kafka性能参数和压力测试揭秘

2023-11-12

上一篇文章介绍了Kafka在设计上是如何来保证高时效、大吞吐量的,主要的内容集中在底层原理和架构上,属于理论知识范畴。这次我们站在应用和运维的角度,聊一聊集群到位后要怎么才能最好的配置参数和进行测试性能。Kafka的配置详尽且复杂,想要进行全面的性能调优需要掌握大量信息,我也只是通过工作中的一些实战经验来筛选出对集群性能影响最大的几个要点,接下来要阐述的观点也仅限于我所描述的环境下,请大家根据自己的环境适当取舍。

今天的文章分为两大部分,第一部分介绍一下我总结的跟性能有关的一些参数、含义以及调优策略。第二部分会给出一些我自己实践过的测试结果对照组,具体的数值和结果可能因场景、机器、环境而异,但是总体的思路和方法应该是一致的。

在正式进入主题之前,介绍一下本次测试所使用的机器配置:

  • 6台物理机,其中三台部署Broker,三台专门用来launch request。
  • 每台物理机:24 Processors,189G Memory,2G 单机带宽。
  • 执行本次测试时为了能够覆盖到到一些“非常规”的用法,我把Broker的HeapSize设置到了30G。

相关参数介绍
在调试和优化使用Java开发的系统时,第一步肯定绕不开对JVM的调优,Kafka自然也不例外,而JVM调优的重点则是在内存上。

其实Kafka服务本身并不需要很大内存,上篇文章也已经详细介绍过Kafka依赖系统提供的PageCache来满足性能上的要求,利用VisualJVM等工具可以很清晰的分析出Heap Space的占用比例情况。本文中测试时设置30G内存的目的是支持更高的并发,高并发本身就必然会需要更多的内存来支持,同时高并发也意味着SocketBuffer等相关缓存容量会成倍增长。实际使用中,调整内存大小的准则是留给系统尽可能多的空闲内存,Broker本身则是够用就好。

说完了大小设置我们再来聊一下JVM上的垃圾回收器,官方文档里推荐使用最新的G1来代替CMS作为垃圾回收器。不过也明确指出在某些低版本(1.7u21)的JDK上还是会存在一些不稳定的问题。推荐使用的最低版本为JDK 1.7u51。下面是本次试验中Broker的JVM内存配置参数:

-Xms30g -Xmx30g -XX:PermSize=48m -XX:MaxPermSize=48m -XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35

其实G1早在JDK 1.6u14中就已经作为体验版首次被引入,但是由于最初误宣传需要收费才能使用,和其自身尚不稳定存在Bug等因素,一直等到1.7的后期update版本才逐渐走入我们的视野。

G1相比较于CMS的优势:

  • G1是一种适用于服务器端的垃圾回收器,很好的平衡了吞吐量和响应能力。
  • 对于内存的划分方法不同,Eden, Survivor, Old区域不再固定,使用内存会更高效。G1通过对内存进行Region的划分,有效避免了内存碎片问题。
  • G1可以指定GC时可用于暂停线程的时间(不保证严格遵守)。而CMS并不提供可控选项。
  • CMS只有在FullGC之后会重新合并压缩内存,而G1把回收和合并集合在一起。
  • CMS只能使用在Old区,在清理Young时一般是配合使用ParNew,而G1可以统一两类分区的回收算法。


G1的适用场景:

  • JVM占用内存较大(At least 4G)
  • 应用本身频繁申请、释放内存,进而产生大量内存碎片时。
  • 对于GC时间较为敏感的应用。


接下来,我们来总结一下Kafka本身可能会对性能产生影响的配置项。

Broker
num.network.threads:3

用于接收并处理网络请求的线程数,默认为3。其内部实现是采用Selector模型。启动一个线程作为Acceptor来负责建立连接,再配合启动num.network.threads个线程来轮流负责从Sockets里读取请求,一般无需改动,除非上下游并发请求量过大。

num.partitions:1

Partition的数量选取也会直接影响到Kafka集群的吞吐性能。例如我写过MapReduce任务从Kafka中读取数据,每个Partition对应一个Mapper去消费数据,如果Partition数量太少,则任务会因为Mapper数不足而非常慢。此外,当Partition数量相对于流入流出的数据量显得较少,或由于业务逻辑和Partition数量没有匹配好造成个别Partition读写数据量大,大量的读写请求集中落在一台或几台机器上时,很容易就会打满NIC的全部流量。不难想象这时不仅这一个Partition的读写会出现性能瓶颈,同Broker上的其他Partition或服务都会陷入一个网络资源匮乏的情况。

queued.max.requests:500

这个参数是指定用于缓存网络请求的队列的最大容量,这个队列达到上限之后将不再接收新请求。一般不会成为瓶颈点,除非I/O性能太差,这时需要配合num.io.threads等配置一同进行调整。

