new ReentrantLock();
    private Runnable firstTask;
    volatile long completedTasks;
    Thread thread;
    Worker(Runnable firstTask) {
        this.firstTask = firstTask;
    }
    boolean isActive() {
        return runLock.isLocked();
    }
    void interruptIfIdle() {
        final ReentrantLock runLock = this.runLock;
        if (runLock.tryLock()) {
            try {
        if (thread != Thread.currentThread())
        thread.interrupt();
            } finally {
                runLock.unlock();
            }
        }
    }
    void interruptNow() {
        thread.interrupt();
    }
 
    private void runTask(Runnable task) {
        final ReentrantLock runLock = this.runLock;
        runLock.lock();
        try {
            if (runState < STOP &&
                Thread.interrupted() &&
                runState >= STOP)
            boolean ran = false;
            beforeExecute(thread, task);   //beforeExecute方法是

ThreadPoolExecutor类的一个方法,没有具体实现,用户可以根据
            //自己需要重载这个方法和后面的afterExecute方法来进行一些统

计信息,比如某个任务的执行时间等           
            try {
                task.run();
                ran = true;
                afterExecute(task, null);
                ++completedTasks;
            } catch (RuntimeException ex) {
                if (!ran)
                    afterExecute(task, ex);
                throw ex;
            }
        } finally {
            runLock.unlock();
        }
    }
 
    public void run() {
        try {
            Runnable task = firstTask;
            firstTask = null;
            while (task != null || (task = getTask()) != null) {
                runTask(task);
                task = null;
            }
        } finally {
            workerDone(this);   //当任务队列中没有任务时,进行清理工作 
      
        }
    }
}
它实际上实现了Runnable接口,因此上面的Thread t = 

threadFactory.newThread(w);效果跟下面这句的效果基本一样:

Thread t = new Thread(w);
相当于传进去了一个Runnable任务,在线程t中执行这个Runnable。

既然Worker实现了Runnable接口,那么自然最核心的方法便是run()方法了:

public void run() {
    try {
        Runnable task = firstTask;
        firstTask = null;
        while (task != null || (task = getTask()) != null) {
            runTask(task);
            task = null;
        }
    } finally {
        workerDone(this);
    }
}
从run方法的实现可以看出,它首先执行的是通过构造器传进来的任务firstTask

,在调用runTask()执行完firstTask之后,在while循环里面不断通过getTask()

去取新的任务来执行,那么去哪里取呢?自然是从任务缓存队列里面去取,

getTask是ThreadPoolExecutor类中的方法,并不是Worker类中的方法,下面是

getTask方法的实现:

Runnable getTask() {
    for (;;) {
        try {
            int state = runState;
            if (state > SHUTDOWN)
                return null;
            Runnable r;
            if (state == SHUTDOWN)  // Help drain queue
                r = workQueue.poll();
            else if (poolSize > corePoolSize || 

allowCoreThreadTimeOut) //如果线程数大于核心池大小或者允许为核心池线程

设置空闲时间,
                //则通过poll取任务,若等待一定的时间取不到任务,则返回null
               r = workQueue.poll(keepAliveTime, 
TimeUnit.NANOSECONDS);
            else
                r = workQueue.take();
            if (r != null)
                return r;
            if (workerCanExit()) {    //如果没取到任务,即r为null,则


判断当前的worker是否可以退出
                if (runState >= SHUTDOWN) // Wake up others
                    interruptIdleWorkers();   //中断处于空闲状态的worker
                return null;
            }
            // Else retry
        } catch (InterruptedException ie) {
            // On interruption, re-check runState
        }
    }
}
在getTask中,先判断当前线程池状态,如果runState大于SHUTDOWN(即为STOP或

者TERMINATED),则直接返回null。

如果runState为SHUTDOWN或者RUNNING,则从任务缓存队列取任务。

如果当前线程池的线程数大于核心池大小corePoolSize或者允许为核心池中的线

程设置空闲存活时间,则调用poll(time,timeUnit)来取任务,这个方法会等待一

定的时间,如果取不到任务就返回null。

然后判断取到的任务r是否为null,为null则通过调用workerCanExit()方法来判

断当前worker是否可以退出,我们看一下workerCanExit()的实现:

private boolean workerCanExit() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    boolean canExit;
    //如果runState大于等于STOP,或者任务缓存队列为空了
    //或者  允许为核心池线程设置空闲存活时间并且线程池中的线程数目大于1
    try {
        canExit = runState >= STOP ||
            workQueue.isEmpty() ||
            (allowCoreThreadTimeOut &&
             poolSize > Math.max(1, corePoolSize));
    } finally {
        mainLock.unlock();
    }
    return canExit;
}
也就是说如果线程池处于STOP状态、或者任务队列已为空或者允许为核心池线程设

