并发编程 (6)一不小心就死锁了,怎么办?

2023-11-20

在上一篇文章中,我们用 Account.class 作为互斥锁,来解决银行业务里面的转账问题,虽然这个方案不存在并发问题,但是所有账户的转账操作都是串行的,例如账户 A 转账户 B、账户 C 转账户 D 这两个转账操作现实世界里是可以并行的,但是在这个方案里却被串行化了,这样的话,性能太差。

试想互联网支付盛行的当下,8 亿网民每人每天一笔交易,每天就是 8 亿笔交易;每笔交易都对应着一次转账操作,8 亿笔交易就是 8 亿次转账操作,也就是说平均到每秒就是近 1 万次转账操作,若所有的转账操作都串行,性能完全不能接受。

那下面我们就尝试着把性能提升一下。

向现实世界要答案

现实世界里,账户转账操作是支持并发的,而且绝对是真正的并行,银行所有的窗口都可以做转账操作。只要我们能仿照现实世界做转账操作,串行的问题就解决了。

我们试想在古代,没有信息化,账户的存在形式真的就是一个账本,而且每个账户都有一个账本,这些账本都统一存放在文件架上。银行柜员在给我们做转账时,要去文件架上把转出账本和转入账本都拿到手,然后做转账。这个柜员在拿账本的时候可能遇到以下三种情况:

  1. 文件架上恰好有转出账本和转入账本,那就同时拿走;
  2. 如果文件架上只有转出账本和转入账本之一,那这个柜员就先把文件架上有的账本拿到手,同时等着其他柜员把另外一个账本送回来;
  3. 转出账本和转入账本都没有,那这个柜员就等着两个账本都被送回来。

上面这个过程在编程的世界里怎么实现呢?其实用两把锁就实现了,转出账本一把,转入账本另一把。在 transfer() 方法内部,我们首先尝试锁定转出账户 this(先把转出账本拿到手),然后尝试锁定转入账户 target(再把转入账本拿到手),只有当两者都成功时,才执行转账操作。这个逻辑可以图形化为下图这个样子。

在这里插入图片描述

而至于详细的代码实现,如下所示。经过这样的优化后,账户 A 转账户 B 和账户 C 转账户 D 这两个转账操作就可以并行了。

class Account {
  private int balance;
  // 转账
  void transfer(Account target, int amt){
    // 锁定转出账户
    synchronized(this) {              
      // 锁定转入账户
      synchronized(target) {           
        if (this.balance > amt) {
          this.balance -= amt;
          target.balance += amt;
        }
      }
    }
  } 
}

没有免费的午餐

上面的实现看上去很完美,并且也算是将锁用得出神入化了。相对于用 Account.class 作为互斥锁,锁定的范围太大,而我们锁定两个账户范围就小多了,这样的锁,上一章我们介绍过,叫细粒度锁使用细粒度锁可以提高并行度,是性能优化的一个重要手段

这个时候可能你已经开始警觉了,使用细粒度锁这么简单,有这样的好事,是不是也要付出点什么代价啊?编写并发程序就需要这样时时刻刻保持谨慎。

的确,使用细粒度锁是有代价的,这个代价就是可能会导致死锁。

在详细介绍死锁之前,我们先看看现实世界里的一种特殊场景。如果有客户找柜员张三做个转账业务:账户 A 转账户 B 100 元,此时另一个客户找柜员李四也做个转账业务:账户 B 转账户 A 100 元,于是张三和李四同时都去文件架上拿账本,这时候有可能凑巧张三拿到了账本 A,李四拿到了账本 B。张三拿到账本 A 后就等着账本 B(账本 B 已经被李四拿走),而李四拿到账本 B 后就等着账本 A(账本 A 已经被张三拿走),他们要等多久呢?他们会永远等待下去…因为张三不会把账本 A 送回去,李四也不会把账本 B 送回去。我们姑且称为死等吧。

