三角函数基本运算,Clark变换,Park变换,三相系统动态方程

2023-11-13

三角函数基本运算

  • 基本展开,倍角公式
    { sin ⁡ ( α + β ) = sin ⁡ α ⋅ cos ⁡ β + cos ⁡ α ⋅ sin ⁡ β sin ⁡ ( α − β ) = sin ⁡ α ⋅ cos ⁡ β − cos ⁡ α ⋅ sin ⁡ β cos ⁡ ( α + β ) = cos ⁡ α ⋅ cos ⁡ β − sin ⁡ α ⋅ sin ⁡ β cos ⁡ ( α − β ) = cos ⁡ α ⋅ cos ⁡ β + sin ⁡ α ⋅ sin ⁡ β tan ⁡ ( α + β ) = tan ⁡ α + tan ⁡ β 1 − tan ⁡ α ⋅ tan ⁡ β tan ⁡ ( α − β ) = tan ⁡ α − tan ⁡ β 1 + tan ⁡ α ⋅ tan ⁡ β      { sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \left\{ \begin{array}{l} \sin (\alpha + \beta ) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \\ \sin (\alpha - \beta ) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta \\ \cos (\alpha + \beta ) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \\ \cos (\alpha - \beta ) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \\ \tan (\alpha + \beta ) = \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \cdot \tan \beta }}\\ \tan (\alpha - \beta ) = \frac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \cdot \tan \beta }} \end{array} \right.\ \ \ \ \left\{ \begin{array}{l} \sin 2\alpha = 2\sin \alpha \cos \alpha \\ \cos 2\alpha = {\cos ^2}\alpha - {\sin ^2}\alpha = 2{\cos ^2}\alpha - 1 = 1 - 2{\sin ^2}\alpha \\ \tan 2\alpha = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} \end{array} \right. sin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβcos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβtan(α+β)=1tanαtanβtanα+tanβtan(αβ)=1+tanαtanβtanαtanβ     sin2α=2sinαcosαcos2α=cos2αsin2α=2cos2α1=12sin2αtan2α=1tan2α2tanα

  • 积化和差,和差化积
    { sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ]     { sin ⁡ α + sin ⁡ β = 2 sin ⁡ ( α 2 + β 2 ) cos ⁡ ( α 2 − β 2 ) sin ⁡ α − sin ⁡ β = 2 cos ⁡ ( α 2 + β 2 ) sin ⁡ ( α 2 − β 2 ) cos ⁡ α + cos ⁡ β = 2 cos ⁡ ( α 2 + β 2 ) cos ⁡ ( α 2 − β 2 ) cos ⁡ α − cos ⁡ β = − 2 sin ⁡ ( α 2 + β 2 ) sin ⁡ ( α 2 − β 2 ) \left\{ \begin{array}{l} \sin \alpha \cos \beta = \frac{1}{2}\left[ {\sin \left( {\alpha + \beta } \right) + \sin \left( {\alpha - \beta } \right)} \right]\\ \cos \alpha \sin \beta = \frac{1}{2}\left[ {\sin \left( {\alpha + \beta } \right) - \sin \left( {\alpha - \beta } \right)} \right]\\ \cos \alpha \cos \beta = \frac{1}{2}\left[ {\cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right)} \right]\\ \sin \alpha \sin \beta = - \frac{1}{2}\left[ {\cos \left( {\alpha + \beta } \right) - \cos \left( {\alpha - \beta } \right)} \right] \end{array} \right.\ \ \ \left\{ \begin{array}{l} \sin \alpha + \sin \beta = 2\sin \left( {\frac{\alpha }{2} + \frac{\beta }{2}} \right)\cos \left( {\frac{\alpha }{2} - \frac{\beta }{2}} \right)\\ \sin \alpha - \sin \beta = 2\cos \left( {\frac{\alpha }{2} + \frac{\beta }{2}} \right)\sin \left( {\frac{\alpha }{2} - \frac{\beta }{2}} \right)\\ \cos \alpha + \cos \beta = 2\cos \left( {\frac{\alpha }{2} + \frac{\beta }{2}} \right)\cos \left( {\frac{\alpha }{2} - \frac{\beta }{2}} \right)\\ \cos \alpha - \cos \beta = - 2\sin \left( {\frac{\alpha }{2} + \frac{\beta }{2}} \right)\sin \left( {\frac{\alpha }{2} - \frac{\beta }{2}} \right) \end{array} \right. sinαcosβ=21[sin(α+β)+sin(αβ)]cosαsinβ=21[sin(α+β)sin(αβ)]cosαcosβ=21[cos(α+β)+cos(αβ)]sinαsinβ=21[cos(α+β)cos(αβ)]    sinα+sinβ=2sin(2α+2β)cos(2α2β)sinαsinβ=2cos(2α+2β)sin(2α2β)cosα+cosβ=2cos(2α+2β)cos(2α2β)cosαcosβ=2sin(2α+2β)sin(2α2β)