置空闲存活时间并且线程数大于1时,允许worker退出。如果允许worker退出,则

调用interruptIdleWorkers()中断处于空闲状态的worker,我们看一下

interruptIdleWorkers()的实现:

void interruptIdleWorkers() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        for (Worker w : workers)  //实际上调用的是worker的

interruptIfIdle()方法
            w.interruptIfIdle();
    } finally {
        mainLock.unlock();
    }
}
从实现可以看出,它实际上调用的是worker的interruptIfIdle()方法,在worker

的interruptIfIdle()方法中:

void interruptIfIdle() {
    final ReentrantLock runLock = this.runLock;
    if (runLock.tryLock()) {    //注意这里,是调用tryLock()来获取锁的


,因为如果当前worker正在执行任务,锁已经被获取了,是无法获取到锁的
                                //如果成功获取了锁,说明当前worker处于

空闲状态
        try {
    if (thread != Thread.currentThread())  
    thread.interrupt();
        } finally {
            runLock.unlock();
        }
    }
}
这里有一个非常巧妙的设计方式,假如我们来设计线程池,可能会有一个任务分派

线程,当发现有线程空闲时,就从任务缓存队列中取一个任务交给空闲线程执行。

但是在这里,并没有采用这样的方式,因为这样会要额外地对任务分派线程进行管

理,无形地会增加难度和复杂度,这里直接让执行完任务的线程去任务缓存队列里

面取任务来执行。

我们再看addIfUnderMaximumPoolSize方法的实现,这个方法的实现思想和

addIfUnderCorePoolSize方法的实现思想非常相似,唯一的区别在于

addIfUnderMaximumPoolSize方法是在线程池中的线程数达到了核心池大小并且往

任务队列中添加任务失败的情况下执行的:

private boolean addIfUnderMaximumPoolSize(Runnable firstTask) {
    Thread t = null;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        if (poolSize < maximumPoolSize && runState == RUNNING)
            t = addThread(firstTask);
    } finally {
        mainLock.unlock();
    }
    if (t == null)
        return false;
    t.start();
    return true;
}
看到没有,其实它和addIfUnderCorePoolSize方法的实现基本一模一样,只是if

语句判断条件中的poolSize < maximumPoolSize不同而已。
到这里,大部分朋友应该对任务提交给线程池之后到被执行的整个过程有了一个基

本的了解,下面总结一下:
1)首先,要清楚corePoolSize和maximumPoolSize的含义;
2)其次,要知道Worker是用来起到什么作用的;
3)要知道任务提交给线程池之后的处理策略,这里总结一下主要有4点:
如果当前线程池中的线程数目小于corePoolSize,则每来一个任务,就会创建一

个线程去执行这个任务;
如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添

加到任务缓存队列当中,若添加成功,则该任务会等待空闲线程将其取出去执行;

若添加失败(一般来说是任务缓存队列已满),则会尝试创建新的线程去执行这个

任务;
如果当前线程池中的线程数目达到maximumPoolSize,则会采取任务拒绝策略进行

处理;
如果线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过

keepAliveTime,线程将被终止,直至线程池中的线程数目不大于corePoolSize;

如果允许为核心池中的线程设置存活时间,那么核心池中的线程空闲时间超过

keepAliveTime,线程也会被终止。
3.线程池中的线程初始化
默认情况下,创建线程池之后,线程池中是没有线程的,需要提交任务之后才会创

建线程。
在实际中如果需要线程池创建之后立即创建线程,可以通过以下两个方法办到:
prestartCoreThread():初始化一个核心线程;
prestartAllCoreThreads():初始化所有核心线程
下面是这2个方法的实现:

public boolean prestartCoreThread() {
    return addIfUnderCorePoolSize(null); //注意传进去的参数是null
}
 
public int prestartAllCoreThreads() {
    int n = 0;
    while (addIfUnderCorePoolSize(null))//注意传进去的参数是null
        ++n;
    return n;
}
注意上面传进去的参数是null,根据第2小节的分析可知如果传进去的参数为null