在这里插入图片描述

现实世界里的死等,就是编程领域的死锁了。死锁的一个比较专业的定义是:一组互相竞争资源的线程因互相等待,导致“永久”阻塞的现象

上面转账的代码是怎么发生死锁的呢?我们假设线程 T1 执行账户 A 转账户 B 的操作,账户 A.transfer(账户 B);同时线程 T2 执行账户 B 转账户 A 的操作,账户 B.transfer(账户 A)。当 T1 和 T2 同时执行完①处的代码时,T1 获得了账户 A 的锁(对于 T1,this 是账户 A),而 T2 获得了账户 B 的锁(对于 T2,this 是账户 B)。之后 T1 和 T2 在执行②处的代码时,T1 试图获取账户 B 的锁时,发现账户 B 已经被锁定(被 T2 锁定),所以 T1 开始等待;T2 则试图获取账户 A 的锁时,发现账户 A 已经被锁定(被 T1 锁定),所以 T2 也开始等待。于是 T1 和 T2 会无期限地等待下去,也就是我们所说的死锁了。

class Account {
  private int balance;
  // 转账
  void transfer(Account target, int amt){
    // 锁定转出账户
    synchronized(this){// 锁定转入账户
      synchronized(target){if (this.balance > amt) {
          this.balance -= amt;
          target.balance += amt;
        }
      }
    }
  } 
}

关于这种现象,我们还可以借助资源分配图来可视化锁的占用情况(资源分配图是个有向图,它可以描述资源和线程的状态)。其中,资源用方形节点表示,线程用圆形节点表示;资源中的点指向线程的边表示线程已经获得该资源,线程指向资源的边则表示线程请求资源,但尚未得到。转账发生死锁时的资源分配图就如下图所示,一个“各据山头死等”的尴尬局面。

在这里插入图片描述

如何预防死锁

并发程序一旦死锁,一般没有特别好的方法,很多时候我们只能重启应用。因此,解决死锁问题最好的办法还是规避死锁。

那如何避免死锁呢?要避免死锁就需要分析死锁发生的条件,有个叫 Coffman 的牛人早就总结过了,只有以下这四个条件都发生时才会出现死锁:

  1. 互斥,共享资源 X 和 Y 只能被一个线程占用;
  2. 占有且等待,线程 T1 已经取得共享资源 X,在等待共享资源 Y 的时候,不释放共享资源 X;
  3. 不可抢占,其他线程不能强行抢占线程 T1 占有的资源;
  4. 循环等待,线程 T1 等待线程 T2 占有的资源,线程 T2 等待线程 T1 占有的资源,就是循环等待。

反过来分析,也就是说只要我们破坏其中一个,就可以成功避免死锁的发生

其中,互斥这个条件我们没有办法破坏,因为我们用锁为的就是互斥。不过其他三个条件都是有办法破坏掉的,到底如何做呢?

  1. 对于“占用且等待”这个条件,我们可以一次性申请所有的资源,这样就不存在等待了。
  2. 对于“不可抢占”这个条件,占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源,这样不可抢占这个条件就破坏掉了。
  3. 对于“循环等待”这个条件,可以靠按序申请资源来预防。所谓按序申请,是指资源是有线性顺序的,申请的时候可以先申请资源序号小的,再申请资源序号大的,这样线性化后自然就不存在循环了。

我们已经从理论上解决了如何预防死锁,那具体如何体现在代码上呢?下面我们就来尝试用代码实践一下这些理论。

1. 破坏占用且等待条件

从理论上讲,要破坏这个条件,可以一次性申请所有资源。在现实世界里,就拿前面我们提到的转账操作来讲,它需要的资源有两个,一个是转出账户,另一个是转入账户,当这两个账户同时被申请时,我们该怎么解决这个问题呢?

可以增加一个账本管理员,然后只允许账本管理员从文件架上拿账本,也就是说柜员不能直接在文件架上拿账本,必须通过账本管理员才能拿到想要的账本。例如,张三同时申请账本 A 和 B,账本管理员如果发现文件架上只有账本 A,这个时候账本管理员是不会把账本 A 拿下来给张三的,只有账本 A 和 B 都在的时候才会给张三。这样就保证了“一次性申请所有资源”。