  • 三相系统三角函数
    { [ cos ⁡ ( α ) cos ⁡ ( α − 2 π 3 ) cos ⁡ ( α − 4 π 3 ) ] [ cos ⁡ ( β ) cos ⁡ ( β − 2 π 3 ) cos ⁡ ( β − 4 π 3 ) ] T = 1.5 cos ⁡ ( α − β ) [ cos ⁡ ( α ) cos ⁡ ( α − 2 π 3 ) cos ⁡ ( α − 4 π 3 ) ] [ cos ⁡ ( β ) cos ⁡ ( β − 4 π 3 ) cos ⁡ ( β − 2 π 3 ) ] T = 1.5 cos ⁡ ( α + β ) [ cos ⁡ ( α ) cos ⁡ ( α − 2 π 3 ) cos ⁡ ( α − 4 π 3 ) ] [ sin ⁡ ( β ) sin ⁡ ( β − 2 π 3 ) sin ⁡ ( β − 4 π 3 ) ] T = − 1.5 sin ⁡ ( α − β ) [ cos ⁡ ( α ) cos ⁡ ( α − 2 π 3 ) cos ⁡ ( α − 4 π 3 ) ] [ sin ⁡ ( β ) sin ⁡ ( β − 4 π 3 ) sin ⁡ ( β − 2 π 3 ) ] T = 1.5 sin ⁡ ( α + β ) [ sin ⁡ ( α ) sin ⁡ ( α − 2 π 3 ) sin ⁡ ( α − 4 π 3 ) ] [ sin ⁡ ( β ) sin ⁡ ( β − 2 π 3 ) sin ⁡ ( β − 4 π 3 ) ] T = 1.5 cos ⁡ ( α − β ) [ sin ⁡ ( α ) sin ⁡ ( α − 2 π 3 ) sin ⁡ ( α − 4 π 3 ) ] [ sin ⁡ ( β ) sin ⁡ ( β − 4 π 3 ) sin ⁡ ( β − 2 π 3 ) ] T = − 1.5 cos ⁡ ( α + β ) [ sin ⁡ ( α ) sin ⁡ ( α − 2 π 3 ) sin ⁡ ( α − 4 π 3 ) ] [ cos ⁡ ( β ) cos ⁡ ( β − 2 π 3 ) cos ⁡ ( β − 4 π 3 ) ] T = 1.5 sin ⁡ ( α − β ) [ sin ⁡ ( α ) sin ⁡ ( α − 2 π 3 ) sin ⁡ ( α − 4 π 3 ) ] [ cos ⁡ ( β ) cos ⁡ ( β − 4 π 3 ) cos ⁡ ( β − 2 π 3 ) ] T = 1.5 sin ⁡ ( α + β ) \left\{ \begin{array}{l} \left[ {\begin{array}{c} {\cos \left( \alpha \right)}&{\cos \left( {\alpha - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\alpha - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]{\left[ {\begin{array}{c} {\cos \left( \beta \right)}&{\cos \left( {\beta - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\beta - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]^T} = 1.5\cos \left( {\alpha - \beta } \right)\\ \left[ {\begin{array}{c} {\cos \left( \alpha \right)}&{\cos \left( {\alpha - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\alpha - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]{\left[ {\begin{array}{c} {\cos \left( \beta \right)}&{\cos \left( {\beta - {\textstyle{{4\pi } \over 3}}} \right)}&{\cos \left( {\beta - {\textstyle{{2\pi } \over 3}}} \right)} \end{array}} \right]^T} = 1.5\cos \left( {\alpha + \beta } \right)\\ \left[ {\begin{array}{c} {\cos \left( \alpha \right)}&{\cos \left( {\alpha - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\alpha - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]{\left[ {\begin{array}{c} {\sin \left( \beta \right)}&{\sin \left( {\beta - {\textstyle{{2\pi } \over 3}}} \right)}&{\sin \left( {\beta - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]^T} = - 1.5\sin \left( {\alpha - \beta } \right)\\ \left[ {\begin{array}{c} {\cos \left( \alpha \right)}&{\cos \left( {\alpha - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\alpha - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]{\left[ {\begin{array}{c} {\sin \left( \beta \right)}&{\sin \left( {\beta - {\textstyle{{4\pi } \over 3}}} \right)}&{\sin \left( {\beta - {\textstyle{{2\pi } \over 3}}} \right)} \end{array}} \right]^T} = 1.5\sin \left( {\alpha + \beta } \right)\\ \left[ {\begin{array}{c} {\sin \left( \alpha \right)}&{\sin \left( {\alpha - {\textstyle{{2\pi } \over 3}}} \right)}&{\sin \left( {\alpha - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]{\left[ {\begin{array}{c} {\sin \left( \beta \right)}&{\sin \left( {\beta - {\textstyle{{2\pi } \over 3}}} \right)}&{\sin \left( {\beta - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]^T} = 1.5\cos \left( {\alpha - \beta } \right)\\ \left[ {\begin{array}{c} {\sin \left( \alpha \right)}&{\sin \left( {\alpha - {\textstyle{{2\pi } \over 3}}} \right)}&{\sin \left( {\alpha - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]{\left[ {\begin{array}{c} {\sin \left( \beta \right)}&{\sin \left( {\beta - {\textstyle{{4\pi } \over 3}}} \right)}&{\sin \left( {\beta - {\textstyle{{2\pi } \over 3}}} \right)} \end{array}} \right]^T} = - 1.5\cos \left( {\alpha + \beta } \right)\\ \left[ {\begin{array}{c} {\sin \left( \alpha \right)}&{\sin \left( {\alpha - {\textstyle{{2\pi } \over 3}}} \right)}&{\sin \left( {\alpha - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]{\left[ {\begin{array}{c} {\cos \left( \beta \right)}&{\cos \left( {\beta - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\beta - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]^T} = 1.5\sin \left( {\alpha - \beta } \right)\\ \left[ {\begin{array}{c} {\sin \left( \alpha \right)}&{\sin \left( {\alpha - {\textstyle{{2\pi } \over 3}}} \right)}&{\sin \left( {\alpha - {\textstyle{{4\pi } \over 3}}} \right)} \end{array}} \right]{\left[ {\begin{array}{c} {\cos \left( \beta \right)}&{\cos \left( {\beta - {\textstyle{{4\pi } \over 3}}} \right)}&{\cos \left( {\beta - {\textstyle{{2\pi } \over 3}}} \right)} \end{array}} \right]^T} = 1.5\sin \left( {\alpha + \beta } \right) \end{array} \right. [cos(α)cos(α32π)cos(α34π)][cos(β)cos(β32π)cos(β34π)]T=1.5cos(αβ)[cos(α)cos(α32π)cos(α34π)][cos(β)cos(β34π)cos(β32π)]T=1.5cos(α+β)[cos(α)cos(α32π)cos(α34π)][sin(β)sin(β32π)sin(β34π)]T=1.5sin(αβ)[cos(α)cos(α32π)cos(α34π)][sin(β)sin(β34π)sin(β32π)]T=1.5sin(α+β)[sin(α)sin(α32π)sin(α34π)][sin(β)sin(β32π)sin(β34π)]T=1.5cos(αβ)[sin(α)sin(α32π)sin(α34π)][sin(β)sin(β34π)sin(β32π)]T=1.5cos(α+β)[sin(α)sin(α32π)sin(α34π)][cos(β)cos(β32π)cos(β34π)]T=1.5sin(αβ)[sin(α)sin(α32π)sin(α34π)][cos(β)cos(β34π)cos(β32π)]T=1.5sin(α+β)