,则最后执行线程会阻塞在getTask方法中的
r = workQueue.take();
即等待任务队列中有任务。
4.任务缓存队列及排队策略
在前面我们多次提到了任务缓存队列,即workQueue,它用来存放等待执行的任务

workQueue的类型为BlockingQueue<Runnable>,通常可以取下面三种类型:
1)ArrayBlockingQueue:基于数组的先进先出队列,此队列创建时必须指定大小

2)LinkedBlockingQueue:基于链表的先进先出队列,如果创建时没有指定此队

列大小,则默认为Integer.MAX_VALUE;
3)synchronousQueue:这个队列比较特殊,它不会保存提交的任务,而是将直接

新建一个线程来执行新来的任务。
5.任务拒绝策略
当线程池的任务缓存队列已满并且线程池中的线程数目达到maximumPoolSize,如

果还有任务到来就会采取任务拒绝策略,通常有以下四种策略:
ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出
RejectedExecutionException异常。
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新
尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务
6.线程池的关闭
ThreadPoolExecutor提供了两个方法,用于线程池的关闭,分别是shutdown()和
shutdownNow(),其中:
shutdown():不会立即终止线程池,而是要等所有任务缓存队列中的任务都执行完

后才终止,但再也不会接受新的任务
shutdownNow():立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓

存队列,返回尚未执行的任务
7.线程池容量的动态调整
ThreadPoolExecutor提供了动态调整线程池容量大小的方法:setCorePoolSize

()和setMaximumPoolSize(),

setCorePoolSize:设置核心池大小
setMaximumPoolSize:设置线程池最大能创建的线程数目大小
当上述参数从小变大时,ThreadPoolExecutor进行线程赋值,还可能立即创建新

的线程来执行任务。

三.使用示例

前面我们讨论了关于线程池的实现原理,这一节我们来看一下它的具体使用:

public class Test {
     public static void main(String[] args) {   
         ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 10, 

200, TimeUnit.MILLISECONDS,
                 new ArrayBlockingQueue<Runnable>(5));

         for(int i=0;i<15;i++){
             MyTask myTask = new MyTask(i);
             executor.execute(myTask);
             System.out.println("线程池中线程数

目:"+executor.getPoolSize()+",队列中等待执行的任务数目:"+
             executor.getQueue().size()+",已执行玩别的任务数

目:"+executor.getCompletedTaskCount());
         }
         executor.shutdown();
     }
}
 
class MyTask implements Runnable {
    private int taskNum;
 
    public MyTask(int num) {
        this.taskNum = num;
    }
 
    @Override
    public void run() {
        System.out.println("正在执行task "+taskNum);
        try {
            Thread.currentThread().sleep(4000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("task "+taskNum+"执行完毕");
    }
}
执行结果:

正在执行task 0
线程池中线程数目:1,队列中等待执行的任务数目:0,已执行玩别的任务数目:

0
线程池中线程数目:2,队列中等待执行的任务数目:0,已执行玩别的任务数目:

0
正在执行task 1
线程池中线程数目:3,队列中等待执行的任务数目:0,已执行玩别的任务数目:

0
正在执行task 2
线程池中线程数目:4,队列中等待执行的任务数目:0,已执行玩别的任务数目:

0
正在执行task 3
线程池中线程数目:5,队列中等待执行的任务数目:0,已执行玩别的任务数目:

0
正在执行task 4
线程池中线程数目:5,队列中等待执行的任务数目:1,已执行玩别的任务数目:

0
线程池中线程数目:5,队列中等待执行的任务数目:2,已执行玩别的任务数目:
0
线程池中线程数目:5,队列中等待执行的任务数目:3,已执行玩别的任务数目:

0
线程池中线程数目:5,队列中等待执行的任务数目:4,已执行玩别的任务数目:

0
线程池中线程数目:5,队列中等待执行的任务数目:5,已执行玩别的任务数目:

0
线程池中线程数目:6,队列中等待执行的任务数目:5,已执行玩别的任务数目:

0
正在执行task 10
线程池中线程数目:7,队列中等待执行的任务数目:5,已执行玩别的任务数目:

0
正在执行task 11
线程池中线程数目:8,队列中等待执行的任务数目:5,已执行玩别的任务数目:

0
正在执行task 12
线程池中线程数目:9,队列中等待执行的任务数目:5,已执行玩别的任务数目:

0
正在执行task 13
线程池中线程数目:10,队列中等待执行的任务数目:5,已执行玩别的任务数目

:0
正在执行task 14
task 3执行完毕
task 0执行完毕
task 2执行完毕
task 1执行完毕
正在执行task 8
正在执行task 7
正在执行task 6
正在执行task 5
task 4执行完毕
task 10执行完毕
task 11执行完毕
task 13执行完毕
task 12执行完毕
正在执行task 9
task 14执行完毕
task 8执行完毕
task 5执行完毕
task 7执行完毕
task 6执行完毕
task 9执行完毕
从执行结果可以看出,当线程池中线程的数目大于5时,便将任务放入任务缓存队
列里面,当任务缓存队列满了之后,便创建新的线程。如果上面程序中,将for循
环中改成执行20个任务,就会抛出任务拒绝异常了。
不过在java doc中,并不提倡我们直接使用ThreadPoolExecutor,而是使用
Executors类中提供的几个静态方法来创建线程池:
Executors.newCachedThreadPool();        //创建一个缓冲池,缓冲池容量大
小为Integer.MAX_VALUE
Executors.newSingleThreadExecutor();   //创建容量为1的缓冲池
Executors.newFixedThreadPool(int);    //创建固定容量大小的缓冲池
下面是这三个静态方法的具体实现;
public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>


());
}
public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue<Runnable>


()));
}
public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>());
}
从它们的具体实现来看,它们实际上也是调用了ThreadPoolExecutor,只不过参

数都已配置好了。
newFixedThreadPool创建的线程池corePoolSize和maximumPoolSize值是相等的
,它使用的LinkedBlockingQueue;
newSingleThreadExecutor将corePoolSize和maximumPoolSize都设置为1,也使

用的LinkedBlockingQueue;
newCachedThreadPool将corePoolSize设置为0,将maximumPoolSize设置为

Integer.MAX_VALUE,使用的SynchronousQueue,也就是说来了任务就创建线程

运行,当线程空闲超过60秒,就销毁线程。
实际中,如果Executors提供的三个静态方法能满足要求,就尽量使用它提供的三

个方法,因为自己去手动配置ThreadPoolExecutor的参数有点麻烦,要根据实际

任务的类型和数量来进行配置。
另外,如果ThreadPoolExecutor达不到要求,可以自己继承ThreadPoolExecutor

类进行重写。
四.如何合理配置线程池的大小
本节来讨论一个比较重要的话题:如何合理配置线程池大小,仅供参考。
一般需要根据任务的类型来配置线程池大小:
如果是CPU密集型任务,就需要尽量压榨CPU,参考值可以设为 NCPU+1
如果是IO密集型任务,参考值可以设置为2*NCPU
当然,这只是一个参考值,具体的设置还需要根据实际情况进行调整,比如可以先

将线程池大小设置为参考值,再观察任务运行情况和系统负载、资源利用率来进行

适当调整。
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Java 线程池 的相关文章

  • 使用 java 删除 XML 根的子级

    这是我的 xml 文件
  • 如何在ArrayList中的特定位置插入对象

    假设我有一个大小为 n 的对象的 ArrayList 现在我想在特定位置插入另一个对象 假设在索引位置 k 大于 0 且小于 n 并且我希望索引位置 k 处及其之后的其他对象向前移动一个索引位置 那么有没有什么方法可以直接在Java中做到这
  • JAVA 中的 Composer 相当于什么? [关闭]

    Closed 这个问题不符合堆栈溢出指南 help closed questions 目前不接受答案 我目前从 PHP 转向 java 有没有类似的工具composer https getcomposer org 在 PHP 中用于 JAV
  • 是否可以使用 Java 读写 Parquet,而不依赖 Hadoop 和 HDFS?

    我一直在寻找这个问题的解决方案 在我看来 如果不引入对 HDFS 和 Hadoop 的依赖 就无法在 Java 程序中嵌入读写 Parquet 格式 它是否正确 我想在 Hadoop 集群之外的客户端计算机上进行读写 我开始对 Apache
  • java 中的梵文 i18n

    我正在尝试使用来自互联网的示例 ttf 文件在 java 中使用 i18n 进行梵文 印地文 我可以加载资源包条目 还可以加载 ttf 并设置字体 但它不会根据需要呈现 jlabel 它显示块代替字符 如果我在 Eclipse 中调试 我可
  • 垂直 ViewPager 中的动画

