Sqlserver中解析JSON

2023-05-16

参考:https://www.red-gate.com/simple-talk/sql/t-sql-programming/consuming-json-strings-in-sql-server/

主要的过程代码单独贴出来:

CREATE FUNCTION dbo.parseJSON( @JSON NVARCHAR(MAX))

RETURNS @hierarchy TABLE

  (

   element_id INT IDENTITY(1, 1) NOT NULL, /* internal surrogate primary key gives the order of parsing and the list order */

   sequenceNo [int] NULL, /* the place in the sequence for the element */

   parent_ID INT,/* if the element has a parent then it is in this column. The document is the ultimate parent, so you can get the structure from recursing from the document */

   Object_ID INT,/* each list or object has an object id. This ties all elements to a parent. Lists are treated as objects here */

   NAME NVARCHAR(2000),/* the name of the object */

   StringValue NVARCHAR(MAX) NOT NULL,/*the string representation of the value of the element. */

   ValueType VARCHAR(10) NOT null /* the declared type of the value represented as a string in StringValue*/

  )

AS

BEGIN

  DECLARE

    @FirstObject INT, --the index of the first open bracket found in the JSON string

    @OpenDelimiter INT,--the index of the next open bracket found in the JSON string

    @NextOpenDelimiter INT,--the index of subsequent open bracket found in the JSON string

    @NextCloseDelimiter INT,--the index of subsequent close bracket found in the JSON string

    @Type NVARCHAR(10),--whether it denotes an object or an array

    @NextCloseDelimiterChar CHAR(1),--either a '}' or a ']'

    @Contents NVARCHAR(MAX), --the unparsed contents of the bracketed expression

    @Start INT, --index of the start of the token that you are parsing

    @end INT,--index of the end of the token that you are parsing

    @param INT,--the parameter at the end of the next Object/Array token

    @EndOfName INT,--the index of the start of the parameter at end of Object/Array token

    @token NVARCHAR(200),--either a string or object

    @value NVARCHAR(MAX), -- the value as a string

    @SequenceNo int, -- the sequence number within a list

    @name NVARCHAR(200), --the name as a string

    @parent_ID INT,--the next parent ID to allocate

    @lenJSON INT,--the current length of the JSON String

    @characters NCHAR(36),--used to convert hex to decimal

    @result BIGINT,--the value of the hex symbol being parsed

    @index SMALLINT,--used for parsing the hex value

    @Escape INT --the index of the next escape character

   

 

  DECLARE @Strings TABLE /* in this temporary table we keep all strings, even the names of the elements, since they are 'escaped' in a different way, and may contain, unescaped, brackets denoting objects or lists. These are replaced in the JSON string by tokens representing the string */

    (

     String_ID INT IDENTITY(1, 1),

     StringValue NVARCHAR(MAX)

    )

  SELECT--initialise the characters to convert hex to ascii

    @characters='0123456789abcdefghijklmnopqrstuvwxyz',

    @SequenceNo=0, --set the sequence no. to something sensible.

  /* firstly we process all strings. This is done because [{} and ] aren't escaped in strings, which complicates an iterative parse. */

    @parent_ID=0;

  WHILE 1=1 --forever until there is nothing more to do

    BEGIN

      SELECT

        @start=PATINDEX('%[^a-zA-Z]["]%', @json collate SQL_Latin1_General_CP850_Bin);--next delimited string

      IF @start=0 BREAK --no more so drop through the WHILE loop

      IF SUBSTRING(@json, @start+1, 1)='"'

        BEGIN --Delimited Name

          SET @start=@Start+1;

          SET @end=PATINDEX('%[^\]["]%', RIGHT(@json, LEN(@json+'|')-@start) collate SQL_Latin1_General_CP850_Bin);

        END

      IF @end=0 --no end delimiter to last string

        BREAK --no more

      SELECT @token=SUBSTRING(@json, @start+1, @end-1)

      --now put in the escaped control characters

      SELECT @token=REPLACE(@token, FROMString, TOString)

      FROM

        (SELECT

          '\"' AS FromString, '"' AS ToString

         UNION ALL SELECT '\\', '\'

         UNION ALL SELECT '\/', '/'

         UNION ALL SELECT '\b', CHAR(08)

         UNION ALL SELECT '\f', CHAR(12)

         UNION ALL SELECT '\n', CHAR(10)

         UNION ALL SELECT '\r', CHAR(13)

         UNION ALL SELECT '\t', CHAR(09)

        ) substitutions

      SELECT @result=0, @escape=1

  --Begin to take out any hex escape codes

      WHILE @escape>0

        BEGIN

          SELECT @index=0,

          --find the next hex escape sequence

          @escape=PATINDEX('%\x[0-9a-f][0-9a-f][0-9a-f][0-9a-f]%', @token collate SQL_Latin1_General_CP850_Bin)

          IF @escape>0 --if there is one

            BEGIN

              WHILE @index<4 --there are always four digits to a \x sequence  

                BEGIN

                  SELECT --determine its value

                    @result=@result+POWER(16, @index)

                    *(CHARINDEX(SUBSTRING(@token, @escape+2+3-@index, 1),

                                @characters)-1), @index=@index+1 ;

        

                END

                -- and replace the hex sequence by its unicode value

              SELECT @token=STUFF(@token, @escape, 6, NCHAR(@result))

            END

        END

      --now store the string away

      INSERT INTO @Strings (StringValue) SELECT @token

      -- and replace the string with a token

      SELECT @JSON=STUFF(@json, @start, @end+1,

                    '@string'+CONVERT(NVARCHAR(5), @@identity))

    END

  -- all strings are now removed. Now we find the first leaf. 

  WHILE 1=1  --forever until there is nothing more to do

  BEGIN

 

  SELECT @parent_ID=@parent_ID+1

  --find the first object or list by looking for the open bracket

  SELECT @FirstObject=PATINDEX('%[{[[]%', @json collate SQL_Latin1_General_CP850_Bin)--object or array

  IF @FirstObject = 0 BREAK

  IF (SUBSTRING(@json, @FirstObject, 1)='{')

    SELECT @NextCloseDelimiterChar='}', @type='object'

  ELSE

    SELECT @NextCloseDelimiterChar=']', @type='array'

  SELECT @OpenDelimiter=@firstObject

 

  WHILE 1=1 --find the innermost object or list...

