数据结构与算法(三):栈与队列

2023-11-11


上一篇《 数据结构与算法(二):线性表》中介绍了数据结构中线性表的两种不同实现——顺序表与链表。这一篇主要介绍线性表中比较特殊的两种数据结构——栈与队列。首先必须明确一点,栈和队列都是线性表,它们中的元素都具有线性关系,即前驱后继关系。

一、栈

1、基本概念

栈(也称下压栈,堆栈)是仅允许在表尾进行插入和删除操作的线性表。我们把允许插入和删除的一端称为栈顶(top),另一端称为栈底(bottom)。栈是一种后进先出(Last In First Out)的线性表,简称(LIFO)结构。栈的一个典型应用是在集合中保存元素的同时颠倒元素的相对顺序。

抽象数据类型:

栈同线性表一样,一般包括插入、删除等基本操作。其基于泛型的API接口代码如下:

public interface Stack<E> {

    //栈是否为空
    boolean isEmpty();
    //栈的大小
    int size();
    //入栈
    void push(E element);
    //出栈
    E pop();
    //返回栈顶元素
    E peek();
}

栈的实现通常有两种方式:

  • 基于数组的实现(顺序存储)
  • 基于链表的实现(链式存储)

2、栈的顺序存储结构

栈的顺序存储结构其实是线性表顺序存储结构的简化,我们可以简称它为「顺序栈」。其存储结构如下图:

在这里插入图片描述

实现代码如下:

import java.util.Iterator;
/**
 * 能动态调整数组大小的栈
 */
public class ArrayStack<E> implements Iterable<E>, Stack<E> {

    private E[] elements;
    private int size=0;
    
    @SuppressWarnings("unchecked")
    public ArrayStack() {
        elements = (E[])new Object[1]; //注意:java不允许创建泛型数组
    }
    
    @Override public int size() {return size;}
    
    @Override public boolean isEmpty() {return size == 0;}

    //返回栈顶元素
    @Override public E peek() {return elements[size-1];}

    //调整数组大小
    public void resizingArray(int num) {
        @SuppressWarnings("unchecked")
        E[] temp = (E[])new Object[num];
        for(int i=0;i<size;i++) {
            temp[i] = elements[i];
        }
        elements = temp;
    }

    //入栈
    @Override public void push(E element) {
        if(size == elements.length) {
            resizingArray(2*size);//若数组已满将长度加倍
        }
        elements[size++] = element;
    }

    //出栈
    @Override public E pop() {
        E element = elements[--size];
        elements[size] = null;     //注意:避免对象游离
        if(size > 0 && size == elements.length/4) {
            resizingArray(elements.length/2);//小于数组1/4,将数组减半
        }
        return element;
    }

    //实现迭代器, Iterable接口在java.lang中,但Iterator在java.util中
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            private int num = size;
            public boolean hasNext() {
                return num > 0;
            }
            public E next() {
                return elements[--num];
            }
        };
    }

    //测试
    public static void main(String[] args) {
        int[] a = {1,2,3,4,new Integer(5),6};//测试数组
        ArrayStack<Integer> stack = new ArrayStack<Integer>();
        System.out.print("入栈顺序:");
        for(int i=0;i<a.length;i++) {
            System.out.print(a[i]+" ");
            stack.push(a[i]);
        }
        System.out.println();
        System.out.print("出栈顺序数组实现:");
        //迭代
        for (Integer s : stack) {
            System.out.print(s+" ");
        }
    }
}

优点:

  • 每项操作的用时都与集合大小无关
  • 空间需求总是不超过集合大小乘以一个常数

缺点:

  • push()和pop()操作有时会调整数组大小,这项操作的耗时和栈的大小成正比

3、两栈共享空间

用一个数组来存储两个栈,让一个栈的栈底为数组的始端,即下标为0,另一个栈的栈底为数组的末端,即下标为 n-1。两个栈若增加元素,栈顶都向中间延伸。其结构如下:

在这里插入图片描述

这种结构适合两个栈有相同的数据类型并且空间需求具有相反的关系的情况,即一个栈增长时另一个栈缩短。如,买股票,有人买入,就一定有人卖出。

代码:

public class SqDoubleStack<E> {

    private static final int MAXSIZE = 20;
    private E[] elements;
    private int leftSize=0;
    private int rightSize= MAXSIZE - 1;
    
    //标记是哪个栈
    enum EnumStack {LEFT, RIGHT}

    @SuppressWarnings("unchecked")
    public SqDoubleStack() {
        elements = (E[])new Object[MAXSIZE]; //注意:java不允许创建泛型数组
    }
    