    我需要垂直制作这个动画ViewPager https www youtube com watch v wuE 4jjnp3g https www youtube com watch v wuE 4jjnp3g 这是我到目前为止所尝试的 vi
  • H2数据库:如何进行加密保护,而不暴露文件加密密钥

    我们在服务器模式下使用Java H2数据库 因为我们不希望用户访问数据库文件 为了对数据库文件添加更多保护 我们计划使用 AES 加密 将 CIPHER AES 添加到数据库 URL 以防存储被盗 但是 每个用户在连接时还需要提供文件保护密
  • Selenium 和 TestNG 同时使用“dependsOn”和“priority =”问题

    我正在努力在 GUI 自动化测试中实现更好的工作流程控制 我首先从dependsOn开始 但很快发现缺点是如果一个测试失败 则套件的整个其余部分都不会运行 所以我改用 priority 但看到了意外的行为 一个例子 Test priorit
  • 使用 kryo 注册课程的策略

    我最近发现了 kryonet 库 它非常棒并且非常适合我的需求 然而 我遇到的一个问题是制定一种好的策略来注册所有可以转移的类 我知道我可以在每个对象中编写一个静态方法 该方法将返回它使用的所有类的列表 但我真的不想这样做 为了我自己的时间
  • java项目中无法加载类“org.slf4j.impl.StaticLoggerBinder”错误? [复制]

    这个问题在这里已经有答案了 我越来越Failed to load class org slf4j impl StaticLoggerBinder 错误 我想将记录器写入文件 所以我使用了 log4j jar 并使用 apache tomca
  • Java 中如何验证字符串的格式是否正确

    我目前正在用 Java 编写一个验证方法来检查字符串是否是要更改为日期的几种不同格式之一 我希望它接受的格式如下 MM DD YY M DD YY MM D YY 和 M D YY 我正在测试第一种格式 每次它都告诉我它无效 即使我输入了有
  • 如何在Netbeans中设置JList的ListModel?

    我在 Netbeans IDE 的帮助下设计了一个 Swing GUI 该 GUI 包含一个 JList 默认情况下 它使用 QAbstractListModel 将其作为 JList 构造函数中的参数传递以创建该 JList 我想在 Ne
  • 如何让“循环”泛型在 Java 中工作?

    我在编译以下涉及一些泛型的代码时遇到错误 public abstract class State
  • Time.valueOf 方法返回错误值

    我使用 Time valueOf 方法将字符串 09 00 00 转换为 Time 对象 如下所示 Time valueOf LocalTime parse 09 00 00 当我调用 getTime 来显示我得到的值时 28800000
  • 获取 Future 对象的进度的能力

    参考 java util concurrent 包和 Future 接口 我注意到 除非我弄错了 只有 SwingWorker 实现类才能启动冗长的任务并能够查询进度 这就引出了以下问题 有没有办法在非 GUI 非 Swing 应用程序 映
  • 在java中执行匿名pl/sql块并获取结果集

    我想执行匿名 PL SQL 并需要获取结果集对象 我得到了可以通过在 PL SQL 块内使用游标来完成的代码 但 PL SQL 块本身将以文本形式来自数据库 所以我无法编辑该 PL SQL 块 并且它只会返回两个值 其列名始终相同 它将返回
  • Java时区混乱

    我正在运行 Tomcat 应用程序 并且需要显示一些时间值 不幸的是 时间快到了 还有一个小时的休息时间 我调查了一下 发现我的默认时区被设置为 sun util calendar ZoneInfo id GMT 08 00 offset
  • 我怎样才能限定我不“拥有”的自动装配设置器

    要点是 Spring Batch v2 测试框架具有JobLauncherTestUtils setJob与 Autowired注解 我们的测试套件有多个Job类提供者 由于这个类不是我可以修改的东西 我不确定如何限定它自动连接的作业 每个
  • Unicode(希腊语)字符存储在数据库中,例如“??????”

    数据库中的希腊字符就像问号 我找不到解决办法 我使用 Java Swing 开发了一个应用程序 但是当我在 MySQL 中插入希腊字母时 就像问号一样 我将数据库排序规则更改为 utf8 并将列也更改为 utf8 我的项目编码设置为UTF
  • 如何使用socket.io发送图像文件(二进制数据)?

    我无法从以下位置发送数据Android Client to NodeJS Server I use Socket IO 客户端 https github com socketio socket io client java我的客户端中的ja

随机推荐