    BEGIN

      SELECT

        @lenJSON=LEN(@JSON+'|')-1

  --find the matching close-delimiter proceeding after the open-delimiter

      SELECT

        @NextCloseDelimiter=CHARINDEX(@NextCloseDelimiterChar, @json,

                                      @OpenDelimiter+1)

  --is there an intervening open-delimiter of either type

      SELECT @NextOpenDelimiter=PATINDEX('%[{[[]%',

             RIGHT(@json, @lenJSON-@OpenDelimiter)collate SQL_Latin1_General_CP850_Bin)--object

      IF @NextOpenDelimiter=0

        BREAK

      SELECT @NextOpenDelimiter=@NextOpenDelimiter+@OpenDelimiter

      IF @NextCloseDelimiter<@NextOpenDelimiter

        BREAK

      IF SUBSTRING(@json, @NextOpenDelimiter, 1)='{'

        SELECT @NextCloseDelimiterChar='}', @type='object'

      ELSE

        SELECT @NextCloseDelimiterChar=']', @type='array'

      SELECT @OpenDelimiter=@NextOpenDelimiter

    END

  ---and parse out the list or name/value pairs

  SELECT

    @contents=SUBSTRING(@json, @OpenDelimiter+1,

                        @NextCloseDelimiter-@OpenDelimiter-1)

  SELECT

    @JSON=STUFF(@json, @OpenDelimiter,

                @NextCloseDelimiter-@OpenDelimiter+1,

                '@'+@type+CONVERT(NVARCHAR(5), @parent_ID))

  WHILE (PATINDEX('%[A-Za-z0-9@+.e]%', @contents collate SQL_Latin1_General_CP850_Bin))<>0

    BEGIN

      IF @Type='Object' --it will be a 0-n list containing a string followed by a string, number,boolean, or null

        BEGIN

          SELECT

            @SequenceNo=0,@end=CHARINDEX(':', ' '+@contents)--if there is anything, it will be a string-based name.

          SELECT  @start=PATINDEX('%[^A-Za-z@][@]%', ' '+@contents collate SQL_Latin1_General_CP850_Bin)--AAAAAAAA

          SELECT @token=SUBSTRING(' '+@contents, @start+1, @End-@Start-1),

            @endofname=PATINDEX('%[0-9]%', @token collate SQL_Latin1_General_CP850_Bin),

            @param=RIGHT(@token, LEN(@token)-@endofname+1)

          SELECT

            @token=LEFT(@token, @endofname-1),

            @Contents=RIGHT(' '+@contents, LEN(' '+@contents+'|')-@end-1)

          SELECT  @name=stringvalue FROM @strings

            WHERE string_id=@param --fetch the name

        END

      ELSE

        SELECT @Name=null,@SequenceNo=@SequenceNo+1

      SELECT

        @end=CHARINDEX(',', @contents)-- a string-token, object-token, list-token, number,boolean, or null

      IF @end=0

        SELECT  @end=PATINDEX('%[A-Za-z0-9@+.e][^A-Za-z0-9@+.e]%', @Contents+' ' collate SQL_Latin1_General_CP850_Bin)

          +1

       SELECT

        @start=PATINDEX('%[^A-Za-z0-9@+.e][A-Za-z0-9@+.e]%', ' '+@contents collate SQL_Latin1_General_CP850_Bin)

      --select @start,@end, LEN(@contents+'|'), @contents 

      SELECT

        @Value=RTRIM(SUBSTRING(@contents, @start, @End-@Start)),

        @Contents=RIGHT(@contents+' ', LEN(@contents+'|')-@end)

      IF SUBSTRING(@value, 1, 7)='@object'

        INSERT INTO @hierarchy

          (NAME, SequenceNo, parent_ID, StringValue, Object_ID, ValueType)

          SELECT @name, @SequenceNo, @parent_ID, SUBSTRING(@value, 8, 5),

            SUBSTRING(@value, 8, 5), 'object'

      ELSE

        IF SUBSTRING(@value, 1, 6)='@array'

          INSERT INTO @hierarchy

            (NAME, SequenceNo, parent_ID, StringValue, Object_ID, ValueType)

            SELECT @name, @SequenceNo, @parent_ID, SUBSTRING(@value, 7, 5),

              SUBSTRING(@value, 7, 5), 'array'

        ELSE

          IF SUBSTRING(@value, 1, 7)='@string'

            INSERT INTO @hierarchy

              (NAME, SequenceNo, parent_ID, StringValue, ValueType)

              SELECT @name, @SequenceNo, @parent_ID, stringvalue, 'string'

              FROM @strings

              WHERE string_id=SUBSTRING(@value, 8, 5)

          ELSE

            IF @value IN ('true', 'false')

              INSERT INTO @hierarchy

                (NAME, SequenceNo, parent_ID, StringValue, ValueType)

                SELECT @name, @SequenceNo, @parent_ID, @value, 'boolean'

            ELSE

              IF @value='null'

                INSERT INTO @hierarchy

                  (NAME, SequenceNo, parent_ID, StringValue, ValueType)

                  SELECT @name, @SequenceNo, @parent_ID, @value, 'null'

              ELSE

                IF PATINDEX('%[^0-9]%', @value collate SQL_Latin1_General_CP850_Bin)>0

                  INSERT INTO @hierarchy

                    (NAME, SequenceNo, parent_ID, StringValue, ValueType)

                    SELECT @name, @SequenceNo, @parent_ID, @value, 'real'

                ELSE

                  INSERT INTO @hierarchy

                    (NAME, SequenceNo, parent_ID, StringValue, ValueType)

                    SELECT @name, @SequenceNo, @parent_ID, @value, 'int'

      if @Contents=' ' Select @SequenceNo=0

    END

  END

INSERT INTO @hierarchy (NAME, SequenceNo, parent_ID, StringValue, Object_ID, ValueType)

  SELECT '-',1, NULL, '', @parent_id-1, @type

--

   RETURN

END

GO

Consuming JSON Strings in SQL Server

It has always seemed strange to Phil that SQL Server has such complete support for XML, yet is completely devoid of any support for JSON. In the end, he was forced, by a website project, into doing something about it. The result is this article, an iconoclastic romp around the representation of hierarchical structures, and some code to get you started.

Last updated 5th Sept 2017

Articles by Phil Factor about JSON and SQL Server:

  1. Consuming JSON Strings in SQL Server (Nov 2012)
  2. SQL Server JSON to Table and Table to JSON (March 2013)
  3. Producing JSON Documents From SQL Server Queries via TSQL (May 2014)
  4. Consuming hierarchical JSON documents in SQL Server using OpenJSON (Sept 2017)
  5. Importing JSON data from Web Services and Applications into SQL Server(October 2017)

“The best thing about XML is what it shares with JSON, being human readable. That turns out to be important, not because people should be reading it, because we shouldn’t, but because it avoids interoperability problems caused by fussy binary encoding issues.