Clark变换与Park变换

a b c abc abc α β 0 \alpha\beta0 αβ0 d q 0 dq0 dq0坐标系定义

  • θ = 0 \theta=0 θ=0时,a轴、 α \alpha α轴、 d d d轴,三轴合一, θ \theta θ的正方向为逆时针方向;
  • 时域层面上,a超前b,b超前c; i a = I c o s ( ω t ) , i b = I c o s ( ω t − 2 3 π ) , i c = I c o s ( ω t + 2 3 π ) i_a=Icos(\omega t),i_b=Icos(\omega t - \frac{2}{3}\pi),i_c=Icos(\omega t + \frac{2}{3}\pi) ia=Icos(ωt),ib=Icos(ωt32π),ic=Icos(ωt+32π)

在这里插入图片描述

幅值不变Clark变换

{ C l a r k 正变换 : [ f α f β f 0 ] = 2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 1 2 1 2 1 2 ] [ f a f b f c ] 紧凑形式 : F α β 0 = P a b c α β 0 F a b c = P a b c d q 0 ( 0 ) F a b c C l a r k 逆变换 : [ f a f b f c ] = [ 1 0 1 − 1 2 3 2 1 − 1 2 − 3 2 1 ] [ f α f β f 0 ] 紧凑形式 : F a b c = P α β 0 a b c F α β 0 = P d q 0 a b c ( 0 ) F α β 0 \left\{ \begin{array}{l} {\rm{Clark正变换:}}\left[ {\begin{array}{c} {{f_\alpha }}\\ {{f_\beta }}\\ {{f_0}} \end{array}} \right] = \frac{2}{3}\left[ {\begin{array}{c} 1&{ - {\textstyle{1 \over 2}}}&{ - {\textstyle{1 \over 2}}}\\ 0&{{\textstyle{{\sqrt 3 } \over 2}}}&{ - {\textstyle{{\sqrt 3 } \over 2}}}\\ {{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}} \end{array}} \right]\left[ {\begin{array}{c} {{f_a}}\\ {{f_b}}\\ {{f_c}} \end{array}} \right]\\ 紧凑形式:{{\bf{F}}_{\alpha \beta 0}} = {\bf{P}}_{abc}^{\alpha \beta0}{{\bf{F}}_{abc}} = {\bf{P}}_{abc}^{dq0}\left( 0 \right){{\bf{F}}_{abc}}\\ {\rm{Clark逆变换}}:\left[ {\begin{array}{c} {{f_a}}\\ {{f_b}}\\ {{f_c}} \end{array}} \right] = \left[ {\begin{array}{c} 1&0&1\\ { - {\textstyle{1 \over 2}}}&{{\textstyle{{\sqrt 3 } \over 2}}}&1\\ { - {\textstyle{1 \over 2}}}&{ - {\textstyle{{\sqrt 3 } \over 2}}}&1 \end{array}} \right]\left[ {\begin{array}{c} {{f_\alpha }}\\ {{f_\beta }}\\ {{f_0}} \end{array}} \right]\\ 紧凑形式:{{\bf{F}}_{abc}} = {\bf{P}}_{\alpha \beta0}^{abc}{{\bf{F}}_{\alpha \beta 0}} = {\bf{P}}_{dq0}^{abc}\left( 0 \right){{\bf{F}}_{\alpha \beta 0}} \end{array} \right. Clark正变换: fαfβf0 =32 10212123 212123 21 fafbfc 紧凑形式:Fαβ0=Pabcαβ0Fabc=Pabcdq0(0)FabcClark逆变换: fafbfc = 12121023 23 111 fαfβf0 紧凑形式:Fabc=Pαβ0abcFαβ0=Pdq0abc(0)Fαβ0

