线性方程组的直接解法c语言,2 线性方程组的直接解法

2023-11-14

2.1  例题解答

例 2.1 用Gauss消元法解方程组:

解:

直接建立求解该方程组的M文件Gauss.m如下:

%求解例题2.1

%高斯法求解线性方程组Ax=b

%A为输入矩阵系数,b为方程组右端系数

%方程组的解保存在x变量中

%先输入方程系数

A=[1 2 3;2 7 5;1 49];

b=[1 6 -3]';

[m,n]=size(A);

%检查系数正确性

if m~=n

error('矩阵A的行数和列数必须相同');

return;

end

if m~=size(b)

error('b的大小必须和A的行数或A的列数相同');

return;

end

%再检查方程是否存在唯一解

if rank(A)~=rank([A,b])

error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');

return;

end

%这里采用增广矩阵行变换的方式求解

c=n+1;

A(:,c)=b;

%%消元过程

for k=1:n-1

A(k+1:n,k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c);

End

%%回代结果

x=zeros(length(b),1);

x(n)=A(n,c)/A(n,n);

for k=n-1:-1:1

x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k);

end

%显示计算结果

disp('x=');

disp(x);

直接运行上面的M文件或在Matlab命令窗口中直接输入Gauss即可得出结果.

在Matlab命令窗口中输入Gauss得出结果如下:

>> Gauss

x=

2.0000

1.0000

-1.0000

扩展:

Matlab求解线性方程的几种命令如下(方程组的一般形式可用矩阵和向量表示成: ,但运用下列方法的前提必须保证所求解的方程为恰定方程,即方程组存在唯一的一组解):

运用求逆思想 :  或 ;

左除法,原理上是运用高斯消元法求解,但Matlab在实际执行过程中是通过 分解法进行的(即先将矩阵A作 分解,再回代计算): ;

用符号矩阵法计算,这种计算方法最接近精确值,但计算速度最慢:

通过将矩阵施行初等行变换化成行简化阶梯形的办法,可以这样实现之: ; .

上面四种常用的办法示例如下:

>> A=[1 23;2 7 5;1 4 9]  %上面示例方程组系数

A =

1    2     3

2    7     5

1    4     9

>> b=[1 6-3]'   %方程组右端的系数

b =

1

6

-3

>>x1_1=inv(A)*b,x1_2=A^(-1)*b  %方法一,求逆思想

x1_1 =

2.0000

1.0000

-1.0000

x1_2 =

2.0000

1.0000

-1.0000

>> x2=A\b  %方法二,左除思想

x2 =

2

1

-1

>>x3=sym(A)\sym(b) %方法三,符号法

x3 =

2

1

-1

>>C=[A,b],rref(C)  %方法四, 行简化阶梯形思想,最后输出结果的一列为解

C =

1    2     3     1

2    7     5     6

1    4     9    -3

ans =

1    0     0     2

0    1     0     1

0    0     1    -1

例 2.2 用选列主元的Gauss消元法解如下方程:

解:

直接建立求解该方程的M文件Gauss_line.m,求解程序编制如下:

%求解例题2.2

%高斯列主元消元法求解线性方程组Ax=b

%A为输入矩阵系数,b为方程组右端系数

%方程组的解保存在x变量中

format long;%设置为长格式显示,显示15位小数

A=[0.00001,1;2,1]

b=[1.00001,3]'

[m,n]=size(A);

%先检查系数正确性

if m~=n

error('矩阵A的行数和列数必须相同');

return;

end

if m~=size(b)

error('b的大小必须和A的行数或A的列数相同');

return;

end

%再检查方程是否存在唯一解

ifrank(A)~=rank([A,b])

error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');

return;

end

c=n+1;

A(:,c)=b; %(增广)

for k=1:n-1

[r,m]=max(abs(A(k:n,k)));   %选主元

m=m+k-1; %修正操作行的值

if(A(m,k)~=0)

if(m~=k)

A([k m],:)=A([m k],:); %换行

end

A(k+1:n, k:c)=A(k+1:n,k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c);  %消去

end

end

x=zeros(length(b),1);%回代求解

x(n)=A(n,c)/A(n,n);

for k=n-1:-1:1

x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k);

end

disp('X=');

disp(x);

format short;%设置为默认格式显示,显示5位

运行得到输出结果如下:

A =

0.000010000000000   1.000000000000000

2.000000000000000   1.000000000000000

b =

1.000010000000000

3.000000000000000

X=

1.000000000000000

1.000000000000000

例 2.3 用 消元法思想求

的逆阵.