    //入栈
    public void push(E element, EnumStack es) {

        if(leftSize - 1 == rightSize)
            throw new RuntimeException("栈已满,无法添加"); 
        if(es == EnumStack.LEFT) {
            elements[leftSize++] = element;
        } else {
            elements[rightSize--] = element;
        }
    }

    //出栈
    public E pop(EnumStack es ) {

        if(es == EnumStack.LEFT) {
            if(leftSize <= 0)
                throw new RuntimeException("栈为空,无法删除"); 
            E element = elements[--leftSize];
            elements[leftSize] = null;     //注意:避免对象游离
            return element;
        } else {
            if(rightSize >= MAXSIZE - 1)
                throw new RuntimeException("栈为空,无法删除"); 
            E element = elements[++rightSize];
            elements[rightSize] = null;     //注意:避免对象游离
            return element;
        }
    }

    //测试
    public static void main(String[] args) {
        int[] a = {1,2,3,4,new Integer(5),6};//测试数组
        SqDoubleStack<Integer> stack = new SqDoubleStack<Integer>();
        System.out.print("入栈顺序:");
        for(int i=0;i<a.length;i++) {
            System.out.print(a[i]+" ");
            stack.push(a[i], EnumStack.RIGHT);
        }
        System.out.println();
        System.out.print("出栈顺序数组实现:");
        //迭代
        for(int i=0;i<a.length;i++) {
            System.out.print(stack.pop(EnumStack.RIGHT)+" ");
        }
    }
}

4、栈的链式存储结构

栈的链式存储结构,简称链栈。为了操作方便,一般将栈顶放在单链表的头部。通常对于链栈来说,不需要头结点。

其存储结构如下图:

在这里插入图片描述

代码实现如下:

import java.util.Iterator;
public class LinkedStack<E> implements Stack<E>, Iterable<E> {
    private int size = 0;
    private Node head = null;//栈顶

    private class Node {
        E element;
        Node next;
        Node(E element, Node next) {
            this.element = element;
            this.next = next;
        }
    }

    @Override public int size() {return size;}

    @Override public boolean isEmpty() {return size == 0;}

    @Override public E peek() {return head.element;}

    @Override public void push(E element) {
        Node node = new Node(element, head);
        head = node;
        size++;
    }

    @Override public E pop() {
        E element = head.element;
        head = head.next;
        size--;
        return element;
    }
    //迭代器
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            private Node current = head;

        public boolean hasNext() {
                return current != null;
            }

            public E next() {
                E element = current.element;
                current = current.next;
                return element;
            }
        };
    }

    public static void main(String[] args) {
        int[] a = {1,2,3,4,new Integer(5),6};//测试数组
        LinkedStack<Integer> stack = new LinkedStack<Integer>();
        System.out.print("入栈顺序:");
        for(int i=0;i<a.length;i++) {
            System.out.print(a[i]+" ");
            stack.push(a[i]);
        }
        System.out.println();
        System.out.print("出栈顺序链表实现:");
        for (Integer s : stack) {
            System.out.print(s+" ");
        }
    }
}

注意:私有嵌套类(内部类Node)的一个特点是只有包含他的类能够直接访问他的实例变量,无需将他的实例变量(element)声明为public或private。即使将变量element声明为private,外部类依然可以通过Node.element的形式调用。

优点:

  • 所需空间和集合的大小成正比
  • 操作时间和集合的大小无关
  • 链栈的push和pop操作的时间复杂度都为 O(1)。

缺点:

  • 每个元素都有指针域,增加了内存的开销。

顺序栈与链栈的选择和线性表一样,若栈的元素变化不可预料,有时很大,有时很小,那最好使用链栈。反之,若它的变化在可控范围内,使用顺序栈会好一些。

5、栈的应用——递归

栈的一个最重要的应用就是递归。那么什么是递归呢?借用《哥德尔、艾舍尔、巴赫——集异璧之大成》中的话:

递归从狭义上来讲,指的是计算机科学中(也就是像各位程序猿都熟悉的那样),一个模块的程序在其内部调用自身的技巧。如果我们把这个效果视觉化就成为了「德罗斯特效应」,即图片的一部分包涵了图片本身。

如下面这张图,「先有书还是先有封面 ?」
在这里插入图片描述

我们把一个直接调用自身或通过一系列语句间接调用自身的函数,称为递归函数。每个递归函数必须至少有一个结束条件,即不在引用自身而是返回值退出。否则程序将陷入无穷递归中。