Replica相关配置:

replica.lag.time.max.ms:10000replica.lag.max.messages:4000num.replica.fetchers:1

上篇文章已经简单介绍过上两项配置的含义,这里不再重复,重点说一下第三项配置。对于任意(Broker, Leader)元组,都会有replication.factor-1个Broker作为Replica,在Replica上会启动若干Fetch线程把对应的数据同步到本地,而num.replica.fetchers这个参数是用来控制Fetch线程的数量。

一般来说如果发现Partition的ISR当中只有自己一个Partition,且长时间没有新的Replica增加进来时,就可以考虑适当的增大这个参数加快复制进度。其内部实现上,每个Fetch就对应了一个SimpleConsumer,对于任意一台其他机器上需要Catch-up的Leader,会创建num.replica.fetchers个SimpleConsumer来拉取Log。

当初刚知道这块设计的时候还蛮疑惑的,在Kafka文档开篇的时候就郑重介绍过,同一个ConsumerGroup内的Consumer和Partition在同一时间内必须保证是一对一的消费关系,而这么简单地增加SimpleConsumer就可以提高效率又是什么原因呢?

查看源码,在AbstractFetcherThread.scala里可以看到,Fetch启动的多线程其实就是一个个的SimpleConsumer。

首先,getFetcherId()利用numFetcher来控制FetchId的范围,进而控制Consumer数量。partitionsPerFetcher结构则是一个从Partition到Partition上启动的Fetchers的Mapping。


上面为每个Partition启动的多个Fetcher(也就是SimpleConsumer)之间通过partitionMap: mutable.HashMap[TopicAndPartition, Long]来共享offset,达到并行Fetch数据的目的。因此,通过共享offset既保证了同一时间内Consumer和Partition之间的一对一关系,又允许我们通过增多Fetch线程来提高效率。


default.replication.factor:1

这个参数指新创建一个topic时,默认的Replica数量。当Producer中的 acks!=0 && acks!=1时,Replica的大小可能会导致在Produce数据时的性能表现有很大不同。Replica过少会影响数据的可用性,太多则会白白浪费存储资源,一般建议在2~3为宜。

fetch.purgatory.purge.interval.requests:1000producer.purgatory.purge.interval.requests:1000

首先让我先来介绍一下这个“炼狱”究竟是用来做什么用的。Broker的一项主要工作就是接收并处理网络上发来的Request。这些Request其中有一些是可以立即答复的,那很自然这些Request会被直接回复。另外还有一部分是没办法或者Request自发的要求延时答复(例如发送和接收的Batch),Broker会把这种Request放入Paurgatory当中,同时每一个加入Purgatory当中的Request还会额外的加入到两个监控对队列:

  • WatcherFor队列:用于检查Request是否被满足。
  • DelayedQueue队列:用于检测Request是否超时。


Request最终的状态只有一个,就是Complete。请求被满足和超时最终都会被统一的认为是Complete。

目前版本的Purgatory设计上是存在一定缺陷的。Request状态转变为Complete后,并没能立即从Purgatory中移除,而是继续占用资源,因此占用内存累积最终会引发OOM。这种情况一般只会在topic流量较少的情况下触发。更详细的资料可以查阅扩展阅读,在此不做展开。

在实际使用中我也是踩了这个坑过来的,当时的情况是集群新上了一个topic,初期该topic数据很少(Low volume topic),导致那段时间在凌晨3,4点左右会随机有Broker因为OOM挂掉。定位原因后把*.purgatory.purge.interval.requests的配置调整小至100就解决了这个问题。

Kafka的研发团队已经开始着手重新设计Purgatory,力求能够让Request在Complete时立即从Purgatory中移除。

log.flush.interval.ms:Long.MaxValuelog.flush.scheduler.interval.ms:Long.MaxValuelog.flush.interval.messages:Long.MaxValue