Beyond that, there is not much to like. It is not very good as a data format. And it is not very good as a document format. If it were a good document format, then wikis would use it.”

Doug Crockford March 2010

This article describes a TSQL JSON parser and its evil twin, a JSON outputter, and provides the source. It is also designed to illustrate a number of string manipulation techniques in TSQL. With it you can do things like this to extract the data from a JSON document:

 
Select * from parseJSON ( '{    "Person":
  {
     "firstName": "John",
     "lastName": "Smith",
     "age": 25,
     "Address":
     {
        "streetAddress":"21 2nd Street",
        "city":"New York",
        "state":"NY",
        "postalCode":"10021"
     },
     "PhoneNumbers":
     {
        "home":"212 555-1234",
        "fax":"646 555-4567"
     }
  }
}
' )

And get:

1176-JSON1.jpg

…or you can do the round trip:

 
DECLARE @ MyHierarchy Hierarchy    INSERT INTO @ myHierarchy
select * from parseJSON ( '{"menu": {
  "id": "file",
  "value": "File",
  "popup": {
    "menuitem": [
      {"value": "New", "onclick": "CreateNewDoc()"},
      {"value": "Open", "onclick": "OpenDoc()"},
      {"value": "Close", "onclick": "CloseDoc()"}
    ]
  }
}}' )
SELECT dbo . ToJSON ( @ MyHierarchy )

To get:

 
{   " menu" :   {
  " id" : " file" ,
  " value" : " File" ,
  " popup" :   {
    " menuitem" :   [
        {
        " value" : " New" ,
        " onclick" : " CreateNewDoc ( )"
        } ,
        {
        " value" : " Open" ,
        " onclick" : " OpenDoc ( )"
        } ,
        {
        " value" : " Close" ,
        " onclick" : " CloseDoc ( )"
        }
      ]
    }
  }
}

Background

TSQL isn’t really designed for doing complex string parsing, particularly where strings represent nested data structures such as XML, JSON, YAML, or XHTML. 

You can do it but it is not a pretty sight; but why would you ever want to do it anyway? Surely, if anything was meant for the ‘application layer’ in C# or VB.net, then this is it. ‘Oh yes’, will chime in the application thought police, ‘this is far better done in the application or with a CLR.’ Not necessarily.

Sometimes, you just need to do something inappropriate in TSQL. (note: You can now do this rather more easily using SQL Server 2016’s built-in JSON support. See ‘Consuming hierarchical JSON documents in SQL Server using OpenJSON‘ which I wrote more recently)

There are a whole lot of reasons why this might happen to you. It could be that your DBA doesn’t allow a CLR, for example, or you lack the necessary skills with procedural code. Sometimes, there isn’t any application, or you want to run code unobtrusively across databases or servers.

I needed to interpret or ‘shred’ JSON data. JSON is one of the most popular lightweight markup languages, and is probably the best choice for transfer of object data from a web page. It is, in fact, executable JavaScript that is very quick to code in the browser in order to dump the contents of a JavaScript object, and is lightning-fast to populate the browser object from the database since you are passing it executable code (you need to parse it first for security reasons – passing executable code around is potentially very risky). AJAX can use JSON rather than XML so you have an opportunity to have a much simpler route for data between database and browser, with less opportunity for error.

The conventional way of dealing with data like this is to let a separate business layer parse a JSON ‘document’ into some tree structure and then update the database by making a series of calls to it. This is fine, but can get more complicated if you need to ensure that the updates to the database are wrapped into one transaction so that if anything goes wrong, then the whole operation can be rolled back. This is why a CLR or TSQL approach has advantages.

“Sometimes, you just
need to do something
inappropriate in TSQL…”

I wrote the parser as a prototype because it was the quickest way to determine what was involved in the process, so I could then re-write something as a CLR in a .NET language.  It takes a JSON string and produces a result in the form of an adjacency list representation of that hierarchy. In the end, the code did what I wanted with adequate performance (It reads a json file of  540 name\value pairs and creates the SQL  hierarchy table  in 4 seconds) so I didn’t bother with the added complexity of maintaining a CLR routine. In order to test more thoroughly what I’d done, I wrote a JSON generator that used the same Adjacency list, so you can now import and export data via JSON!

These markup languages such as JSON and XML all represent object data as hierarchies. Although it looks very different to the entity-relational model, it isn’t. It is rather more a different perspective on the same model. The first trick is to represent it as a Adjacency list hierarchy in a table, and then use the contents of this table to update the database. This Adjacency list is really the Database equivalent of any of the nested data structures that are used for the interchange of serialized information with the application, and can be used to create XML, OSX Property lists, Python nested structures or YAML as easily as JSON.

Adjacency list tables have the same structure whatever the data in them. This means that you can define a single Table-Valued  Type and pass data structures around between stored procedures. However, they are best held at arms-length from the data, since they are not relational tables, but something more like the dreaded EAV (Entity-Attribute-Value) tables. Converting the data from its Hierarchical table form will be different for each application, but is easy with a CTE. You can, alternatively, convert the hierarchical table into XML and interrogate that with XQuery.

JSON format.

JSON is designed to be as lightweight as possible and so it has only two structures. The first, delimited by curly brackets, is a collection of name/value pairs, separated by commas. The name is followed by a colon. This structure is generally implemented in the application-level as an object, record, struct, dictionary, hash table, keyed list, or associative array. The other structure is an ordered list of values, separated by commas. This is usually manifested as an array, vector, list, or sequence.

“Using recursion in TSQL is
like Sumo Wrestlers doing Ballet.
It is possible but not pretty.”

The first snag for TSQL is that the curly or square brackets are not ‘escaped’ within a string, so that there is no way of shredding a JSON ‘document’ simply. It is difficult to  differentiate a bracket used as the delimiter of an array or structure, and one that is within a string. Also, interpreting a string into a SQL String isn’t entirely straightforward since hex codes can be embedded anywhere to represent complex Unicode characters, and all the old C-style escaped characters are used. The second complication is that, unlike YAML, the datatypes of values can’t be explicitly declared. You have to sniff them out from applying the rules from the JSON Specification.

Obviously, structures can be embedded in structures, so recursion is a natural way of making life easy. Using recursion in TSQL is like Sumo Wrestlers doing Ballet. It is possible but not pretty.

The implementation

Although the code for the JSON Parser/Shredder will run in SQL Server 2005, and even in SQL Server 2000 (with some modifications required), I couldn’t resist using a TVP (Table Valued Parameter) to pass a hierarchical table to the function, ToJSON, that produces a JSON ‘document’. Writing a SQL Server 2005 version should not be too hard.