在这里插入图片描述

对应到编程领域,“同时申请”这个操作是一个临界区,我们也需要一个角色(Java 里面的类)来管理这个临界区,我们就把这个角色定为 Allocator。它有两个重要功能,分别是:同时申请资源 apply() 和同时释放资源 free()。账户 Account 类里面持有一个 Allocator 的单例(必须是单例,只能由一个人来分配资源)。当账户 Account 在执行转账操作的时候,首先向 Allocator 同时申请转出账户和转入账户这两个资源,成功后再锁定这两个资源;当转账操作执行完,释放锁之后,我们需通知 Allocator 同时释放转出账户和转入账户这两个资源。具体的代码实现如下。

class Allocator {
  private List<Object> als =
    new ArrayList<>();
  // 一次性申请所有资源
  synchronized boolean apply(
    Object from, Object to){
    if(als.contains(from) ||
         als.contains(to)){
      return false;  
    } else {
      als.add(from);
      als.add(to);  
    }
    return true;
  }
  // 归还资源
  synchronized void free(
    Object from, Object to){
    als.remove(from);
    als.remove(to);
  }
}
 
class Account {
  // actr 应该为单例
  private Allocator actr;
  private int balance;
  // 转账
  void transfer(Account target, int amt){
    // 一次性申请转出账户和转入账户,直到成功
    while(!actr.apply(this, target))try{
      // 锁定转出账户
      synchronized(this){              
        // 锁定转入账户
        synchronized(target){           
          if (this.balance > amt){
            this.balance -= amt;
            target.balance += amt;
          }
        }
      }
    } finally {
      actr.free(this, target)
    }
  } 
}

2. 破坏不可抢占条件

破坏不可抢占条件看上去很简单,核心是要能够主动释放它占有的资源,这一点 synchronized 是做不到的。原因是 synchronized 申请资源的时候,如果申请不到,线程直接进入阻塞状态了,而线程进入阻塞状态,啥都干不了,也释放不了线程已经占有的资源。

你可能会质疑,“Java 作为排行榜第一的语言,这都解决不了?”你的怀疑很有道理,Java 在语言层次确实没有解决这个问题,不过在 SDK 层面还是解决了的,java.util.concurrent 这个包下面提供的 Lock 是可以轻松解决这个问题的。关于这个话题,咱们后面会详细讲。

3. 破坏循环等待条件

破坏这个条件,需要对资源进行排序,然后按序申请资源。这个实现非常简单,我们假设每个账户都有不同的属性 id,这个 id 可以作为排序字段,申请的时候,我们可以按照从小到大的顺序来申请。比如下面代码中,①~⑥处的代码对转出账户(this)和转入账户(target)排序,然后按照序号从小到大的顺序锁定账户。这样就不存在“循环”等待了。

class Account {
  private int id;
  private int balance;
  // 转账
  void transfer(Account target, int amt){
    Account left = this        ①
    Account right = target;if (this.id > target.id) { ③
      left = target;           ④
      right = this;}// 锁定序号小的账户
    synchronized(left){
      // 锁定序号大的账户
      synchronized(right){ 
        if (this.balance > amt){
          this.balance -= amt;
          target.balance += amt;
        }
      }
    }
  } 
}

总结

当我们在编程世界里遇到问题时,应不局限于当下,可以换个思路,向现实世界要答案,利用现实世界的模型来构思解决方案,这样往往能够让我们的方案更容易理解,也更能够看清楚问题的本质。

但是现实世界的模型有些细节往往会被我们忽视。因为在现实世界里,人太智能了,以致有些细节实在是显得太不重要了。在转账的模型中,我们为什么会忽视死锁问题呢?原因主要是在现实世界,我们会交流,并且会很智能地交流。而编程世界里,两个线程是不会智能地交流的。所以在利用现实模型建模的时候,我们还要仔细对比现实世界和编程世界里的各角色之间的差异。

我们今天这一篇文章主要讲了用细粒度锁来锁定多个资源时,要注意死锁的问题。这个就需要你能把它强化为一个思维定势,遇到这种场景,马上想到可能存在死锁问题。当你知道风险之后,才有机会谈如何预防和避免,因此,识别出风险很重要

预防死锁主要是破坏三个条件中的一个,有了这个思路后,实现就简单了。但仍需注意的是,有时候预防死锁成本也是很高的。例如上面转账那个例子,我们破坏占用且等待条件的成本就比破坏循环等待条件的成本高,破坏占用且等待条件,我们也是锁了所有的账户,而且还是用了死循环 while(!actr.apply(this, target));方法,不过好在 apply() 这个方法基本不耗时。 在转账这个例子中,破坏循环等待条件就是成本最低的一个方案。