Flush相关的配置参数控制着Broker写盘的频率,一般无需改动。如果topic的数据量较小可以考虑减少log.flush.interval.mslog.flush.interval.messages来强制刷写数据,减少可能由于缓存数据未写盘带来的不一致。

in.insync.replicas:1

这个参数只能在topic层级配置,指定每次Producer写操作至少要保证有多少个在ISR的Replica确认,一般配合request.required.acks使用。要注意,这个参数如果设置的过高可能会大幅降低吞吐量。

compression.codec:none

Message落地时是否采用以及采用何种压缩算法。一般都是把Producer发过来Message直接保存,不再改变压缩方式。

Producer " style="font-weight: 400; font-size: 16px; color: rgb(0, 0, 0); font-family: 'Helvetica Neue', Helvetica, 'Hiragino Sans GB', 'Microsoft YaHei', Arial, sans-serif; line-height: 25.6px;"> Producer
buffer.memory:33554432 (32m)

在Producer端用来存放尚未发送出去的Message的缓冲区大小。缓冲区满了之后可以选择阻塞发送或抛出异常,由block.on.buffer.full的配置来决定。

compression.type:none

默认发送不进行压缩,推荐配置一种适合的压缩算法,可以大幅度的减缓网络压力和Broker的存储压力。

linger.ms:0

Producer默认会把两次发送时间间隔内收集到的所有Requests进行一次聚合然后再发送,以此提高吞吐量,而linger.ms则更进一步,这个参数为每次发送增加一些delay,以此来聚合更多的Message。

batch.size:16384

Producer会尝试去把发往同一个Partition的多个Requests进行合并,batch.size指明了一次Batch合并后Requests总大小的上限。如果这个值设置的太小,可能会导致所有的Request都不进行Batch。

acks:1

这个配置可以设定发送消息后是否需要Broker端返回确认。

  • 0: 不需要进行确认,速度最快。存在丢失数据的风险。
  • 1: 仅需要Leader进行确认,不需要ISR进行确认。是一种效率和安全折中的方式。
  • all: 需要ISR中所有的Replica给予接收确认,速度最慢,安全性最高,但是由于ISR可能会缩小到仅包含一个Replica,所以设置参数为all并不能一定避免数据丢失。


注:新老Producer的参数有很大不同,其他配置含义可以对照参考Kafka官方文档。

Consumer
num.consumer.fetchers:1

启动Consumer的个数,适当增加可以提高并发度。

fetch.min.bytes:1

每次Fetch Request至少要拿到多少字节的数据才可以返回。

fetch.wait.max.ms:100

在Fetch Request获取的数据至少达到fetch.min.bytes之前,允许等待的最大时长。对应上面说到的Purgatory中请求的超时时间。
性能测试实战
由于可调整的配置参数较多,为了可以准确的展示不同配置对性能产生的影响,我们每次只调整一个参数,观察对照组结果。测试工具使用Kafka提供的Performance工具ProducerPerformanceConsumerPerformance

Producer
Kafka在0.8版本推出了新的Producer Client,较之前版本有极大的性能提升,所以后续的示例无需说明都采用的是新Producer,这里就只给出一组新旧Producer的对照组数据。
其中,Producer的message.size为1024,不压缩,测试时都发送500000条Message。相信大家看过上面结果,就很清楚以后为什么要乖乖地用新设计的Producer来发消息了。

Kafka发布时提供了两个Producer的性能测试工具:

  • kafka.tools.ProducerPerformance (Scala)
  • org.apache.kafka.clients.tools.ProducerPerformance (Java)


两份工具的大体功能类似。通过Scala版的代码可以很方便的输出CVS文件,通过Patch:1190(https://issues.apache.org/jira/browse/KAFKA-1190)中包含的一个R脚本可以将这个CVS文件结果可视化。

注:如果使用Scala版代码,不建议开启--vary-message-size功能。这个功能使得每次构造消息时都会在内部调用random方法生成随机长度的消息,尤其是在进行压力测试时,构造随机串的消耗累计占比飙高,严重影响发送效率最终致使测试结果失准。

下面,从thread, acks, linger.ms, replica, compression几个主要维度测试了一下Producer的组合性能表现。其中,公共指标如下:

        message.size=1024
        batch.siz=10240
        message.count=50000000

测试结果如下:
注:部分提高了linger.ms的Case效果不明显是由于触发了其他的flush条件。

Consumer

Consumer的测试相对来说就简单很多,毕竟拉取数据时只从Leader读,无论多少Replica都是如此。所以比较关键的参数就聚焦到了fetch.sizethread上。