First the function replaces all strings with tokens of the form @Stringxx, where xx is the foreign key of the table variable where the strings are held. This takes them, and their potentially difficult embedded brackets, out of the way. Names are  always strings in JSON as well as  string values.

Then, the routine iteratively finds the next structure that has no structure contained within it, (and is, by definition the leaf structure), and parses it, replacing it with an object token of the form ‘@Objectxxx‘, or ‘@arrayxxx‘, where xxx is the object id assigned to it. The values, or name/value pairs are retrieved from the string table and stored in the hierarchy table. Gradually, the JSON document is eaten until there is just a single root object left.

The JSON outputter is a great deal simpler, since one can be surer of the input, but essentially it does the reverse process, working from the root to the leaves. The only complication is working out the indent of the formatted output string.

In the implementation, you’ll see a fairly heavy use of PATINDEX. This uses a poor man’s RegEx, a starving man’s RegEx. However, it is all we have, and can be pressed into service by chopping the string it is searching (if only it had an optional third parameter like CHARINDEX that specified the index of the start position of the search!). The STUFF function is also a godsend for this sort of string-manipulation work.

 
 
CREATE FUNCTION dbo . parseJSON ( @ JSON NVARCHAR ( MAX ) )
RETURNS @ hierarchy TABLE
  (
   element_id INT IDENTITY ( 1 , 1 ) NOT NULL , /* internal surrogate primary key gives the order of parsing and the list order */
   sequenceNo [ int ] NULL , /* the place in the sequence for the element */
   parent_ID INT , /* if the element has a parent then it is in this column. The document is the ultimate parent, so you can get the structure from recursing from the document */
   Object_ID INT , /* each list or object has an object id. This ties all elements to a parent. Lists are treated as objects here */
   NAME NVARCHAR ( 2000 ) , /* the name of the object */
   StringValue NVARCHAR ( MAX ) NOT NULL , /*the string representation of the value of the element. */
   ValueType VARCHAR ( 10 ) NOT null /* the declared type of the value represented as a string in StringValue*/
  )
AS
BEGIN
  DECLARE
    @ FirstObject INT , --the index of the first open bracket found in the JSON string
    @ OpenDelimiter INT , --the index of the next open bracket found in the JSON string
    @ NextOpenDelimiter INT , --the index of subsequent open bracket found in the JSON string
    @ NextCloseDelimiter INT , --the index of subsequent close bracket found in the JSON string
    @ Type NVARCHAR ( 10 ) , --whether it denotes an object or an array
    @ NextCloseDelimiterChar CHAR ( 1 ) , --either a '}' or a ']'
    @ Contents NVARCHAR ( MAX ) , --the unparsed contents of the bracketed expression
    @ Start INT , --index of the start of the token that you are parsing
    @ end INT , --index of the end of the token that you are parsing
    @ param INT , --the parameter at the end of the next Object/Array token
    @ EndOfName INT , --the index of the start of the parameter at end of Object/Array token
    @ token NVARCHAR ( 200 ) , --either a string or object
    @ value NVARCHAR ( MAX ) , -- the value as a string
    @ SequenceNo int , -- the sequence number within a list
    @ name NVARCHAR ( 200 ) , --the name as a string
    @ parent_ID INT , --the next parent ID to allocate
    @ lenJSON INT , --the current length of the JSON String
    @ characters NCHAR ( 36 ) , --used to convert hex to decimal
    @ result BIGINT , --the value of the hex symbol being parsed
    @ index SMALLINT , --used for parsing the hex value
    @ Escape INT --the index of the next escape character
   
  DECLARE @ Strings TABLE /* in this temporary table we keep all strings, even the names of the elements, since they are 'escaped' in a different way, and may contain, unescaped, brackets denoting objects or lists. These are replaced in the JSON string by tokens representing the string */
     (
     String_ID INT IDENTITY ( 1 , 1 ) ,
     StringValue NVARCHAR ( MAX )
    )
  SELECT --initialise the characters to convert hex to ascii
    @ characters = '0123456789abcdefghijklmnopqrstuvwxyz' ,
    @ SequenceNo = 0 , --set the sequence no. to something sensible.
  /* firstly we process all strings. This is done because [{} and ] aren't escaped in strings, which complicates an iterative parse. */
    @ parent_ID = 0 ;
  WHILE 1 = 1 --forever until there is nothing more to do
    BEGIN
      SELECT
        @ start = PATINDEX ( '%[^a-zA-Z]["]%' , @ json collate SQL_Latin1_General_CP850_Bin ) ; --next delimited string
      IF @ start = 0 BREAK --no more so drop through the WHILE loop
      IF SUBSTRING ( @ json , @ start + 1 , 1 ) = '"'
        BEGIN --Delimited Name
          SET @ start = @ Start + 1 ;
          SET @ end = PATINDEX ( '%[^\]["]%' , RIGHT ( @ json , LEN ( @ json + '|' ) - @ start ) collate SQL_Latin1_General_CP850_Bin ) ;
        END
      IF @ end = 0 --no end delimiter to last string
        BREAK --no more
      SELECT @ token = SUBSTRING ( @ json , @ start + 1 , @ end - 1 )
      --now put in the escaped control characters
      SELECT @ token = REPLACE ( @ token , FROMString , TOString )
      FROM
        ( SELECT
          '\"' AS FromString , '"' AS ToString
         UNION ALL SELECT '\\' , '\'
         UNION ALL SELECT '\/' , '/'
         UNION ALL SELECT '\b' , CHAR ( 08 )
         UNION ALL SELECT '\f' , CHAR ( 12 )
         UNION ALL SELECT '\n' , CHAR ( 10 )
         UNION ALL SELECT '\r' , CHAR ( 13 )
         UNION ALL SELECT '\t' , CHAR ( 09 )
        ) substitutions
      SELECT @ result = 0 , @ escape = 1
  --Begin to take out any hex escape codes
      WHILE @ escape > 0
        BEGIN
          SELECT @ index = 0 ,
          --find the next hex escape sequence
          @ escape = PATINDEX ( '%\x[0-9a-f][0-9a-f][0-9a-f][0-9a-f]%' , @ token collate SQL_Latin1_General_CP850_Bin )
          IF @ escape > 0 --if there is one
            BEGIN
              WHILE @ index < 4 --there are always four digits to a \x sequence  
                BEGIN
                  SELECT --determine its value
                    @ result = @ result + POWER ( 16 , @ index )
                    * ( CHARINDEX ( SUBSTRING ( @ token , @ escape + 2 + 3 - @ index , 1 ) ,
                                @ characters ) - 1 ) , @ index = @ index + 1 ;
        