幅值不变Park变换( α β 0 ↔ d q 0 \alpha\beta0 \leftrightarrow dq0 αβ0dq0

{ P a r k 正变换 : [ f d f q f 0 ] = [ cos ⁡ ( θ ) sin ⁡ ( θ ) 0 − sin ⁡ ( θ ) cos ⁡ ( θ ) 0 0 0 1 ] [ f α f β f 0 ] 紧凑形式 : F d q 0 = P α β 0 d q 0 ( θ ) F α β 0 P a r k 逆变换 : [ f α f β f 0 ] = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) 0 sin ⁡ ( θ ) cos ⁡ ( θ ) 0 0 0 1 ] [ f d f q f 0 ] 紧凑形式 : F α β 0 = P d q 0 α β 0 ( θ ) F d q 0 \left\{ \begin{array}{l} {\rm{Park正变换}}:\left[ {\begin{array}{c} {{f_d}}\\ {{f_q}}\\ {{f_0}} \end{array}} \right] = \left[ {\begin{array}{c} {\cos \left( \theta \right)}&{\sin \left( \theta \right)}&0\\ { - \sin \left( \theta \right)}&{\cos \left( \theta \right)}&0\\ 0&0&1 \end{array}} \right]\left[ {\begin{array}{c} {{f_\alpha }}\\ {{f_\beta }}\\ {{f_0}} \end{array}} \right]\\ 紧凑形式:{{\bf{F}}_{dq0}} = {\bf{P}}_{\alpha \beta 0}^{dq0}\left( \theta \right){{\bf{F}}_{\alpha \beta 0}}\\ {\rm{Park逆变换}}:\left[ {\begin{array}{c} {{f_\alpha }}\\ {{f_\beta }}\\ {{f_0}} \end{array}} \right] = \left[ {\begin{array}{c} {\cos \left( \theta \right)}&{ - \sin \left( \theta \right)}&0\\ {\sin \left( \theta \right)}&{\cos \left( \theta \right)}&0\\ 0&0&1 \end{array}} \right]\left[ {\begin{array}{c} {{f_d}}\\ {{f_q}}\\ {{f_0}} \end{array}} \right]\\ 紧凑形式:{{\bf{F}}_{\alpha \beta 0}} = {\bf{P}}_{dq0}^{\alpha \beta 0}\left( \theta \right){{\bf{F}}_{dq0}} \end{array} \right. Park正变换: fdfqf0 = cos(θ)sin(θ)0sin(θ)cos(θ)0001 fαfβf0 紧凑形式:Fdq0=Pαβ0dq0(θ)Fαβ0Park逆变换: fαfβf0 = cos(θ)sin(θ)0sin(θ)cos(θ)0001 fdfqf0 紧凑形式:Fαβ0=Pdq0αβ0(θ)Fdq0

幅值不变Park变换( a b c ↔ d q 0 abc \leftrightarrow dq0 abcdq0

{ P a r k 正变换 : [ f d f q f 0 ] = 2 3 [ cos ⁡ ( θ ) cos ⁡ ( θ − 2 π 3 ) cos ⁡ ( θ + 2 π 3 ) − sin ⁡ ( θ ) − sin ⁡ ( θ − 2 π 3 ) − sin ⁡ ( θ + 2 π 3 ) 1 2 1 2 1 2 ] [ f a f b f c ] 紧凑形式 : F d q 0 = P a b c d q 0 ( θ ) F a b c P a r k 逆变换 : [ f a f b f c ] = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) 1 cos ⁡ ( θ − 2 π 3 ) − sin ⁡ ( θ − 2 π 3 ) 1 cos ⁡ ( θ + 2 π 3 ) − sin ⁡ ( θ + 2 π 3 ) 1 ] [ f d f q f 0 ] 紧凑形式 : F a b c = P d q 0 a b c ( θ ) F d q 0 \left\{ \begin{array}{l} {\rm{Park正变换}}:\left[ {\begin{array}{c} {{f_d}}\\ {{f_q}}\\ {{f_0}} \end{array}} \right] = \frac{2}{3}\left[ {\begin{array}{c} {\cos \left( \theta \right)}&{\cos \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)}\\ { - \sin \left( \theta \right)}&{ - \sin \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)}\\ {{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}} \end{array}} \right]\left[ {\begin{array}{c} {{f_a}}\\ {{f_b}}\\ {{f_c}} \end{array}} \right]\\ 紧凑形式:{{\bf{F}}_{dq0}} = {\bf{P}}_{abc}^{dq0}\left( \theta \right){{\bf{F}}_{abc}}\\ {\rm{Park逆变换}}:\left[ {\begin{array}{c} {{f_a}}\\ {{f_b}}\\ {{f_c}} \end{array}} \right] = \left[ {\begin{array}{c} {\cos \left( \theta \right)}&{ - \sin \left( \theta \right)}&1\\ {\cos \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&1\\ {\cos \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)}&1 \end{array}} \right]\left[ {\begin{array}{c} {{f_d}}\\ {{f_q}}\\ {{f_0}} \end{array}} \right]\\ 紧凑形式:{{\bf{F}}_{abc}} = {\bf{P}}_{dq0}^{abc}\left( \theta \right){{\bf{F}}_{dq0}} \end{array} \right. Park正变换: fdfqf0 =32 cos(θ)sin(θ)21cos(θ32π)sin(θ32π)21cos(θ+32π)sin(θ+32π)21 fafbfc 紧凑形式:Fdq0=Pabcdq0(θ)FabcPark逆变换: fafbfc = cos(θ)cos(θ32π)cos(θ+32π)sin(θ)sin(θ32π)sin(θ+32π)111 fdfqf0 紧凑形式:Fabc=Pdq0abc(θ)Fdq0