上述本文给出的参数只是一种参考,适用于我们的集群配置。大家有兴趣可以根据上面提供的方法,在自己的集群上新建独立topic,在实际环境中测试,这样得出的配置才是最适合你的配置。希望大家都能通过上面的方法把自己手头的Kafka调教好,榨干最后一丝性能。

扩展阅读
Request Purgatory潜在引发OOM的问题: https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=34839465
Purgatory Redesign: https://cwiki.apache.org/confluence/display/KAFKA/Purgatory+Redesign+Proposal
深入理解G1内存收集器: http://t.cn/RAUulGC
How to choose the number of topics/partitions in a Kafka cluster?: http://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster
Tips for improving performance of kafka producer: http://ingest.tips/2015/07/19/tips-for-improving-performance-of-kafka-producer/
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

kafka性能参数和压力测试揭秘 的相关文章

  • Java 调试器:是否可以有选择地挂起线程?

    在我过去作为 C C 程序员的生活中 在某些平台和调试器组合上可以选择性地挂起线程 到达断点后 可以发出命令 或单击 GUI 中的内容 来冻结 解除冻结 挂起 唤醒 线程 在执行进一步的步骤 下一步 运行 继续命令时 挂起的线程将不会执行任
  • 如何查看JVM中JIT编译的代码?

    有什么方法可以查看 JVM 中 JIT 生成的本机代码吗 一般用法 正如其他答案所解释的 您可以使用以下 JVM 选项运行 XX UnlockDiagnosticVMOptions XX PrintAssembly 根据特定方法进行过滤 您
  • STS 无法在我的计算机上启动

    我试图在 eclipse 上设置 Spring mvc 项目 基本项目进展顺利 但是使用 Restful 服务 Jersey 等开始出现许多与依赖项相关的错误 所以我打算转到STS 我正在使用 STS 2 9 2 它给我 无法创建java虚
  • 如何减少Scala中创建的对象数量?

    我正在 Scala 中编写一个计算机图形应用程序 它使用 RGB 类返回图像中某个点的颜色 正如你可以想象的 返回颜色 RGB 对象的函数被调用了很多次 class RGB val red Int val green Int val blu
  • 什么触发了java垃圾收集器

    我对 Java 中垃圾收集的工作原理有点困惑 我知道当不再有对某个对象的实时引用时 该对象就有资格进行垃圾回收 但是如果它有对实时对象的引用怎么办 可以说我有一个节点集合 它们再次引用更多节点 List 1 gt Node a gt Nod
  • Java 中的引用变量里面有什么?

    我们知道对象引用变量保存表示访问对象的方式的位 它不保存对象本身 但保存诸如指针或地址之类的东西 我正在阅读 Head First Java 第 2 版 一书 书中写道 第 3 章第 54 页 在 Java 中我们并不真正知道什么是 在引用
  • java.library.path 中没有字体管理器

    以下代码在我的桌面上运行得很好 BufferedImage image new BufferedImage width height BufferedImage TYPE INT RGB Graphics g image getGraphi
  • 一个好的 Java VM 中方法调用的开销是多少?

    有人可以提供反汇编的机器代码汇编程序列表吗 我的意思是 与 C 中的普通函数调用相比 肯定有一些开销 VM 需要跟踪调用以查找热点 并且当它使用编译代码时 如果新加载的类需要重新编译 它需要提供动态更改编译方法的方法 我想某处也有返回堆栈溢
  • Java GuardedString - 用于加密的随机密钥是否存储在 Java 堆内存中?如果不是,那么密钥保存在哪里?

    Oracle 的 org identityconnectors common security GuardedString 要转换为 GuardedString 的原始数据需要由 EncryptorImpl class 随机生成的加密密钥
  • JVM内存段分配

    好吧 我有一个关于 JVM 内存段的问题 我知道每个 JVM 都会选择稍微不同地实现这一点 但这是一个总体概念 在所有 JVM 中应该保持相同 一个在运行时不使用虚拟机执行的标准C C 程序在运行时有四个内存段 代码 堆栈 堆 数据 所有这
  • 如何在Java中计算对象的数字年龄[关闭]

    Closed 这个问题需要多问focused help closed questions 目前不接受答案 我想知道Java中对象的年龄 当我们使用new关键字时 Java中用户定义的对象被创建 但是什么时候它会被销毁 是跨越JVM的perm
  • UseCompressedOops JVM 标志有什么作用以及何时应该使用它?