解:

解法一:直接建立求解的M文件:Gauss_Jordan.m,源程序如下:

%Gauss-Jordan法求例2.3

clc;

A=[1 -1 0;2 2 3;-12 1];

A1=A;%先保存原来的方阵A

[n,m]=size(A);

if n~=m

error('A必须为方阵');

return;

end

A(:,n+1:2*n)=eye(n);%构造增广矩阵

for k=1:n

[l,m]=max(abs(A(k:n,k)));%按列选主元

if A(k+m-1,k)==0

error('找到列最大的元素为零,错误');

return;

end

if m~=1 %交换

Temp=A(k,:);

A(k,:)=A(k+m-1,:);

A(k+m-1,:)=Temp;

end

for i=1:n

if i~=k

A(i,:)=A(i,:)-A(k,:)*A(i,k)/A(k,k);

end

end

end

for i=n:(-1):1

A(i,:)=A(i,:)/A(i,i);

end

A(:,1:n)=[];

disp('A=');

disp(A1);

disp('用Gauss-Jandan算得矩阵A的逆矩阵为:');

disp('inv(A)=');

disp(A);

clear Temp i k l mn;%清除临时变量

在Matlab命令窗口中输入Gauss_Jordan回车后得到结果如下:

A=

1   -1     0

2    2     3

-1    2     1

用Gauss-Jandan算得矩阵A的逆矩阵为:

inv(A)=

-4    1    -3

-5    1    -3

6   -1     4

解法二:用通过将矩阵施行初等行变换化成行简化阶梯形的办法,可以借助 命令求解,非常方便:

输入矩阵:

>> A=[1 -10;2 2 3;-1 2 1]

A =

1   -1     0

2    2     3

-1     2    1

>>C=[A,eye(length(A))]

C =

1   -1     0     1    0     0

2    2     3     0    1     0

-1     2    1     0     0    1

>>invA=rref(C)

invA =

1    0     0    -4    1    -3

0    1     0    -5    1    -3

0    0     1     6   -1     4

后三列即为其逆阵,检验其正确性:

>>c=invA(:,4:6)

c =

-4    1    -3

-5    1    -3

6   -1     4

>> d=c*A

d =

1    0     0

0    1     0

0    0     1

可见求解正确.

例2.4用分解LU的方法求解方程组

解:

解线性方程组中 分解的L,U可以实现矩阵A的三角分解,使得A=L*U. L,U应该是下三角和上三角矩阵的,这样才利于回代求根.但是MATLAB中的LU分解与解线性方程组中的L,U不一样.

MATLAB的LU分解命令调用格式为:

[L,U]=lu(A)

MATLAB计算出来的L是"准下三角"(交换L的行后才能成为真正的下三角阵),U为上三角矩阵,但它们还是满足A=L*U的.

先录入矩阵系数.

>> A=[2 4 26;4 9 6 15;2 6 9 18;6 15 18 40]

A =

2    4     2     6

4    9     6    15

2    6     9    18

6   15    18    40

>> b=[9 2322 47]'

b =

9

23

22

47

将A作 分解,方法是使用矩阵分解的LU命令即可:

>>[L,D]=lu(A)

L =

0.3333    1.0000   -0.6667   1.0000

0.6667    1.0000         0          0

0.3333   -1.0000    1.0000         0

1.0000         0          0          0

U =

6.0000   15.0000   18.0000   40.0000

0   -1.0000   -6.0000   -11.6667

0         0    -3.0000    -7.0000

0         0         0      -0.3333

再检验其正确性:

>>C=L*U

C =

2     4     2    6

4     9     6    15

2     6     9   18

6    15    18   40

解方程组

>>y=L\b

y =

47.0000

-8.3333

-2.0000

0.3333

解方程组 得到方程组的最终解:

>>x=U\y

x =

0.5000

2.0000

3.0000

-1.0000

故方程组的最终解为:

例 2.5 解方程组

试用平方根法,改进的平方根法和追赶法分别解之.