幅值不变变换的功率对比

{ U d q 0 T I d q 0 = ( P a b c d q 0 ( θ ) U a b c ) T P a b c d q 0 ( θ ) I a b c = U a b c T P a b c d q 0 ( θ ) T P a b c d q 0 ( θ ) I a b c = U a b c T 2 3 [ cos ⁡ ( θ ) − sin ⁡ ( θ ) 1 2 cos ⁡ ( θ − 2 π 3 ) − sin ⁡ ( θ − 2 π 3 ) 1 2 cos ⁡ ( θ + 2 π 3 ) − sin ⁡ ( θ + 2 π 3 ) 1 2 ] 2 3 [ cos ⁡ ( θ ) cos ⁡ ( θ − 2 π 3 ) cos ⁡ ( θ + 2 π 3 ) − sin ⁡ ( θ ) − sin ⁡ ( θ − 2 π 3 ) − sin ⁡ ( θ + 2 π 3 ) 1 2 1 2 1 2 ] I a b c = 4 9 U a b c T [ 1.25 − 0.25 − 0.25 − 0.25 1.25 − 0.25 − 0.25 − 0.25 1.25 ] I a b c ,   A c c o r d i n g   t o   i a + i b + i c = 0 = 4 9 U a b c T [ 1.5 i a 1.5 i b 1.5 i c ] = 2 3 U a b c T I a b c \left\{ \begin{aligned} U_{dq0}^T{I_{dq0}} &= {\left( {{\bf{P}}_{abc}^{dq0}\left( \theta \right){U_{abc}}} \right)^T}{\bf{P}}_{abc}^{dq0}\left( \theta \right){I_{abc}}\\ &= U_{abc}^T{\bf{P}}_{abc}^{dq0}{\left( \theta \right)^T}{\bf{P}}_{abc}^{dq0}\left( \theta \right){I_{abc}}\\ &= U_{abc}^T\frac{2}{3}\left[ {\begin{array}{c} {\cos \left( \theta \right)}&{ - \sin \left( \theta \right)}&{{\textstyle{1 \over 2}}}\\ {\cos \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&{{\textstyle{1 \over 2}}}\\ {\cos \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)}&{{\textstyle{1 \over 2}}} \end{array}} \right]\frac{2}{3}\left[ {\begin{array}{c} {\cos \left( \theta \right)}&{\cos \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)}\\ { - \sin \left( \theta \right)}&{ - \sin \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)}\\ {{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}} \end{array}} \right]{I_{abc}}\\ &= \frac{4}{9}U_{abc}^T\left[ {\begin{array}{c} {1.25}&{ - 0.25}&{ - 0.25}\\ { - 0.25}&{1.25}&{ - 0.25}\\ { - 0.25}&{ - 0.25}&{1.25} \end{array}} \right]{I_{abc}},\ According\ to\ {i_a} + {i_b} + {i_c} = 0\\ &= \frac{4}{9}U_{abc}^T\left[ {\begin{array}{c} {1.5i_a}\\ {1.5i_b}\\ {1.5i_c} \end{array}} \right]\\ &= \frac{2}{3}U_{abc}^T{I_{abc}} \end{aligned} \right. Udq0TIdq0=(Pabcdq0(θ)Uabc)TPabcdq0(θ)Iabc=UabcTPabcdq0(θ)TPabcdq0(θ)Iabc=UabcT32 cos(θ)cos(θ32π)cos(θ+32π)sin(θ)sin(θ32π)sin(θ+32π)212121 32 cos(θ)sin(θ)21cos(θ32π)sin(θ32π)21cos(θ+32π)sin(θ+32π)21 Iabc=94UabcT 1.250.250.250.251.250.250.250.251.25 Iabc, According to ia+ib+ic=0=94UabcT 1.5ia1.5ib1.5ic =32UabcTIabc

{ U d q T I d q = ( P a b c d q ( θ ) U a b c ) T P a b c d q ( θ ) I a b c = U a b c T P a b c d q ( θ ) T P a b c d q ( θ ) I a b c = U a b c T 2 3 [ cos ⁡ ( θ ) − sin ⁡ ( θ ) cos ⁡ ( θ − 2 π 3 ) − sin ⁡ ( θ − 2 π 3 ) cos ⁡ ( θ + 2 π 3 ) − sin ⁡ ( θ + 2 π 3 ) ] 2 3 [ cos ⁡ ( θ ) cos ⁡ ( θ − 2 π 3 ) cos ⁡ ( θ + 2 π 3 ) − sin ⁡ ( θ ) − sin ⁡ ( θ − 2 π 3 ) − sin ⁡ ( θ + 2 π 3 ) ] I a b c = 4 9 U a b c T [ 1 − 0.5 − 0.5 − 0.5 1 − 0.5 − 0.5 − 0.5 1 ] I a b c ,   A c c o r d i n g   t o   i a + i b + i c = 0 = 4 9 U a b c T [ 1.5 i a 1.5 i b 1.5 i c ] I a b c = 2 3 U a b c T I a b c \left\{ \begin{aligned} U_{dq}^T{I_{dq}} &= {\left( {{\bf{P}}_{abc}^{dq}\left( \theta \right){U_{abc}}} \right)^T}{\bf{P}}_{abc}^{dq}\left( \theta \right){I_{abc}}\\ &= U_{abc}^T{\bf{P}}_{abc}^{dq}{\left( \theta \right)^T}{\bf{P}}_{abc}^{dq}\left( \theta \right){I_{abc}}\\ &= U_{abc}^T\frac{2}{3}\left[ {\begin{array}{c} {\cos \left( \theta \right)}&{ - \sin \left( \theta \right)}\\ {\cos \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}\\ {\cos \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)} \end{array}} \right]\frac{2}{3}\left[ {\begin{array}{c} {\cos \left( \theta \right)}&{\cos \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)}\\ { - \sin \left( \theta \right)}&{ - \sin \left( {\theta - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\theta + {\textstyle{{2\pi } \over 3}}} \right)} \end{array}} \right]{I_{abc}}\\ &= \frac{4}{9}U_{abc}^T\left[ {\begin{array}{c} 1&{ - 0.5}&{ - 0.5}\\ { - 0.5}&1&{ - 0.5}\\ { - 0.5}&{ - 0.5}&1 \end{array}} \right]{I_{abc}},\ According\ to\ {i_a} + {i_b} + {i_c} = 0\\ &= \frac{4}{9}U_{abc}^T\left[ {\begin{array}{c} {1.5i_a}\\ {1.5i_b}\\ {1.5i_c} \end{array}} \right]{I_{abc}}\\ &= \frac{2}{3}U_{abc}^T{I_{abc}} \end{aligned} \right. UdqTIdq=(Pabcdq(θ)Uabc)TPabcdq(θ)Iabc=UabcTPabcdq(θ)TPabcdq(θ)Iabc=UabcT32 cos(θ)cos(θ32π)cos(θ+32π)sin(θ)sin(θ32π)sin(θ+32π) 32[cos(θ)sin(θ)cos(θ32π)sin(θ32π)cos(θ+32π)sin(θ+32π)]Iabc=94UabcT 10.50.50.510.50.50.51 Iabc, According to ia+ib+ic=0=94UabcT 1.5ia1.5ib1.5ic Iabc=32UabcTIabc