一个递归的例子:斐波那契数列(Fibonacci)

在这里插入图片描述

递归实现:

public int fibonacci(int num) {
    if(num < 2)
        return num == 0 ? 0 : 1;
    return fibonacci(num - 1) + fibonacci(num - 2);
}

迭代实现:

public int fibonacci(int num) {
    if(num < 2)
        return num == 0 ? 0 : 1;
    int temp1 = 0;
    int temp2 = 1;
    int result = 0;
    for(int i=2; i < num; i++) {
        result = temp1 + temp2;
        temp1 = temp2;
        temp2 = result;
    }
    return result;
}

迭代与递归的区别:

  • 迭代使用的是循环结构,递归使用的是选择结构。
  • 递归能使程序的结构更清晰、简洁,更容易使人理解。但是大量的递归将消耗大量的内存和时间。

编译器使用栈来实现递归。在前行阶段,每一次递归,函数的局部变量、参数值及返回地址都被压入栈中;退回阶段,这些元素被弹出,以恢复调用的状态。

二、队列

1、基本概念

队列是只允许在一端进行插入操作,在另一端进行删除操作的线性表。它是一种基于先进先出(First In First Out,简称FIFO)策略的集合类型。允许插入的一端称为队尾,允许删除的一端称为队头。

抽象数据类型:

队列作为一种特殊的线性表,它一样包括插入、删除等基本操作。其基于泛型的API接口代码如下:

public interface Queue<E> {

    //队列是否为空
    boolean isEmpty();

    //队列的大小
    int size();

    //入队
    void enQueue(E element);

    //出队
    E deQueue();
}

同样的,队列具有两种存储方式:顺序存储和链式存储。

2、队列的顺序存储结构

其存储结构如下图:

在这里插入图片描述

与栈不同的是,队列元素的出列是在队头,即下表为0的位置。为保证队头不为空,每次出队后队列中的所有元素都得向前移动,此时时间复杂度为 O(n)。此时队列的实现和线性表的顺序存储结构完全相同,不在详述。

若不限制队列的元素必须存储在数组的前n个单元,出队的性能就能大大提高。但这种结构可能产生「假溢出」现象,即数组末尾元素已被占用,如果继续向后就会产生下标越界,而前面为空。如下图:

在这里插入图片描述

解决「假溢出」的办法就是若数组未满,但后面满了,就从头开始入队。我们把这种逻辑上首尾相连的顺序存储结构称为循环队列。

数组实现队列的过程:

在这里插入图片描述

假设开始时数组长度为5,如图,当f入队时,此时数组末尾元素已被占用,如果继续向后就会产生下标越界,但此时数组未满,将从头开始入队。当数组满(h入队)时,将数组的长度加倍。

代码如下:

import java.util.Iterator;
/**
 * 能动态调整数组大小的循环队列
 */
public class CycleArrayQueue<E> implements Queue<E>, Iterable<E> {
    private int size; //记录队列大小
    
    private int first; //first表示头元素的索引
    private int last; //last表示尾元素后一个的索引
    private E[] elements;

    @SuppressWarnings("unchecked")
    public CycleArrayQueue() {
        elements = (E[])new Object[1];
    }
    
    @Override public int size() {return size;}
    @Override public boolean isEmpty(){return size == 0;}

    //调整数组大小
    public void resizingArray(int num) {
        @SuppressWarnings("unchecked")
        E[] temp = (E[])new Object[num];
        for(int i=0; i<size; i++) {
            temp[i] = elements[(first+i) % elements.length];
        }
        elements = temp;
        first = 0;//数组调整后first,last位置
        last =  size;
    }

    @Override public void enQueue(E element){
        //当队列满时,数组长度加倍
        if(size == elements.length) 
            resizingArray(2*size);
        elements[last] = element;
        last = (last+1) % elements.length;//【关键】
        size++;
    }
    
    @Override public E deQueue() {
        if(isEmpty()) 
            return null;
        E element = elements[first];
        first = (first+1) % elements.length;//【关键】
        size--;
        //当队列长度小于数组1/4时,数组长度减半
        if(size > 0 && size < elements.length/4) 
            resizingArray(2*size);
        return element;
    }

    //实现迭代器
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            private int num = size;
            private int current = first;
            public boolean hasNext() {
                return num > 0;
            }
            public E next() {
                E element = elements[current++];
                num--;
                return element;
            }                
        };
    }

    public static void main(String[] args) {
        int[] a = {1,2,4,6,new Integer(10),5};
        CycleArrayQueue<Integer> queue = new CycleArrayQueue<Integer>();

        for(int i=0;i<a.length;i++) {
            queue.enQueue(a[i]);
            System.out.print(a[i]+" ");
        }    
        System.out.println("入队");

        for (Integer s : queue) {
            System.out.print(s+" ");
        }
        System.out.println("出队");
    }
}