解:

先输入矩阵:

>>A=[6 1 0;1 4 1;0 1 14]

A =

6     1     0

1     4     1

0     1    14

>>b=[6 24 322]'

b =

6

24

322

平方根法:

先对A矩阵作 分解:

>>L=chol(A)

L =

2.4495    0.4082         0

0    1.9579    0.5108

0         0    3.7066

检验其正确性

>>L'*L

ans =

6.0000    1.0000         0

1.0000    4.0000    1.0000

0    1.0000   14.0000

将L转化为下三角矩阵:

>>L=L'

L =

2.4495         0         0

0.4082    1.9579         0

0    0.5108    3.7066

解方程组 :

>>y=L\b

y =

2.4495

11.7473

85.2526

再解方程组 ,得到最终解:

>>x=L'\y

x =

1.0000

-0.0000

23.0000

故平方根法解上述方程的结果为:

改进的平方根法:

先对矩阵A作LDL分解:

>> [L,D]=ldl(A)

L =

1.0000         0         0

0.1667    1.0000         0

0    0.2609    1.0000

D =

6.0000         0         0

0    3.8333        0

0         0   13.7391

检验其分解正确性:

>>L*D*L'

ans =

6     1     0

1     4     1

0     1    14

解方程组 :

>> y=L\b

y =

6

23

316

解方程组 :

>> x=(D*L')\y

x =

1

0

23

故改进的平方根法解上述方程的结果亦为:

追赶法:

编制追赶法求解该方程的程序如下:

%pursue.m

%三对角线性方程组的追赶法解方程组例2.5

%输入矩阵

clc;

A=[6 1 0;1 4 1;0 114]

f=[6 24 322]

[n,m]=size(A);

%分别取对角元素

a=zeros(1,n);

a(2:n)=diag(A,-1);

c=diag(A,1);

%此处用变量d存储A主对角线上的元素,因已用变量b存储方程右边的系数

b=diag(A);

if b(1)==0

error('主对角元素不能为0');

return;

end

%初始计算,式(2.31)

alpha(1)=b(1);

beta(1)=c(1)/b(1);

%按照公式(2.31)计算

for i=2:n-1

alpha(i)=b(i)-a(i)*beta(i-1);

if alpha(i)==0

error('错误:在解方程过程中α为0');

return;

end

beta(i)=c(i)/alpha(i);

end

%对最后一行作计算

alpha(n)=b(n)-a(n)*beta(n-1);

if alpha(n)==0

error('错误:在解方程过程中最后一个α为0');

return;

end

%以下按照公式(2.32)计算,解Ly=f

y(1)=f(1)/b(1);

for i=2:n

y(i)=(f(i)-a(i)*y(i-1))/alpha(i);

end

%以下按照公式(2.33)计算,解Ux=y

X(n)=y(n);

for i=n-1:-1:1

X(i)=y(i)-beta(i)*X(i+1);

end

disp('X=');

disp(X);

在Matlab命令窗口输入pursue计算结果如下:

>>pursue

A =

6     1     0

1     4     1

0     1    14

f =

6    24   322

X=

1     0    23

其中A为系数矩阵,f为矩阵右端的系数,最后计算结果为X.

由以上计算可知追赶法解该方程的结果亦为:

例 2.6 ,求 .

解:

输入矩阵:

>>x=[1 0.5 -0.3]

x =

1.0000    0.5000   -0.3000

计算其1-范数

>>norm_1=norm(x,1)

norm_1 =

1.8000

计算其2-范数

>>norm_2=norm(x)

norm_2 =

1.1576

计算其无穷大范数

>>norm_inf=norm(x,inf)

norm_inf =

1

还可以计算其无穷小范数(即各分量绝对值中的最小值)

>>norm_minusInf=norm(x,-inf)

norm_minusInf =

0.3000

例 2.7

求 .

解:

先输入矩阵:

>>A=[-2 1 0;1 -2 1;0 1 -2]

A =

-2     1     0

1    -2     1

0     1    -2

求A的1-范数(列和范数):

>>norm_1=norm(A,1)

norm_1 =

4

求解A的无穷大范数(行和范数):

>>norm_inf=norm(A,inf)

norm_inf =

4

求A的2-范数( 最大特征值):

>>norm_2=norm(A,2)

norm_2 =

3.4142

还可以求解A的F-范数:

>>norm_F=norm(A,'fro')

norm_F =

4

谱半径可以通过按其概念进行计算:对其特征值的绝对值取最大值即可:

>>R_A=max(abs(eig(A)))

R_A =

3.4142

例 2.8  n阶Hilbert矩阵

考查其条件数.