所以我们在选择具体方案的时候,还需要评估一下操作成本,从中选择一个成本最低的方案

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

并发编程 (6)一不小心就死锁了,怎么办? 的相关文章

  • Java并发编程实战——并发容器之ThreadLocal及其内存泄漏问题

    文章目录 ThreadLocal的简介 ThreadLocal的实现原理 ThreadLocalMap详解 ThreadLocal内存泄漏问题 ThreadLocal的使用场景 ThreadLocal的简介 之前写过用ThreadLocal
  • 【Java并发编程的艺术】Java并发容器和框架:Java中的阻塞队列

    1 什么是阻塞队列 阻塞队列常用于生产者和消费者的场景 生产者是向队列里添加元素的线程 消费者是 从队列里取元素的线程 阻塞队列就是生产者用来存放元素 消费者用来获取元素的容器 阻塞队列 BlockingQueue 是一个支持两个附加操作的
  • 并发编程系列之Exchanger

    前言 上面我们介绍了信号量 再来说说交换者 这个东西用的不是很多 所以一般也不被经常关注 但是我们还是最好了解下 下面我将从什么是Exchanger以及如何使用Exchanger两个方面谈谈这个用于线程间协调的工具类 什么是Exchange
  • Cuda Streams的概述(一)-- Cuda介绍

    最近在做有关Cuda的一个项目 碰到匪夷所思的问题 在异步的时候发现并没有达到预期的效果 程序没有异步起来 然后在网上找了一个Nvida的有关Cuda Streams的一个ppt 然后照着里面的提示 使程序达到了异步的效果 首先 先回顾一下
  • 源码分析【ReentrantLock】原理

    ReentrackLock底层原理 ReentrackLock介绍 非公平锁VS公平 非公平锁 公平锁 可打断VS不可打断 不可打断 默认 可打断模式 锁超时 条件变量 如何在synchronized和ReentrantLock之间进行选择
  • 单例模式的4种写法

    单例模式是开发过程中常用的模式之一 首先了解下单例模式的四大原则 构造方法私有 以静态方法或枚举返回实例 确保实例只有一个 尤其是多线程环境 确保反射或反序列化时不会重新构建对象 饿汉模式 饿汉模式在类被初始化时就创建对象 以空间换时间 故
  • 并发编程系列之线程简介

    前言 前几天我们把Java内存模型介绍了下 大家对JMM也有所认识了 从今天我们就开始走进一个我们天天挂在嘴边 听在耳边的东西 线程 对于线程相信大家都不会陌生 当然也有很多小伙伴在开发中或多或少的使用到线程 即使你没有使用过 但是并不代表
  • java中Synchronized和Lock的区别

    Synchronized和Lock的区别 原始构成 synchronized关键字属于JVM层面的 通过monitorenter monitorexit指令实现 底层是通过monitor对象来完成 其实wait notify等方法也依赖mo
  • JUC三连问

    1 进程和线程的区别 1 进程是资源分配的基本单位 线程是程序执行的最小单位 2 一个进程包括多个线程 3 每个进程都有自己的内存和资源 一个进程中的线程会共享这些内存和资源 每个线程都有单独的栈内存 和寄存器 2 并行和并发的区别 并行指
  • Synchronized实现原理

    查看带有Synchronized语句块的class文件可以看到在同步代码块的起始位置插入了moniterenter指令 在同步代码块结束的位置插入了monitorexit指令 JVM需要保证每一个monitorenter都有一个monito
  • 【2021最新版】Java多线程&并发面试题总结(108道题含答案解析)

    文章目录 JAVA并发知识库 1 Java中实现多线程有几种方法 2 继承Thread类 3 实现Runnable接口 4 ExecutorService Callable Future有返回值线程 5 基于线程池的方式 6 4 种线程池
  • 159.并发编程(三):线程池,JUC

    目录 一 线程池 1 线程池的作用 2 手写线程池 3 ThreadPoolExecutor 1 线程池状态
  • 【并发】并发

    并发 进程和线程 进程 资源分配的基本单位 可以理解为在内存中运行的程序 每个进程都有独立的内存空间 一个进程包含多个线程 线程 任务执行的基本单位 负责进程中任务的执行 每个线程共享进程的内存空间 一个线程使用时 其他线程必须等待 用户
  • Java并发之锁