                END
                -- and replace the hex sequence by its unicode value
              SELECT @ token = STUFF ( @ token , @ escape , 6 , NCHAR ( @ result ) )
            END
        END
      --now store the string away
      INSERT INTO @ Strings ( StringValue ) SELECT @ token
      -- and replace the string with a token
      SELECT @ JSON = STUFF ( @ json , @ start , @ end + 1 ,
                    '@string' + CONVERT ( NVARCHAR ( 5 ) , @ @ identity ) )
    END
  -- all strings are now removed. Now we find the first leaf. 
  WHILE 1 = 1  --forever until there is nothing more to do
  BEGIN
 
  SELECT @ parent_ID = @ parent_ID + 1
  --find the first object or list by looking for the open bracket
  SELECT @ FirstObject = PATINDEX ( '%[{[[]%' , @ json collate SQL_Latin1_General_CP850_Bin ) --object or array
  IF @ FirstObject = 0 BREAK
  IF ( SUBSTRING ( @ json , @ FirstObject , 1 ) = '{' )
    SELECT @ NextCloseDelimiterChar = '}' , @ type = 'object'
  ELSE
    SELECT @ NextCloseDelimiterChar = ']' , @ type = 'array'
  SELECT @ OpenDelimiter = @ firstObject
  WHILE 1 = 1 --find the innermost object or list...
    BEGIN
      SELECT
        @ lenJSON = LEN ( @ JSON + '|' ) - 1
  --find the matching close-delimiter proceeding after the open-delimiter
      SELECT
        @ NextCloseDelimiter = CHARINDEX ( @ NextCloseDelimiterChar , @ json ,
                                       @ OpenDelimiter + 1 )
  --is there an intervening open-delimiter of either type
      SELECT @ NextOpenDelimiter = PATINDEX ( '%[{[[]%' ,
             RIGHT ( @ json , @ lenJSON - @ OpenDelimiter ) collate SQL_Latin1_General_CP850_Bin ) --object
      IF @ NextOpenDelimiter = 0
        BREAK
      SELECT @ NextOpenDelimiter = @ NextOpenDelimiter + @ OpenDelimiter
      IF @ NextCloseDelimiter < @ NextOpenDelimiter
        BREAK
      IF SUBSTRING ( @ json , @ NextOpenDelimiter , 1 ) = '{'
        SELECT @ NextCloseDelimiterChar = '}' , @ type = 'object'
      ELSE
        SELECT @ NextCloseDelimiterChar = ']' , @ type = 'array'
      SELECT @ OpenDelimiter = @ NextOpenDelimiter
    END
  ---and parse out the list or name/value pairs
  SELECT
    @ contents = SUBSTRING ( @ json , @ OpenDelimiter + 1 ,
                        @ NextCloseDelimiter - @ OpenDelimiter - 1 )
  SELECT
    @ JSON = STUFF ( @ json , @ OpenDelimiter ,
                @ NextCloseDelimiter - @ OpenDelimiter + 1 ,
                '@' + @ type + CONVERT ( NVARCHAR ( 5 ) , @ parent_ID ) )
  WHILE ( PATINDEX ( '%[A-Za-z0-9@+.e]%' , @ contents collate SQL_Latin1_General_CP850_Bin ) ) <> 0
    BEGIN
      IF @ Type = 'Object' --it will be a 0-n list containing a string followed by a string, number,boolean, or null
        BEGIN
          SELECT
            @ SequenceNo = 0 , @ end = CHARINDEX ( ':' , ' ' + @ contents ) --if there is anything, it will be a string-based name.
          SELECT  @ start = PATINDEX ( '%[^A-Za-z@][@]%' , ' ' + @ contents collate SQL_Latin1_General_CP850_Bin ) --AAAAAAAA
          SELECT @ token = SUBSTRING ( ' ' + @ contents , @ start + 1 , @ End - @ Start - 1 ) ,
            @ endofname = PATINDEX ( '%[0-9]%' , @ token collate SQL_Latin1_General_CP850_Bin ) ,
            @ param = RIGHT ( @ token , LEN ( @ token ) - @ endofname + 1 )
          SELECT
            @ token = LEFT ( @ token , @ endofname - 1 ) ,
            @ Contents = RIGHT ( ' ' + @ contents , LEN ( ' ' + @ contents + '|' ) - @ end - 1 )
          SELECT  @ name = stringvalue FROM @ strings
            WHERE string_id = @ param --fetch the name
        END
      ELSE
        SELECT @ Name = null , @ SequenceNo = @ SequenceNo + 1
      SELECT
        @ end = CHARINDEX ( ',' , @ contents ) -- a string-token, object-token, list-token, number,boolean, or null
                 IF @ end = 0
         --HR Engineering notation bugfix start
           IF ISNUMERIC ( @ contents ) = 1
     SELECT @ end = LEN ( @ contents )
           Else
         --HR Engineering notation bugfix end
   SELECT    @ end = PATINDEX ( '%[A-Za-z0-9@+.e][^A-Za-z0-9@+.e]%' , @ contents + ' ' collate SQL_Latin1_General_CP850_Bin ) + 1
       SELECT
        @ start = PATINDEX ( '%[^A-Za-z0-9@+.e][A-Za-z0-9@+.e]%' , ' ' + @ contents collate SQL_Latin1_General_CP850_Bin )
      --select @start,@end, LEN(@contents+'|'), @contents 
      SELECT
        @ Value = RTRIM ( SUBSTRING ( @ contents , @ start , @ End - @ Start ) ) ,
        @ Contents = RIGHT ( @ contents + ' ' , LEN ( @ contents + '|' ) - @ end )
      IF SUBSTRING ( @ value , 1 , 7 ) = '@object'
        INSERT INTO @ hierarchy
          ( NAME , SequenceNo , parent_ID , StringValue , Object_ID , ValueType )
          SELECT @ name , @ SequenceNo , @ parent_ID , SUBSTRING ( @ value , 8 , 5 ) ,
            SUBSTRING ( @ value , 8 , 5 ) , 'object'
      ELSE
        IF SUBSTRING ( @ value , 1 , 6 ) = '@array'
          INSERT INTO @ hierarchy
            ( NAME , SequenceNo , parent_ID , StringValue , Object_ID , ValueType )
            SELECT @ name , @ SequenceNo , @ parent_ID , SUBSTRING ( @ value , 7 , 5 ) ,
              SUBSTRING ( @ value , 7 , 5 ) , 'array'
        ELSE
          IF SUBSTRING ( @ value , 1 , 7 ) = '@string'
            INSERT INTO @ hierarchy
              ( NAME , SequenceNo , parent_ID , StringValue , ValueType )
              SELECT @ name , @ SequenceNo , @ parent_ID , stringvalue , 'string'
              FROM @ strings
              WHERE string_id = SUBSTRING ( @ value , 8 , 5 )
          ELSE
            IF @ value IN ( 'true' , 'false' )
              INSERT INTO @ hierarchy
                ( NAME , SequenceNo , parent_ID , StringValue , ValueType )
                SELECT @ name , @ SequenceNo , @ parent_ID , @ value , 'boolean'
            ELSE
              IF @ value = 'null'
                INSERT INTO @ hierarchy
                  ( NAME , SequenceNo , parent_ID , StringValue , ValueType )
                  SELECT @ name , @ SequenceNo , @ parent_ID , @ value , 'null'
              ELSE
                IF PATINDEX ( '%[^0-9]%' , @ value collate SQL_Latin1_General_CP850_Bin ) > 0
                  INSERT INTO @ hierarchy
                    ( NAME , SequenceNo , parent_ID , StringValue , ValueType )
                    SELECT @ name , @ SequenceNo , @ parent_ID , @ value , 'real'
                ELSE
                  INSERT INTO @ hierarchy
                    ( NAME , SequenceNo , parent_ID , StringValue , ValueType )
                    SELECT @ name , @ SequenceNo , @ parent_ID , @ value , 'int'
      if @ Contents = ' ' Select @ SequenceNo = 0
    END
  END
INSERT INTO @ hierarchy ( NAME , SequenceNo , parent_ID , StringValue , Object_ID , ValueType )
  SELECT '-' , 1 , NULL , '' , @ parent_id - 1 , @ type
--
   RETURN
END
GO