解:

上述矩阵为抽象矩阵,而计算机只能进行有限次迭代,我们从 考查其条件数,为此编制如下程序Hilb_cond10.m:

% Hilb_cond10.m

%考查从3阶至10的 矩阵2—条件数

for i=3:10

h=hilb(i);

condA(i)=cond(h,2);

end

disp('n           cond');

for i=3:10

s=sprintf('%d         %f',i,condA(i));

disp(s);

end

运行后得到如下结果:

n           cond

3        524.056778

4        15513.738739

5        476607.250242

6        14951058.641005

7        475367356.370393

8        15257575270.772364

9        493153986466.270940

10       16025391750078.617000

结果中左边为 的阶数,右边为对应的条件数 ,从以上结果也可分析可知:当n的阶数稍高时, 矩阵即出现严重的病态

.

例 2.9 求

的条件数

解:

建立2阶 矩阵:

>>H=hilb(2)

H =

1.0000    0.5000

0.5000    0.3333

求其2-条件数

>>cond_2=cond(H,2)

cond_2 =

19.2815

求其1-条件数

>>cond_1=cond(H,1)

cond_1 =

27.0000

求其无穷大条件数

>>cond_inf=cond(H,inf)

cond_inf =

27.0000

还可求其F-条件数

>>cond_f=cond(H,'fro')

cond_f =

19.3333

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

线性方程组的直接解法c语言,2 线性方程组的直接解法 的相关文章

  • AIGC产业研究报告2023——语言生成篇

    本文阅读时间 10 分钟 今年以来 随着人工智能技术不断实现突破迭代 生成式AI的话题多次成为热门 而人工智能内容生成 AIGC 的产业发展 市场反应与相应监管要求也受到了广泛关注 为了更好地探寻其在各行业落地应用的可行性和发展趋势 易观对
  • 基于多动作深度强化学习的柔性车间调度研究(Matlab代码实现)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 3 文献来源 4 Python代码实现 1 概述 灵活作业车间调度问题 FJSP 在现代制造
  • webpack处理图片资源(jpeg,jpg,png等)

    在webpack5以前 我们处理图片资源通过 file loader 和 url loader 进行处理 现在 Webpack5 已经将两个 Loader 功能内置到 Webpack 里了 我们只需要简单配置即可处理图片资源 webpack
  • 升级到windows server 2008

    网站从 win server 2003 升级到 win server 2008 中间遇到过一些问题 但也收获了很多惊喜 问题 原来的UrlReweite模块不工作了 lt httpModules gt lt add type XXX Ser
  • 2、在hilens_kit安装ros后,启动功能包

    2 在hilens kit安装ros后 启动功能包 在设备上复制ROS core components workspace ROS catkin ws 因为根分区很小 建议将其复制到主文件夹 并创建指向根的符号链接 将ros catkin
  • String 字符串成员函数

    string append 通过在其当前值的末尾附加其他字符来扩展字符串 其他字符串可以截取中间一段 string assign 为字符串分配一个新值 替换其当前内容 string at 获取字符串中的字符 返回对字符串中pos位置的字符的
  • shell 变量 $?

    在 Unix 和 Linux 系统中 每个 shell 命令都有一个与之关联的退出状态 exit status 或返回代码 return code 这个数字值通常用于表示命令是否成功执行 一个零 0 表示成功 而非零值 通常是 1 255
  • Spring中的IOC和AOP是什么意思?

    1 Spring是什么 IOC 控制反转 和AOP 面向方面编程 作为Spring框架的两个核心 很好地实现了解耦合 所以 简单来说 Spring是一个轻量级的控制反转 IoC 和面向切面 AOP 的容器框架 spring的基本框架主要包含
  • B树和B+树的区别是什么

    B 树和 B 树是两种不同的数据结构 B 树是一种平衡树 其中每个节点的子节点数量在一个给定的范围内 通常在 2 到 4 之间 这使得 B 树能够在插入和删除数据时保持平衡 从而提高查找效率 B 树也是一种平衡树 但它有一些不同的特征 首先
  • 终端输入命令报错:”因为在此系统上禁止运行脚本“解决方法

    计算机上启动 Windows PowerShell 时 默认执行策略是 Restricted Restricted 执行策略不允许任何脚本运行 所以修改执行策略就可以了 在电脑搜索框搜索 pw 打开PowerShell 输入 set exe
  • 由于请求头 content-type为application/json导致请求出错

    preface 最近在写 react 项目 然后调用后台接口的时候总是报错 我本以为是后台接口的问题 后来后台说 请求体 不能为 null 然后就简单做了总结 请求头 content type 一般使用的两种格式 application j
  • 对象存储哪家价格便宜?最便宜的云存储推荐!