    Java并发之锁 一 临界区 二 线程安全 三 解决临界区线程安全问题 四 Java对象头 五 重量级锁 Monitor 5 1 synchronized 5 1 1 synchronized加锁流程 六 轻量级锁 6 1 轻量级锁加锁流程
  • Java并发编程实战——并发容器之ConcurrentHashMap(JDK 1.8版本)

    文章目录 ConcurrentHashmap简介 从关键属性及类上来看ConcurrentHashMap的结构 put 方法管中窥豹 CAS关键操作 ConcurrentHashmap简介 在使用HashMap时在多线程情况下扩容会出现CP
  • ThreadPoolExecutor源码解析

    ThreadPoolExecutor源码解析 一 新建线程池的是构造方法 public ThreadPoolExecutor int corePoolSize int maximumPoolSize long keepAliveTime T
  • 深入理解synchronized底层原理,一篇文章就够了!

    文章目录 前言 一 synchronized的特性 1 1 原子性 1 2 可见性 1 3 有序性 1 4 可重入性 二 synchronized的用法 三 synchronized锁的实现 3 1 同步方法 3 2 同步代码块 四 syn
  • 并发编程4 - 线程状态、死锁及ReentrantLock

    文章目录 一 再述线程状态转换 二 多把锁与线程活跃性问题 1 多把锁 2 活跃性 三 ReEntrantLock 1 基本用法 2 可重入 3 可打断 4 锁超时 5 公平锁 6 条件变量 一 再述线程状态转换 情况1 New RUNNA
  • Java并发编程之设计模式

    同步模式之保护性暂停 1 定义 即 Guarded Suspension 用在一个线程等待另一个线程的执行结果 要点 有一个结果需要从一个线程传递到另一个线程 让他们关联同一个 GuardedObject 如果有结果不断从一个线程到另一个线
  • Java线程(Thread)生命周期的6种状态

    当线程被创建并启动以后 它既不是一启动就进入了执行状态 也不是一直处于执行状态 在线程的生命周期中 可能处于不同的状态 java lang Thread State 列举出了这6种线程状态 线程状态 导致状态发生条件 New 新建 线程刚被

随机推荐

  • Fedora 10網卡消失的問題

    http itgroup blueshop com tw towns hc n convew i 6000 今天看到肉鬆Selinux的問題 想說來測試處理一下 將以備份出來的Fedora 10 VM拿出來用 啟動系統後 出現了一個怪問題
  • Python中的itertools.permutations(关键词:itertools/permutations)

    通俗地讲 就是返回可迭代对象的所有数学全排列方式 Python 2 7 12 default Nov 20 2017 18 23 56 GCC 5 4 0 20160609 on linux2 Type help copyright cre
  • python-测试代码

    目录 介绍 测试函数 单元测试和测试用例 可通过的测试 不能通过的测试 测试未通过时怎么办 添加新测试 测试类 各种断言方法 一个要测试的类 测试AnonymousSurvey类 方法setUp 介绍 在本章中你会学习如何使用Python模
  • jvm垃圾回收之Eden、S0、S1、Old的关系

    jvm垃圾回收之Eden S0 S1 Old的关系 https blog csdn net u012799221 article details 73180509
  • 解决win10系统 3dMax只能渲染一次的问题

    是不是很多人疑问为什么自己的电脑配置明明足够 但在3dMax正常运行过程中 渲染一次过后 3dMax便卡住不动了 只能重启解决 无形之中浪费了很多时间 近日 我在使用3dMax时也遇到了此问题 发现是因为win10的微软输入法与3dMax不
  • 解决request.getServletContext()方法报红问题

    getServletContext 方法是Servlet3 0添加的 所以需要引入3 0以上的jar包
  • Tomcat的context path

    本文章转载自 https www cnblogs com yanan7890 p 8329163 html tomcat server xml context path配置需要注意的事情 在tomcat下放个war包 假如我是这样配置ser
  • 代码生成二维码