So once we have a hierarchy, we can pass it to a stored procedure. As the output is an adjacency list, it should be easy to access the data. You might find it handy to create a table type if you are using SQL Server 2008. Here is what I use. (Note that if you drop a Table Valued Parameter type, you will have to drop any dependent functions or procedures first, and re-create them afterwards).

 
-- Create the data type  IF EXISTS (SELECT * FROM sys.types WHERE name LIKE 'Hierarchy')
  DROP TYPE dbo . Hierarchy
go
CREATE TYPE dbo . Hierarchy AS TABLE
(
   element_id INT NOT NULL , /* internal surrogate primary key gives the order of parsing and the list order */
   sequenceNo [ int ] NULL , /* the place in the sequence for the element */
   parent_ID INT , /* if the element has a parent then it is in this column. The document is the ultimate parent, so you can get the structure from recursing from the document */
   [ Object_ID ] INT , /* each list or object has an object id. This ties all elements to a parent. Lists are treated as objects here */
   NAME NVARCHAR ( 2000 ) , /* the name of the object, null if it hasn't got one */
   StringValue NVARCHAR ( MAX ) NOT NULL , /*the string representation of the value of the element. */
   ValueType VARCHAR ( 10 ) NOT null /* the declared type of the value represented as a string in StringValue*/
    PRIMARY KEY ( element_id )
)

ToJSON. A function that creates JSON Documents

Firstly, we need a simple utility function:

 
IF OBJECT_ID ( N 'dbo.JSONEscaped' ) IS NOT NULL      DROP FUNCTION dbo . JSONEscaped
GO
 
CREATE FUNCTION [ dbo ] . [ JSONEscaped ] ( /* this is a simple utility function that takes a SQL String with all its clobber and outputs it as a sting with all the JSON escape sequences in it.*/
@ Unescaped NVARCHAR ( MAX ) --a string with maybe characters that will break json
)
RETURNS NVARCHAR ( MAX )
AS
BEGIN
   SELECT @ Unescaped = REPLACE ( @ Unescaped , FROMString , TOString )
   FROM ( SELECT '' AS FromString , '\' AS ToString
         UNION ALL SELECT '"' , '"'
         UNION ALL SELECT '/' , '/'
         UNION ALL SELECT CHAR ( 08 ) , 'b'
         UNION ALL SELECT CHAR ( 12 ) , 'f'
         UNION ALL SELECT CHAR ( 10 ) , 'n'
         UNION ALL SELECT CHAR ( 13 ) , 'r'
         UNION ALL SELECT CHAR ( 09 ) , 't'
) substitutions
RETURN @ Unescaped
END
GO

And now, the function that takes a JSON Hierarchy table and converts it to a JSON string.

 
CREATE FUNCTION ToJSON
(
      @ Hierarchy Hierarchy READONLY
)
 
/*
the function that takes a Hierarchy table and converts it to a JSON string
 
Author: Phil Factor
Revision: 1.5
date: 1 May 2014
why: Added a fix to add a name for a list.
example:
 
Declare @XMLSample XML
Select @XMLSample='
  <glossary><title>example glossary</title>
  <GlossDiv><title>S</title>
   <GlossList>
    <GlossEntry id="SGML"" SortAs="SGML">
     <GlossTerm>Standard Generalized Markup Language</GlossTerm>
     <Acronym>SGML</Acronym>
     <Abbrev>ISO 8879:1986</Abbrev>
     <GlossDef>
      <para>A meta-markup language, used to create markup languages such as DocBook.</para>
      <GlossSeeAlso OtherTerm="GML" />
      <GlossSeeAlso OtherTerm="XML" />
     </GlossDef>
     <GlossSee OtherTerm="markup" />
    </GlossEntry>
   </GlossList>
  </GlossDiv>
 </glossary>'
 
DECLARE @MyHierarchy Hierarchy -- to pass the hierarchy table around
insert into @MyHierarchy select * from dbo.ParseXML(@XMLSample)
SELECT dbo.ToJSON(@MyHierarchy)
 
       */
RETURNS NVARCHAR ( MAX ) --JSON documents are always unicode.
AS
BEGIN
  DECLARE
    @ JSON NVARCHAR ( MAX ) ,
    @ NewJSON NVARCHAR ( MAX ) ,
    @ Where INT ,
    @ ANumber INT ,
    @ notNumber INT ,
    @ indent INT ,
    @ ii int ,
    @ CrLf CHAR ( 2 ) --just a simple utility to save typing!
     