    我们知道 对象存储是一种云存储服务 不同的云存储 价格也是有所不同的 而对象存储的价格取决于选择的存储容量和服务商 不同的存储容量 价格也是不同的 容量越大 价格也是越贵 不同的服务商 对象存储的价格也是有差异的 那么 对象存储哪家价格便宜
  • C语言获取鼠标位置并设置鼠标位置

    示例程序 include
  • 表单请求改为ajax,使用jq将form表单提交改为ajax提交

    大家可能都会有这样的经历 辛辛苦苦的敲了半天的form表单 然后被通知要改成ajax表单提交 于是就开始了一行一行的获取input的值 复制 粘贴的过程 要是碰上表单行数特别多的时候更麻烦 下面介绍一种方法 用最少的代码量完成form表单提
  • 5G MEC边缘云组网方案与业务案例分析

    1 MEC概念 MEC边缘云 Multi Access Edge Cloud 是在靠近人 物或数据源头的网络边缘侧部署云资源池和云平台 它在5G时代将扮演重要的角色 MEC边缘云的优势在于 一方面它实现了在更靠近数据源所在的本地网内运算 尽
  • 27、HMAC

    HMAC产生背景 HMAC为什么会被提出来 是MAC的产生有什么缺陷么 HMAC规范的设计是由于存在对将密钥与hash函数相结合的更简单机制的攻击 换言之就是有些将密钥和hash函数结合使用产生MAC的算法容易被攻击 而这种生成消息认证码的
  • 2020最新蚂蚁金服三面+HR一面,面试经验总结及分享

    蚂蚁金服Java岗二面 从项目入手 说说自己参与的项目 技术难度在哪里 Collections sort底层排序方式 排序稳定性 具体场景的排序策略 Http请求过程 DNS解析过程 三次握手四次挥手 简述线程池和并发工具的使用 数据库索引
  • Unitils-使用实践

    简介 Unitils这个Java开源类包的目的是让单元测试变得更加容易和可维护 Unitils构建在DBUnit与EasyMock项目之上并与JUnit和TestNG相结合 支持数据库测试 支持利用mock对象进行测试并提供与Spring和
  • Django后端笔记(二)模型M

    Django后端笔记 模型M Django ORM Django 数据库配置 mysql命令回顾 Django配置使用mysql数据库 切换mysql数据库之后不能启动服务器 复习案例 字段属性和选项 模型属性命名限制 字段类型 选项 查询

随机推荐

  • 换脸方法之FSGAN

    论文 FSGAN Subject Agnostic Face Swapping and Reenactment 官网 https nirkin com fsgan Github https github com YuvalNirkin fs
  • Delphi没落了?!delphi为什么没人用了?!delphi还有人学吗?!告诉你一个事实:现在全世界有300万程序员每天在用Delphi开发各种软件APP应用!

    德克萨斯州奥斯汀 美国商业资讯 跨平台应用程序开发人员生产力工具提供商Embarcadero Technologies Idera Inc 的一个部门 今天发布了RAD Studio 10 3 这个最新版本使开发人员能够使用相同的本机代码库
  • 《MATLAB 神经网络43个案例分析》:第18章 基于SVM的图像分割-真彩色图像分割

    MATLAB 神经网络43个案例分析 第18章 基于SVM的图像分割 真彩色图像分割 1 前言 2 MATLAB 仿真示例 3 小结 1 前言 MATLAB 神经网络43个案例分析 是MATLAB技术论坛 www matlabsky com
  • redis工具类

    redis工具类 很多公司都将redisTemplate进行了封装 封装成业务所需要的RedisUtil工具类方便进行调用 本篇文章总结了redisTemplate常用的一些方法 Redis常用的数据类型 String Hash List
  • ubuntu php v8js,Ubuntu16安装配置LNMP(7.1)环境并安装v8js拓展

    在服务器上安装 Git sudo apt get install git 配置环境 一 安装 PHP 7 1 ppa 方式安装 php7 1 sudo apt get install software properties common 添
  • SpringSecurity------HttpSecurityConfiguration配置类