由于 i a + i b + i c = 0 i_a+i_b+i_c=0 ia+ib+ic=0,零序功率 u 0 i 0 = 0 u_0i_0=0 u0i0=0;采用幅值不变变换,变换后的功率是真实功率的 2 3 \frac{2}{3} 32倍。

三相系统动态方程

a b c abc abc d q 0 dq0 dq0微分关系推导

{ d d t F d q 0 = d d t [ P a b c d q 0 ( ω t ) F a b c ] = d P a b c d q 0 ( ω t ) d t F a b c + P a b c d q 0 ( ω t ) d F a b c d t = 2 3 { d d t [ cos ⁡ ( ω t ) cos ⁡ ( ω t − 2 π 3 ) cos ⁡ ( ω t + 2 π 3 ) − sin ⁡ ( ω t ) − sin ⁡ ( ω t − 2 π 3 ) − sin ⁡ ( ω t + 2 π 3 ) 1 2 1 2 1 2 ] } [ f a f b f c ] + 2 3 [ cos ⁡ ( ω t ) cos ⁡ ( ω t − 2 π 3 ) cos ⁡ ( ω t + 2 π 3 ) − sin ⁡ ( ω t ) − sin ⁡ ( ω t − 2 π 3 ) − sin ⁡ ( ω t + 2 π 3 ) 1 2 1 2 1 2 ] d d t [ f a f b f c ] = ω 2 3 [ − sin ⁡ ( ω t ) − sin ⁡ ( ω t − 2 π 3 ) − sin ⁡ ( ω t + 2 π 3 ) − cos ⁡ ( ω t ) − cos ⁡ ( ω t − 2 π 3 ) − cos ⁡ ( ω t + 2 π 3 ) 0 0 0 ] [ f a f b f c ] + 2 3 [ cos ⁡ ( ω t ) cos ⁡ ( ω t − 2 π 3 ) cos ⁡ ( ω t + 2 π 3 ) − sin ⁡ ( ω t ) − sin ⁡ ( ω t − 2 π 3 ) − sin ⁡ ( ω t + 2 π 3 ) 1 2 1 2 1 2 ] d d t [ f a f b f c ] = ω [ f q − f d 0 ] + P a b c d q 0 ( ω t ) d d t [ f a f b f c ] \left\{ \begin{aligned} \frac{d}{{dt}}{{\bf{F}}_{dq0}} &= \frac{d}{{dt}}\left[ {{\bf{P}}_{abc}^{dq0}\left( {\omega t} \right){{\bf{F}}_{abc}}} \right]\\ &= \frac{{d{\bf{P}}_{abc}^{dq0}\left( {\omega t} \right)}}{{dt}}{{\bf{F}}_{abc}} + {\bf{P}}_{abc}^{dq0}\left( {\omega t} \right)\frac{{d{{\bf{F}}_{abc}}}}{{dt}}\\ &= \frac{2}{3}\left\{ {\frac{d}{{dt}}\left[ {\begin{array}{c} {\cos \left( {\omega t} \right)}&{\cos \left( {\omega t - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\omega t + {\textstyle{{2\pi } \over 3}}} \right)}\\ { - \sin \left( {\omega t} \right)}&{ - \sin \left( {\omega t - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\omega t + {\textstyle{{2\pi } \over 3}}} \right)}\\ {{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}} \end{array}} \right]} \right\}\left[ {\begin{array}{c} {{f_a}}\\ {{f_b}}\\ {{f_c}} \end{array}} \right] + \frac{2}{3}\left[ {\begin{array}{c} {\cos \left( {\omega t} \right)}&{\cos \left( {\omega t - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\omega t + {\textstyle{{2\pi } \over 3}}} \right)}\\ { - \sin \left( {\omega t} \right)}&{ - \sin \left( {\omega t - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\omega t + {\textstyle{{2\pi } \over 3}}} \right)}\\ {{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}} \end{array}} \right]\frac{d}{{dt}}\left[ {\begin{array}{c} {{f_a}}\\ {{f_b}}\\ {{f_c}} \end{array}} \right]\\ &= \omega \frac{2}{3}\left[ {\begin{array}{c} { - \sin \left( {\omega t} \right)}&{ - \sin \left( {\omega t - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\omega t + {\textstyle{{2\pi } \over 3}}} \right)}\\ { - \cos \left( {\omega t} \right)}&{ - \cos \left( {\omega t - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \cos \left( {\omega t + {\textstyle{{2\pi } \over 3}}} \right)}\\ 0&0&0 \end{array}} \right]\left[ {\begin{array}{c} {{f_a}}\\ {{f_b}}\\ {{f_c}} \end{array}} \right] + \frac{2}{3}\left[ {\begin{array}{c} {\cos \left( {\omega t} \right)}&{\cos \left( {\omega t - {\textstyle{{2\pi } \over 3}}} \right)}&{\cos \left( {\omega t + {\textstyle{{2\pi } \over 3}}} \right)}\\ { - \sin \left( {\omega t} \right)}&{ - \sin \left( {\omega t - {\textstyle{{2\pi } \over 3}}} \right)}&{ - \sin \left( {\omega t + {\textstyle{{2\pi } \over 3}}} \right)}\\ {{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}}&{{\textstyle{1 \over 2}}} \end{array}} \right]\frac{d}{{dt}}\left[ {\begin{array}{c} {{f_a}}\\ {{f_b}}\\ {{f_c}} \end{array}} \right]\\ &= \omega \left[ {\begin{array}{c} {{f_q}}\\ { - {f_d}}\\ 0 \end{array}} \right] + {\bf{P}}_{abc}^{dq0}\left( {\omega t} \right)\frac{d}{{dt}}\left[ {\begin{array}{c} {{f_a}}\\ {{f_b}}\\ {{f_c}} \end{array}} \right] \end{aligned} \right. dtdFdq0=dtd[Pabcdq0(ωt)Fabc]=dtdPabcdq0(ωt)Fabc+Pabcdq0(ωt)dtdFabc=32 dtd cos(ωt)sin(ωt)21cos(ωt32π)sin(ωt32π)21cos(ωt+32π)sin(ωt+32π)21 fafbfc +32 cos(ωt)sin(ωt)21cos(ωt32π)sin(ωt32π)21cos(ωt+32π)sin(ωt+32π)21 dtd fafbfc =ω32 sin(ωt)cos(ωt)0sin(ωt32π)cos(ωt32π)0sin(ωt+32π)cos(ωt+32π)0 fafbfc +32 cos(ωt)sin(ωt)21cos(ωt32π)sin(ωt32π)21cos(ωt+32π)sin(ωt+32π)21 dtd fafbfc =ω fqfd0 +Pabcdq0(ωt)dtd fafbfc