    使用java生成二维码 前言 使用步骤 xml 生成二维码 二维码转url 总结 前言 Zxing Zxing 是一个开源的 Java 二维码扫描和生成库 由美国 Google 公司的一位开发者 Sean Owen 在 2006 年开发并发
  • 自动化测试——接口测试

    一 接口分类 1 内部接口 测试被测系统各个子模块之前的接口 或者测试被测系统提供给内部用户系统使用的接口 2 外部接口 被测系统调用外部的接口 系统对外提供的接口 接口测试重点 检查结论参数传递的正确性 输出结果的正确性及对各种异常情况的
  • 普通游戏显卡和专业图形显卡的区别

    搞图形设计的朋友应该都知道 显卡分为普通游戏显卡和专业图形显卡 有些人会错误的认为图形显卡比游戏显卡性能强 或者游戏显卡比图形显卡性能强 其实这两种显卡是没有可比性的 因为它们在功能设计上是有一定的区别 这里首先可以告诉大家游戏显卡和图形显
  • Linux学习--CentOS7.5

    CentOS7命令大全 Linux系统简介 Unix Linux发展史 Linux目录结构 树形结构 查看 切换以及创建目录 文本内容操作 grep工具 关机和重启 Linux命令 基本用法 ls list 使用通配符 mkdir 别名 g
  • 机器视觉毕业设计 深度学习人脸识别系统设计与实现 - opencv python

    文章目录 0 前言 1 机器学习 人脸识别过程 人脸检测 人脸对其 人脸特征向量化 人脸识别 2 深度学习 人脸识别过程 人脸检测 人脸识别 Metric Larning 3 最后 0 前言 这两年开始毕业设计和毕业答辩的要求和难度不断提升
  • 时序预测

    时序预测 Matlab实现SO CNN BiGRU蛇群算法优化卷积双向门控循环单元时间序列预测 目录 时序预测 Matlab实现SO CNN BiGRU蛇群算法优化卷积双向门控循环单元时间序列预测 预测效果 基本介绍 程序设计 参考资料 预
  • Google Java编程风格指南

    http hawstein com posts google java style html 目录 前言 源文件基础 源文件结构 格式 命名约定 编程实践 Javadoc 后记 前言 这份文档是Google Java编程风格规范的完整定义
  • .inl文件

    背景 最近工作涉及到thrust库 看了半天也没找到一个头文件的函数定义 本来以为会有一个cpp源文件对应h头文件 后来问头文件的末尾发现了一个include lt inl gt 所以有必要了解这个文件组织形式 引用 作者 Return H
  • JSX、JSX的介绍、JSX特点、JSX的语法、XML基本语法

    1 JSX的介绍 什么是JSX JSX javascript xml就是Javascript和XML结合的一种格式 是 JavaScript 的语法扩展 只要你把HTML代码写在JS里 那就是JSX 在实际开发中 JSX 在产品 打包阶段
  • 自动驾驶路径规划与控制:讨论自动驾驶车辆的路径规划算法,如A*、Dijkstra等,以及控制策略,如PID控制等

    摘要 随着自动驾驶技术的快速发展 路径规划和控制算法在自动驾驶系统中扮演了越来越重要的角色 本文将探讨自动驾驶车辆的路径规划算法 如A 和Dijkstra 以及控制策略 如PID控制 同时 我们将引用相关论文 以便于深入了解这些技术的原理和
  • 中国互联网技术联盟推出国内首个“互联网+”资讯门户

    ITA1024中国互联网技术联盟7月正式推出专注 互联网 的资讯门户网站http abc ita1024 com 这也是国内首个专注于帮助中国企业有效落地 互联网 的服务平台 如果你是负责企业 互联网 转型战略的CEO CIO CFO CM
  • C++ MFC 导出ListControl数据到Excel

    一 导入对应的类 二 开启线程 void CLDITxtQueryDlg OnBnClickedBnExportToXLS TODO 在此添加控件通知处理程序代码 if ui ListCtrlDataResult GetItemCount
  • 并发编程 (6)一不小心就死锁了,怎么办?

    在上一篇文章中 我们用 Account class 作为互斥锁 来解决银行业务里面的转账问题 虽然这个方案不存在并发问题 但是所有账户的转账操作都是串行的 例如账户 A 转账户 B 账户 C 转账户 D 这两个转账操作现实世界里是可以并行的