    SpringSecurity HttpSecurityConfiguration配置类 一 HttpSecurityConfiguration是怎样被加载的 二 HttpSecurityConfiguration主要做了什么 三 HttpS
  • av_register_all和avformat_alloc_context

    av register all 被声明为已否决其实就是av register all 这个方法在FFMPEG 4 0以后将不再推荐使用 而且是非必需的 因此直接注释掉即可 avformat alloc context 用来申请AVForma
  • 后台网页设计

    后台网页设计 陈子龙 2019 5 17 这是一张我自己设计的后台网站的首页图片 我的这张后台网站图中的文字亲密性有点高 板块之间的距离间距都是相差不多的 视觉上给人的感觉也不是很高 在这里插入图片描述 这个logo放的有点大 我的一个交互
  • 内储管理技术——连续分配方式

    早期的操作系统 只支持单进程 为了实现简单 在执行程序之前 操作系统必须将待执行的程序全部装入内存 这就是简单存储管理技术 现代操作系统 支持多进程并发执行 允许进程装入部分程序即可以开始执行 其余部分保留在磁盘上 当执行所需的部分不在内存
  • Android 横向滚动列表 (类似横向ListView)

    示例 布局代码 xml
  • STM32基本IO的寄存器介绍

    STM32基本IO的寄存器介绍 说明 简介 端口配置低寄存器 32位 数据寄存器 32位 置位 复位寄存器 32位 复位寄存器 16位 锁存寄存器 32位 说明 最近自己在学习STM32 跟着原子哥的STM32教学视频学习 参考的资料有来自
  • 一个将军的人生总结

    这十句话 是我几十年间学习 积累 感悟出来的 我认为 做到了 就有益健康 第一句话 结交 两个朋友 一个是运动场 一个是图书馆 到运动场锻炼身体 强健体魄 到图书馆博览群书 不断地 充电 蓄电 放电 第二句话 培养 两种功夫 一个是本分 一
  • 前端基础——DOM

    前端基础学习第六天 文章目录 前端基础学习第六天 一 DOM节点操作 1 节点是什么 2 创建节点 3 添加节点 4 改变节点值 5 删除节点 6 复制 克隆 节点 二 DOM事件流 1 阻止事件冒泡和默认事件 默认行为
  • Ant Design Pro学习记录—ModalForm的使用(一)

    目录 前言 一 ModalForm销毁 二 ModalForm编辑赋值 三 ProFormUploadButton赋值 四 其它 总结 前言 使用了AntDesignPro 仿照TableList创建了自己的列表 列表添加编辑确成了困扰 添
  • py2neo框架学习全网最详细教程

    py2neo框架学习 1 公式模式是语法范式 2 代码模式是实例 可按顺序复制执行 3 该教程全部使用py2neo的内置方法 不使用run运行neo4j 4 涉及所有可能的节点 节点类型 属性 关系 关系类型 属性的增删改查 1 连接图模型
  • 《C语言运算符100例》优先级面试错题

    建议先阅读基础教学 十万字C语言动漫教程 一 前言 运算符优先级一直是让人头疼的东西 趁着 字节取消大小周 的势头来临 通宵整理了一个思维导图出来 希望对你有所帮助 这篇文章 我会仔细分析这张思维导图 所有的 C语言运算符的用法都在这里了
  • minikube踩坑记

    minikube如何使用本地镜像 需要执行 eval minikube docker env 然后再重新打镜像 并运行即可 docker build t foo 0 0 1 kubectl run hello foo image foo 0
  • Android Things——SPI通信

    1 SPI 1 1 概念 SPI是串行外设接口 Serial Peripheral Interface 的缩写 SPI 是一种高速的 全双工 同步的通信总线 并且在芯片的管脚上只占用四根线 节约了芯片的管脚 同时为PCB的布局上节省空间 提
  • 顺序存储结构的插入与删除

    1 获得元素的操作 要获得线性表中第i个元素的值 只要i的数值在数组下标范围内 就把i 1下标的值返回即可 define OK 1 define ERROR 0 define FALSE 0 define TRUE 1 typedef in
  • 线性方程组的直接解法c语言,2 线性方程组的直接解法

    2 1 例题解答 例 2 1 用Gauss消元法解方程组 解 直接建立求解该方程组的M文件Gauss m如下 求解例题2 1 高斯法求解线性方程组Ax b A为输入矩阵系数 b为方程组右端系数 方程组的解保存在x变量中 先输入方程系数 A