  --firstly get the root token into place
  SELECT @ CrLf = CHAR ( 13 ) + CHAR ( 10 ) , --just CHAR(10) in UNIX
         @ JSON = CASE ValueType WHEN 'array' THEN
         + COALESCE ( '{' + @ CrLf + '  "' + NAME + '" : ' , '' ) + '['
         ELSE '{' END
            + @ CrLf
            + case when ValueType = 'array' and NAME is not null then '  ' else '' end
            + '@Object' + CONVERT ( VARCHAR ( 5 ) , OBJECT_ID )
            + @ CrLf + CASE ValueType WHEN 'array' THEN
            case when NAME is null then ']' else '  ]' + @ CrLf + '}' + @ CrLf end
                ELSE '}' END
  FROM @ Hierarchy
    WHERE parent_id IS NULL AND valueType IN ( 'object' , 'document' , 'array' ) --get the root element
/* now we simply iterat from the root token growing each branch and leaf in each iteration. This won't be enormously quick, but it is simple to do. All values, or name/value pairs withing a structure can be created in one SQL Statement*/
  Select @ ii = 1000
  WHILE @ ii > 0
    begin
    SELECT @ where = PATINDEX ( '%[^[a-zA-Z0-9]@Object%' , @ json ) --find NEXT token
    if @ where = 0 BREAK
    /* this is slightly painful. we get the indent of the object we've found by looking backwards up the string */
    SET @ indent = CHARINDEX ( char ( 10 ) + char ( 13 ) , Reverse ( LEFT ( @ json , @ where ) ) + char ( 10 ) + char ( 13 ) ) - 1
    SET @ NotNumber = PATINDEX ( '%[^0-9]%' , RIGHT ( @ json , LEN ( @ JSON + '|' ) - @ Where - 8 ) + ' ' ) --find NEXT token
    SET @ NewJSON = NULL --this contains the structure in its JSON form
    SELECT 
        @ NewJSON = COALESCE ( @ NewJSON + ',' + @ CrLf + SPACE ( @ indent ) , '' )
        + case when parent . ValueType = 'array' then '' else COALESCE ( '"' + TheRow . NAME + '" : ' , '' ) end
        + CASE TheRow . valuetype
        WHEN 'array' THEN '  [' + @ CrLf + SPACE ( @ indent + 2 )
           + '@Object' + CONVERT ( VARCHAR ( 5 ) , TheRow . [ OBJECT_ID ] ) + @ CrLf + SPACE ( @ indent + 2 ) + ']'
        WHEN 'object' then '  {' + @ CrLf + SPACE ( @ indent + 2 )
           + '@Object' + CONVERT ( VARCHAR ( 5 ) , TheRow . [ OBJECT_ID ] ) + @ CrLf + SPACE ( @ indent + 2 ) + '}'
        WHEN 'string' THEN '"' + dbo . JSONEscaped ( TheRow . StringValue ) + '"'
        ELSE TheRow . StringValue
       END
     FROM @ Hierarchy TheRow
     inner join @ hierarchy Parent
     on parent . element_ID = TheRow . parent_ID
      WHERE TheRow . parent_id = SUBSTRING ( @ JSON , @ where + 8 , @ Notnumber - 1 )
     /* basically, we just lookup the structure based on the ID that is appended to the @Object token. Simple eh? */
    --now we replace the token with the structure, maybe with more tokens in it.
    Select @ JSON = STUFF ( @ JSON , @ where + 1 , 8 + @ NotNumber - 1 , @ NewJSON ) , @ ii = @ ii - 1
    end
  return @ JSON
end
go

ToXML. A function that creates XML

The function that converts a hierarchy  table to XML gives us a JSON to XML converter. It is surprisingly similar to the previous function

 
 
IF OBJECT_ID ( N 'dbo.ToXML' ) IS NOT NULL
   DROP FUNCTION dbo . ToXML
GO
CREATE FUNCTION ToXML
(
/*this function converts a Hierarchy table into an XML document. This uses the same technique as the toJSON function, and uses the 'entities' form of XML syntax to give a compact rendering of the structure */
      @ Hierarchy Hierarchy READONLY
)
RETURNS NVARCHAR ( MAX ) --use unicode.
AS
BEGIN
  DECLARE
    @ XMLAsString NVARCHAR ( MAX ) ,
    @ NewXML NVARCHAR ( MAX ) ,
    @ Entities NVARCHAR ( MAX ) ,
    @ Objects NVARCHAR ( MAX ) ,
    @ Name NVARCHAR ( 200 ) ,
    @ Where INT ,
    @ ANumber INT ,
    @ notNumber INT ,
    @ indent INT ,
    @ CrLf CHAR ( 2 ) --just a simple utility to save typing!
     
  --firstly get the root token into place
  --firstly get the root token into place
  SELECT @ CrLf = CHAR ( 13 ) + CHAR ( 10 ) , --just CHAR(10) in UNIX
         @ XMLasString = '<?xml version="1.0" ?>
@Object' + CONVERT ( VARCHAR ( 5 ) , OBJECT_ID ) + '
'
    FROM @ hierarchy
    WHERE parent_id IS NULL AND valueType IN ( 'object' , 'array' ) --get the root element
/* now we simply iterate from the root token growing each branch and leaf in each iteration. This won't be enormously quick, but it is simple to do. All values, or name/value pairs within a structure can be created in one SQL Statement*/
  WHILE 1 = 1
    begin
    SELECT @ where = PATINDEX ( '%[^a-zA-Z0-9]@Object%' , @ XMLAsString ) --find NEXT token
    if @ where = 0 BREAK
    /* this is slightly painful. we get the indent of the object we've found by looking backwards up the string */
    SET @ indent = CHARINDEX ( char ( 10 ) + char ( 13 ) , Reverse ( LEFT ( @ XMLasString , @ where ) ) + char ( 10 ) + char ( 13 ) ) - 1
    SET @ NotNumber = PATINDEX ( '%[^0-9]%' , RIGHT ( @ XMLasString , LEN ( @ XMLAsString + '|' ) - @ Where - 8 ) + ' ' ) --find NEXT token
    SET @ Entities = NULL --this contains the structure in its XML form
    SELECT @ Entities = COALESCE ( @ Entities + ' ' , ' ' ) + NAME + '="'
     + REPLACE ( REPLACE ( REPLACE ( StringValue , '<' , '&lt;' ) , '&' , '&amp;' ) , '>' , '&gt;' )
     + '"' 
       FROM @ hierarchy
       WHERE parent_id = SUBSTRING ( @ XMLasString , @ where + 8 , @ Notnumber - 1 )
          AND ValueType NOT IN ( 'array' , 'object' )
    SELECT @ Entities = COALESCE ( @ entities , '' ) , @ Objects = '' , @ name = CASE WHEN Name = '-' THEN 'root' ELSE NAME end
      FROM @ hierarchy
      WHERE [ Object_id ] = SUBSTRING ( @ XMLasString , @ where + 8 , @ Notnumber - 1 )
   