P a b c d q 0 ( ω t ) d F a b c d t = d F d q 0 d t + ω [ − f q f d 0 ] {\bf{P}}_{abc}^{dq0}\left( {\omega t} \right)\frac{{d{{\bf{F}}_{abc}}}}{{dt}} = \frac{{d{{\bf{F}}_{dq0}}}}{{dt}} + \omega \left[ {\begin{array}{c} { - {f_q}}\\ {{f_d}}\\ 0 \end{array}} \right] Pabcdq0(ωt)dtdFabc=dtdFdq0+ω fqfd0

三相系统动态方程

  考虑如下形式的三相系统:
{ u a − e a = R i a + L d i a d t u b − e b = R i b + L d i b d t u c − e c = R i c + L d i c d t ↔ [ u a u b u c ] − [ e a e b e c ] = R [ i a i b i c ] + L d d t [ i a i b i c ] \left\{ \begin{array}{l} {u_a} - {e_a} = R{i_a} + L\frac{{d{i_a}}}{{dt}}\\ {u_b} - {e_b} = R{i_b} + L\frac{{d{i_b}}}{{dt}}\\ {u_c} - {e_c} = R{i_c} + L\frac{{d{i_c}}}{{dt}} \end{array} \right. \leftrightarrow \left[ \begin{array}{l} {u_a}\\ {u_b}\\ {u_c} \end{array} \right] - \left[ \begin{array}{l} {e_a}\\ {e_b}\\ {e_c} \end{array} \right] = R\left[ \begin{array}{l} {i_a}\\ {i_b}\\ {i_c} \end{array} \right] + L\frac{d}{{dt}}\left[ \begin{array}{l} {i_a}\\ {i_b}\\ {i_c} \end{array} \right] uaea=Ria+Ldtdiaubeb=Rib+Ldtdibucec=Ric+Ldtdic uaubuc eaebec =R iaibic +Ldtd iaibic

  左右同乘 P a b c d q 0 {\bf{P}}_{abc}^{dq0} Pabcdq0
[ u d u q u 0 ] − [ e d e q e 0 ] = R [ i d i q i 0 ] + L d d t [ i d i q i 0 ] + ω L [ − i q i d i 0 ] \left[ \begin{array}{l} {u_d}\\ {u_q}\\ {u_0} \end{array} \right] - \left[ \begin{array}{l} {e_d}\\ {e_q}\\ {e_0} \end{array} \right] = R\left[ \begin{array}{l} {i_d}\\ {i_q}\\ {i_0} \end{array} \right] + L\frac{d}{{dt}}\left[ \begin{array}{l} {i_d}\\ {i_q}\\ {i_0} \end{array} \right] + \omega L\left[ \begin{array}{c} -{i_q}\\ {i_d}\\ {i_0} \end{array} \right] uduqu0 edeqe0 =R idiqi0 +Ldtd idiqi0 +ωL iqidi0

  写作标准状态方程形式:
d d t [ i d i q i 0 ] = 1 L [ u d u q u 0 ] − 1 L [ e d e q e 0 ] − R L [ i d i q i 0 ] + ω [ i q − i d i 0 ] \frac{d}{{dt}}\left[ \begin{array}{l} {i_d}\\ {i_q}\\ {i_0} \end{array} \right] = \frac{1}{L}\left[ \begin{array}{l} {u_d}\\ {u_q}\\ {u_0} \end{array} \right] - \frac{1}{L}\left[ \begin{array}{l} {e_d}\\ {e_q}\\ {e_0} \end{array} \right] - \frac{R}{L}\left[ \begin{array}{l} {i_d}\\ {i_q}\\ {i_0} \end{array} \right] + \omega \left[ \begin{array}{c} {i_q}\\ -{i_d}\\ {i_0} \end{array} \right] dtd idiqi0 =L1 uduqu0 L1 edeqe0 LR idiqi0 +ω iqidi0

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

三角函数基本运算,Clark变换,Park变换,三相系统动态方程 的相关文章

  • url相对路径

    一 url相对路径 无需协议名 ip 端口 项目名等 只需请求的路径 例如 项目路径 http localhost 8080 projectName 页面路径 projectName index html 请求路径 api getdetai