3、队列的链式存储结构
队列的链式存储结构,其实就是线性表的单链表,只不过它只能尾进头出而已,我们简称为「链队列」。

存储结构如下图:

在这里插入图片描述

代码如下:

import java.util.Iterator;
/**
 * 队列的链式存储结构,不带头结点的实现
 */
public class LinkedQueue<E> implements Queue<E>, Iterable<E> {
    private Node first; //头结点
    private Node last; //尾结点
    private int size = 0;

    private class Node {
        E element;
        Node next;
        Node(E element) {
            this.element = element;
        }
    }
    
    @Override public int size() {return size;}
    @Override public boolean isEmpty(){return size == 0;}

    
    //入队
    @Override public void enQueue(E element) {
        Node oldLast = last;
        last = new Node(element);
        if(isEmpty()) {
            first = last;//【要点】
        }else {
            oldLast.next = last;
        }
        size++;
    }
    //出队
    @Override public E deQueue() {
        E element = first.element;
        first = first.next;
        size--;
        if(isEmpty()) 
            last = null;//【要点】
        return element;
    }
    //实现迭代器
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            private Node current = first;

            public boolean hasNext() {
                return current != null;
            }

            public E next(){
                E element = current.element;
                current = current.next;
                return element;
            }
        };
    }

    public static void main(String[] args) {
        int[] a = {1,2,4,6,new Integer(10),5};
        LinkedQueue<Integer> queue = new LinkedQueue<Integer>();

        for(int i=0;i<a.length;i++) {
            queue.enQueue(a[i]);
            System.out.print(a[i]+" ");
        }    
        System.out.println("入队");

        for (Integer s : queue) {
            System.out.print(s+" ");
        }
        System.out.println("出队");
    }
}

循环队列与链队列,它们的基本操作的时间复杂度都为 O(1)。和线性表相同,在可以确定队列长度的情况下,建议使用循环队列;无法确定队列长度时使用链队列。

三、总结

栈与队列,它们都是特殊的线性表,只是对插入和删除操作做了限制。栈限定仅能在栈顶进行插入和删除操作,而队列限定只能在队尾插入,在队头删除。它们都可以使用顺序存储结构和链式存储结构两种方式来实现。

对于栈来说,若两个栈数据类型相同,空间需求相反,则可以使用共享数组空间的方法来实现,以提高空间利用率。对于队列来说,为避免插入删除操作时数据的移动,同时避免「假溢出」现象,引入了循环队列,使得队列的基本操作的时间复杂度降为 O(1)。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

数据结构与算法(三):栈与队列 的相关文章

随机推荐

  • MIPI CSI协议

    PCLK 像素时钟 每个时钟对应了一个像素数据 HSYNC 行同步信号 VSYNC 帧同步信号 像素字节转换层 sensor输出的4种数据类型 YUV422 RGB RAW JPEG RGB Data type description 0x
  • 《面试准备》c/c++最少装箱问题(动态规划)

    问题描述 出口质量不等的钻石n颗 至少需要多少个箱子 输入 一个整数m 箱子最大承载重量 一个整数n 钻石的个数 第i颗钻石的质量大小a i 输出 最少需要多少箱子 举例 输入 10 5 4 5 7 3 6 输出 3 c 代码实现 动态规划
  • java8 HashMap

    java8 HashMap 8以前HashMap是用位桶 链表的形式 8以后HashMap是用位桶 链表 红黑树的形式 冲突节点数大于8时 转换成红黑树
  • Spark 架构,计算

    1 架构设计图 2 用户交互方式 1 spark shell spark命令行方式来操作spark作业 多用于简单的学习 测试 简易作业操作 2 spark submit 通过程序脚本 提交相关的代码 依赖等来操作spark作业 最多见的提
  • requests 登陆的几种方法

    一 通过账户名和密码登陆访问 formData username password 需要带 cookies 则带上 cookies res req post url data formData cookies cookies headers
  • sqlite,mysql,access对比

    SQLite是一个小型的桌面型数据库 轻量级的 绿色 开源 轻便 SQLite其实只是一个文件 以及内部格式方案而已 下面做几个简单的对比 SQLite VS 文本文件或二进制文件 他们的本质是相同的 都是一个文件 但是SQLite定义了更
  • Matlab:大小写和空格敏感性