    HotSpot JVM 标志是什么 XX UseCompressedOops我应该做什么以及什么时候使用它 在 64 位 Java 实例上使用它 与不使用它 时 我会看到什么样的性能和内存使用差异 去年大多数 HotSpot JVM 都默认
  • Java 中清除嵌套 Map 的好方法

    public class MyCache AbstractMap
  • Kotlin 未解决的参考:CLI 上 gradle 的 println

    放一个printlnkotlin 函数返回之前的语句会崩溃 堆栈跟踪 thufir dur NetBeansProjects kotlin thufir dur NetBeansProjects kotlin gradle clean bu
  • 容器中的 JVM 计算处理器错误?

    最近我又做了一些研究 偶然发现了这一点 在向 OpenJDK 团队抱怨之前 我想看看是否有其他人观察到这一点 或者不同意我的结论 因此 众所周知 JVM 长期以来忽略了应用于 cgroup 的内存限制 众所周知 现在从 Java 8 更新某
  • 尝试使用 Ruby Java Bridge (RJB) gem 时出现错误“无法创建 Java VM”

    我正在尝试实现 Ruby Java Bridge RJB gem 来与 JVM 通信 以便我可以运行 Open NLP gem 我在 Windows 8 上安装并运行了 Java 所有迹象 至少我所知道的 都表明 Java 已安装并可运行
  • Scala 为了在 JVM 上运行做出了哪些妥协?

    Scala 是一种很棒的语言 但我想知道如果它有自己的运行时 如何改进 IE 由于 JVM 的选择 做出了哪些设计选择 我所知道的两个最重要的妥协是 类型擦除 http java sun com docs books tutorial ja
  • 测量 tomcat 的排队请求数

    因此 使用tomcat 您可以设置acceptCount值 默认为100 这意味着当所有工作线程都忙时 新连接被放置在队列中 直到队列满 之后它们被拒绝 我想要的是监视此队列中项目的大小 但无法确定是否有办法通过 JMX 获取此值 即不是队
  • Java中的整数缓存[重复]

    这个问题在这里已经有答案了 可能的重复 奇怪的Java拳击 https stackoverflow com questions 3130311 weird java boxing 最近我看到一个演示 其中有以下 Java 代码示例 Inte
  • 是否可以强制 JVM 在堆中而不是堆中创建对象?

    我读过一些文章 有时JVM会识别一些对象并尝试在堆栈中而不是堆中创建它 因为堆栈上的内存分配比堆中的内存分配便宜 堆栈上的释放是免费的 并且堆栈由以下方式有效管理 运行时 那么 堆栈中的对象分配是如何工作的 有什么方法可以强制 JVM 执行

随机推荐

  • Shiro权限框架-在线并发登录人数控制(9)

    1 实现原理 在实际开发中 我们可能会遇到这样的需求 一个账号只允许同时一个在线 当账号在其他地方登陆的时候 会踢出前面登陆的账号 那我们怎么实现 自定义过滤器 继承AccessControlFilter 使用redis队列控制账号在线数目
  • 基于Directshow的H.264流媒体播放器设计

    0引言 DirectsHow应用框架完成了流媒体处理的底层工作 使得编程者无需关心数据如何输入 以及处理完后如何输出 而只需关心如何对输入数据进行处理 H 264视频编解码标准具有高压缩比和优良的网络亲和性 被普遍认为是最有影响力的流媒体视
  • 变分推断

    变分推断 MATLAB实现变分贝叶斯蒙特卡洛模拟的贝叶斯推断 目录 变分推断 MATLAB实现变分贝叶斯蒙特卡洛模拟的贝叶斯推断 效果一览 基本介绍 研究内容 模型描述 模型设计 参考资料 效果一览 基本介绍 MATLAB实现变分贝叶斯蒙特
  • input输入框获取焦点之后,显示搜索记录下拉表,点击其他地方搜索记录框消失

    给input框绑定一个focus事件 获取焦点时给全局绑定一个点击事件 判断下次点击的地方在不在输入框和下拉框内 不在则下拉框消失 记得清除这个点击事件 具体代码如下 处理搜索框获取焦点 handleInputSearch this isO
  • elementui中多个table同步滚动

    问题描述 element admin中同时使用多个table 要求头部固定 给每个并列的table设置max height 通过监听一侧的table滚动情况去控制另外一侧的table滚动 问题分析 table分成两部分 左侧是一个table
  • 用python画基本初等函数的图像(未完成)