随机推荐

  • 几个比较好用的Node.js插件

    一 Nodejs 下安装scss npm i sass g npm i scss g 在静态文件中创建scss目录和css目录 进入到项目目录下执行 sass watch scss css 二 moment 时间格式化 npm i mome
  • luci的国际化(多语言)

    语言的选择在dispatch函数入口出完成 如果配置文件 etc config luci中配置的lang为auto 则根据浏览器所带的信息选择一个合适的语言 否则就使用lang定义的语言 然后使用i18n lua中的setlanguage设
  • 小程序-1-1 富文本的内容查看

    主要通过小程序原生组件rich text进行展示 将获取到的富文本内容传给nodes属性 话不多说 直接放代码
  • 【QT】ubuntu环境qt交叉编译环境的配置

    1 安装qt creater工具 默认安装在 opt 路径下 可参考如下文章 qt安装包http download qt io archive qt 如何在linux上安装qt while 1 的博客 CSDN博客 linux安装qt 2
  • linux支持usb打印机

    配置CONFIG USB PRINTER y inux内核默认运行打印机 核 驱动 直接在配置上CONFIG USB PRINTER y添加上去就好了 make menuconfig 选上USB打印机选项 Device Drivers gt
  • ue4中导入substance designer sbsar格式材质

    文章末尾更新离线导入方式 ue4 16 3 首先在商城下插件 下载后 打开任意工程勾上 如果你在Launcher里面看会有下面情况 看起来没有4 16版本 实际上是可以的 不要用上图方式添加 直接在plugin里面加就可以了 然后就可以把s
  • 基于 Knative 低成本部署在线应用,灵活自动伸缩

    作者 冬岛 阿里巴巴高级技术专家 导读 Serverless 如今已是万众期待未来可期的状态 但一个系统到底具备怎样的能力才能更好地支撑 Serverless 应用 随着 Kubernetes 和云原生概念的崛起 Serverless 在
  • [原]红帽 Red Hat Linux相关产品iso镜像下载

    不为什么 就为了方便搜索 特把红帽EL 5 EL6 EL7 的各版本整理一下 共享出来 RedHat Enterprise Server 7 3 for x86 64 rhel server 7 3 x86 64 dvd iso SHA 2
  • git 远程删除不需要的文件

    git clone git 192 168 2 246 dev ncrm git 23 find name target 24 find name target xargs rm rf 25 find name target 26 git
  • Java集合的lastlastIndexOfSubList()方法具有什么功能呢?

    转自 Java集合的lastlastIndexOfSubList 方法具有什么功能呢 下文笔者将讲述lastlastIndexOfSubList 方法的功能简介说明 如下所示 lastlastIndexOfSubList 方法的功能 返回一
  • 【python基础知识】16.文件读写基础及操作

    文章目录 前言 读取文件 第1步 开 第2步 读 第3步 关 写入文件 第1步 开 第2步 写 第3步 关 练习时间来咯 小技巧 小练习 前言 文件读写 是Python代码调用电脑文件的主要功能 能被用于读取和写入文本记录 音频片段 Exc
  • 臻识车牌识别摄像头对接

    一 臻识车牌识别摄像头 1 非常有用的官方代码 内部有TCP HTTP等协议 2 官方常见问题 3 官方下载专区 二 http对接例子 1 自己使用java mock 模拟后台服务 你会用到的配置文件 java jar moco runne
  • 目标检测和跟踪小结

    一 目标检测 目标检测即为从序列图像中将变化区域从背景图像中提取出来 运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测 1 静态背景 背景差分法 帧间差分法 光流法 2 动态背景 需要进行图像的全局
  • 物联网LoRa系列-30:LoRaWAN A类/C类终端的载波信道资源与时间资源上下行调度算法

    前言 本文将从频率 时间这两个资源的角度 来剖析LoRaWAN A类 C类终端的信道选择算法与代码实现示例 不同的地区的频段 有不同的规范要求 算法有所差异 本文将以中国区的470M频段为例进行拆解 其他区域的频段以此类推 不同的终端类型
  • axmol引擎支持构建WASM了,非常简单

    随着 axmol 2 0 0 正式发布 axmol引擎带了了实验性的wasm构建支持 提供简单易用的命令即可构建wasm应用在浏览器上跑 具体步骤 下载最新引擎仓库 git clone https github com axmolengin
  • 我的DirectShow著作

    DirectShow开发指南 清华大学出版社出版 2003年12月 本书以DirectX SDK 9 0版为蓝本 涉及的内容几乎涵盖了在Windows平台上使用DirectShow进行C 编码的方方面面 全书共分4个部分 第1部分详细介绍了
  • thinkphp6 本地开发环境window如何安装

    先下载phpstudy 再看下面的教程 tp6框架入门 如何安装tp6以及创建实例应用 Mr LiJiaLe的博客 CSDN博客
  • 树的广度优先遍历和深度优先遍历(递归非递归、Java实现)

    在编程生活中 我们总会遇见树性结构 这几天刚好需要对树形结构操作 就记录下自己的操作方式以及过程 现在假设有一颗这样树 是不是二叉树都没关系 原理都是一样的 1 广度优先遍历 英文缩写为BFS即Breadth FirstSearch 其过程
  • “Required request body is missing”异常,要注意看看是不是下面这个问题

    今天在对接接口的时候报了这个异常 Required request body is missing 蛮坑的 不是什么很难的问题 真的很小的错误 一定要注意 这个异常是在代码中使用了 RequestBody注解的原因 如果前端调用接口传回参数
  • 三角函数基本运算,Clark变换,Park变换,三相系统动态方程

    目录 三角函数基本运算 Clark变换与Park变换 a b c abc abc