    Matlab 大小写和空格敏感性 Matlab是一种强大的计算机语言 是许多科学家 工程师和其他专业人士使用的首选语言之一 当你开始学习Matlab时 可能会发现它与其他编程语言有些不同 其中一个最显著的区别就是Matlab对大小写和空格的
  • VScode无法启动问题解决思路

    VScode无法启动问题解决 过程 后记 过程 在不知道为什么的情况下 VScode启动没有反应 然后尝试解决问题 进行以下尝试 重启 重装 卸载注册表重装 删除配置重装 均不行 然后本来想打算重装系统了 最后还是接着搞一搞 然后就打算用P
  • MySQL字符集设置

    ERROR 1366 HY000 Incorrect string value错误解决办法 通过命令查看Mysql默认字符集的相关设置 mysql gt SHOW VARIABLES LIKE character Variable name
  • 9.Java面向对象基础(上)

    个人简介 作者简介 大家好 我是W chuanqi 一个编程爱好者 个人主页 W chaunqi 支持我 点赞 收藏 留言 愿你我共勉 没有什么比勇气更温文尔雅 没有什么比怯懦更冷酷无情 文章目录 面向对象 上 1 面向对象的思想 1 1
  • 前端开发工程师

    岗位职责 1 负责网站前端页面的开发工作 2 根据产品需求 分析并给出最优的页面前端结构解决方案 3 与设计师合作完成网站页面前端的特效和最新的应用 4 与产品经理合作完成前端网站交互效果的实现 职位要求 1 掌握各种修图软件 如PS Fi
  • 数据库系统工程师真题及详解(2015~2021)

    2015 2021年软考中级数据库系统工程师真题及答案详解 链接 https pan baidu com s 1VMXyrl1cBX Gwoz0EU Dow pwd nt0a 提取码 nt0a 据了解 考试试题大部分与历年真题相近 祝大家软
  • 计组

    目录 一 知识点 1 寻址方式什么 2 根据操作数所在的位置 都有哪些寻址方式 3 直接寻址 4 立即寻址 5 隐含寻址 6 相对寻址 7 寄存器 8 寄存器 寄存器型 RR 寄存器 存储器型 RS 和存储器 存储器型 SS 9 基址寻址方
  • 类成员函数的重载、覆盖和隐藏区别

    转自 http blog csdn net yanjun 1982 archive 2005 09 02 470405 aspx 这三个概念都是与OO中的多态有关系的 如果单是区别重载与覆盖这两个概念是比较容易的 但是隐藏这一概念却使问题变
  • 理清概念:同步与异步

    广义的同步与异步 在广义上 同步和异步是描述两个或多个事件 操作或进程之间的关系 同步意味着事件 操作或进程是有序的 一个操作必须在另一个操作完成后开始执行 异步则意味着事件 操作或进程是独立的 可以在不等待其他操作完成的情况下开始执行 同
  • CentOS7 RPM包管理功能总结及示例

    RPM是红帽软件包管理器 主要用来对RPM包进行安装 升级 卸载 查询 校验和数据库维护的管理操作 安装 语法 rpm i install install options PACKAGE FILE i 安装一个新包 PACKAGE FILE
  • 关于C#中get和set

    转自 http blog sina com cn s blog 82526aa60100txtx html 在程序中经常碰到get set 不甚明白 在网上查询时也说的迷迷糊糊 所以整理下 以学的明白透彻点 有两个类person publi
  • stm32串口驱动和esp8266的使用

    写在前面 本文并不对相关知识进行讲解 只是这次的实验课要实现的任务有些复杂 我也踩了一些坑 对代码实现思路进行复现和记录 并不是技术科普性文章 基础知识还是要自己有所掌握 1 stm32的串口通讯 开发板 stm32f407zgt6课程学习
  • 一文搞懂深度优先搜索(DFS)

    一 原理 深度优先搜索再得到一个新节点时立即对新节点进行遍历 从节点 0 出发开始遍历 得到到新节点 6 时 立马对新节点 6 进行遍历 得到新节点 4 如此反复以这种方式遍历新节点 直到没有新节点了 此时返回 返回到根节点 0 的情况是
  • 数据结构与算法(三):栈与队列

    一 栈 1 基本概念 2 栈的顺序存储结构 3 两栈共享空间 4 栈的链式存储结构 5 栈的应用 递归 二 队列 1 基本概念 2 队列的顺序存储结构 三 总结 上一篇 数据结构与算法 二 线性表 中介绍了数据结构中线性表的两种不同实现 顺