    要用到matplotlib库 一 绘制 y x 图像 import numpy as np import matplotlib pyplot as plt x np linspace 50 50 200 定义x的范围为 50到50 分为20
  • UVA-11059 最大乘积 题解答案代码 算法竞赛入门经典第二版

    GitHub jzplp aoapc UVA Answer 算法竞赛入门经典 例题和习题答案 刘汝佳 第二版 数据量不大 暴力即可 include
  • 【AI】《动手学-深度学习-PyTorch版》笔记(二十):图像增强、微调

    AI学习目录汇总 1 图像增强 图像增强可以扩展训练样本数量 减小对某个属性的依赖 比如 裁剪图像 可以减少模型对对象出现位置的依赖 调整亮度 颜色等因素来降低模型对颜色的敏感度等 1 1 准备工作 头文件 matplotlib inlin
  • 01C++11多线程编程之thread,join,detach,joinable以及简说detach传引用地址的大坑

    01C 11多线程编程之thread join detach joinable以及简说detach传引用地址的大坑 1 thread类对象创建线程与join回收线程 1 thread创建线程很简单 定义一个对象然后传一个可调用对象即可 可调
  • Java反射机制【看这一篇就够啦!!!】

    Welcome Huihui s Code World 接下来看看由辉辉所写的关于反射机制的相关操作吧 目录 Welcome Huihui s Code World 一 是什么 二 为什么要使用 三 怎么使用 辉辉小贴士 什么是Class类
  • 数字电路设计之同步电路的一些经验

    在设计的过程中 异步复位电路对硬件要求更低 更容易实现 但是使用同步复位电路却有着诸多优点 使得在实际的工业设计中更多使用的是同步复位电路 使用同步电路一般有以下好处 第一个就是避免毛刺 使用逻辑电路就一定会有毛刺 使用同步电路就有效避免毛
  • Vue生成二维码组件封装

    1 使用方法 1 1 载入 JavaScript 文件 1 2 调用 简单方式 new QRCode document getElementById qrcode your content 设置参数方式 var qrcode new QRC
  • Ubuntu彻底卸载pycharm的方法

    1 查看配置信息位置 首先在解压的pycharm 2020 2 1文件夹中 查看Install Linux tar txt 找到配置信息的位置 下图中蓝色标识 2 卸载安装文件 首先找到安装文件所在的目录 cd 切换至其目录 然后 sudo
  • 深入了解React:组件化开发与状态管理

    简介 React是一个流行的JavaScript库 用于构建用户界面 它以其高效的虚拟DOM和组件化开发的思想而闻名 使得构建复杂的Web应用程序变得更加简单和可维护 本篇博客将带您深入了解React的基本概念 组件化开发和状态管理 帮助您
  • FISCO BCOS(三十六)———Python Sdk window环境部署及应用开发

    1 环境要求 Python环境 python 3 6 3 3 7 3 最好是3 7 3 因为我是 FISCO BCOS节点 可以直接建链 可以是节点前置 也可以是一键部署 2 安装python 2 1 python下载地址 https ww
  • COM 组件设计与应用(十一)

    COM 组件设计与应用 十一 IDispatch 及双接口的调用作者 杨老师 下载源代码一 前言 前段时间 由于工作比较忙 没有能及时地写作 其间收到了很多网友的来信询问和鼓励 在此一并表示感谢 咳 我也需要工作来养家糊口呀 上回书介绍了两
  • linux系统函数总结(一)

    realpath include
  • c陷阱与缺陷

    第一章 词法陷阱 1 这一章没有太多 干货 唯一比较有趣的就是 1 3 语法分析中的 贪心法 所讲内容 这个 贪心 就是编译器会读入字符 如果能新读入的字符和之前所读入字符能组成符号 则编译器会继续读入下一个字符 直到读入的字符不能和之前的
  • BLE MESH组网(五)配置BLE MESH

    BLE MESH 五 配置BLE MESH 前言 概述 配置协议 供应程序 信标 邀请 交换公钥 前言 2017 年 5 月 全球最臭名昭著的勒索软件 WannaCry 在全球范围内积极攻击计算机 劫持用户数据索要赎金 这次攻击影响了 15
  • kafka性能参数和压力测试揭秘

    上一篇文章介绍了Kafka在设计上是如何来保证高时效 大吞吐量的 主要的内容集中在底层原理和架构上 属于理论知识范畴 这次我们站在应用和运维的角度 聊一聊集群到位后要怎么才能最好的配置参数和进行测试性能 Kafka的配置详尽且复杂 想要进行