    SELECT  @ Objects = @ Objects + @ CrLf + SPACE ( @ indent + 2 )
           + '@Object' + CONVERT ( VARCHAR ( 5 ) , OBJECT_ID )
           --+@CrLf+SPACE(@indent+2)+''
      FROM @ hierarchy
      WHERE parent_id = SUBSTRING ( @ XMLasString , @ where + 8 , @ Notnumber - 1 )
      AND ValueType IN ( 'array' , 'object' )
    IF @ Objects = '' --if it is a lef, we can do a more compact rendering
         SELECT @ NewXML = '<' + COALESCE ( @ name , 'item' ) + @ entities + ' />'
    ELSE
        SELECT @ NewXML = '<' + COALESCE ( @ name , 'item' ) + @ entities + '>'
            + @ Objects + @ CrLf ++ SPACE ( @ indent ) + '</' + COALESCE ( @ name , 'item' ) + '>'
     /* basically, we just lookup the structure based on the ID that is appended to the @Object token. Simple eh? */
    --now we replace the token with the structure, maybe with more tokens in it.
    Select @ XMLasString = STUFF ( @ XMLasString , @ where + 1 , 8 + @ NotNumber - 1 , @ NewXML )
    end
  return @ XMLasString
  end

This provides you the means of converting a JSON string into XML

 
DECLARE @ MyHierarchy Hierarchy , @ xml XML
INSERT INTO @ myHierarchy
select * from parseJSON ( '{"menu": {
  "id": "file",
  "value": "File",
  "popup": {
    "menuitem": [
      {"value": "New", "onclick": "CreateNewDoc()"},
      {"value": "Open", "onclick": "OpenDoc()"},
      {"value": "Close", "onclick": "CloseDoc()"}
    ]
  }
}}' )
SELECT dbo . ToXML ( @ MyHierarchy )
SELECT @ XML = dbo . ToXML ( @ MyHierarchy )
SELECT @ XML

This gives the result…

 
 
<? xml version = "1.0" ?>
< root >
  < menu id =" file""" value =" File" >
    < popup >
      < menuitem >
        < item value =" New" onclick =" CreateNewDoc ( )" / >
        < item value =" Open" onclick =" OpenDoc ( )" / >
        < item value =" Close" onclick =" CloseDoc ( )" / >
      < / menuitem >
    < / popup >
  < / menu >
< / root >
 
 
( 1 row ( s ) affected )
 
 
< root > < menu id =" file""" value =" File" > < popup > < menuitem > < item value =" New" onclick =" CreateNewDoc ( )" / > < item value =" Open" onclick =" OpenDoc ( )" / > < item value =" Close" onclick =" CloseDoc ( )" / > < / menuitem > < / popup > < / menu > < / root >
 
( 1 row ( s ) affected )

Wrap-up

The so-called ‘impedence-mismatch’ between applications and databases is, I reckon, an illusion. The object-oriented nested data-structures that we receive from applications are, if the developer has understood the data correctly,  merely a perspective from a particular entity of the relationships it is involved with. Whereas it is easy to shred XML documents to get the data from it to update the database, it has been trickier with other formats such as JSON. By using techniques like this, it should be possible to liberate the application, or website, programmer from having to do the mapping from the object model to the relational, and spraying the database with ad-hoc TSQL  that uses the base tables or updateable views.  If the database can be provided with the JSON, or the Table-Valued parameter, then there is a better chance of  maintaining full transactional integrity for the more complex updates.

The database developer already has the tools to do the work with XML, but why not the simpler, and more practical JSON? I hope these two routines get you started with experimenting with this.


本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Sqlserver中解析JSON 的相关文章

随机推荐

  • [安装fastfds中的nginx执行make命令报错]src/core/ngx_murmurhash.c:37:11: error

    问题 在nginx文件夹里执行make命令报错 src core ngx murmurhash c 37 11 error this statement may fall through Werror 61 implicit fallthr
  • 七牛云融合CDN到底怎么配置?

    人生如戏 xff0c 你得先有故事 老李 由于来年头一个月公司产品接入了一个旅游项目 xff0c 为了保证系统的稳定性 xff0c 必须要对现有架构进行改进以应对大流量的冲击 那么问题来了 xff1f 怎么改 xff1f 首先 xff0c
  • 【二、Arm平台直接安装QT】

    在目标开发平台空间资源不紧张的情况下 xff0c 可直接安装QT常规库 xff0c 省去交叉编译QT源码的时间 span class token function sudo span span class token function ap
  • ubuntu sudo apt-get update时执行失败应该怎么办

    命中 1 http security ubuntu com ubuntu focal security InRelease 命中 2 http us archive ubuntu com ubuntu focal InRelease 命中
  • 不吹不黑,逛GitHub没看过这10个开源项目,绝对血亏

    今天的分享 xff0c 也算是一次简单的复盘 xff0c 我们花了点时间梳理了一下 xff0c 以便诸位在空余时间可以研究学习 下面开始进入正题 xff1a 1 Build Your Own X GitHub Star xff1a 61 3
  • 快速精准的人头检测,代码已开源

    昨天arXiv一篇新上论文 FCHD A fast and accurate head detector xff0c 来自江森自控 xff08 Johnson Controls Inc xff09 的软件工程师Aditya Vora分享了一
  • UDP 用户数据报协议

    UDP 用户数据报协议 引言 UDP是一种保留消息边界 xff08 不合并 xff0c 不拆分 xff09 的简单的面向数据报的传输层协议 使用UDP协议的时候 xff0c 一般来说 xff0c 每个被应用程序请求的UDP输出操作只生产一个
  • 有新家了

    我在CSDN有个小窝了 我是一个JAVA初学者 虽然不是从事IT业 但对计算机有着浓厚的兴趣 希望在CSDN这个大家庭里 能得到朋友们的帮助 当然 我也会力所能及的帮助其它初学者解决一些简单问题的 以后我会把每天学习的内容 来这里发表一下
  • 动态绑定和多态

    class Animal private String name Animal String name this name 61 name public void enjoy System out println 34 叫声 34 clas
  • 离线安装gitlab

    1 下载跟Linux版本相关的 rpm包 地址 xff1a https packages gitlab com gitlab gitlab ce 2 将下载的rpm包上传到机器 3 解压 rpm ivh gitlab ce 15 6 2 c
  • windows子系统 WSL 的根目录位置

    根目录对应位置 我安装的子系统是 Ubuntu18 04 xff0c 根目录对应的位置是 xff1a C Users Administrator AppData Local Packages CanonicalGroupLimited Ub
  • 2020阿里云学生服务器操作步骤!

    前言 年龄在12岁 24岁之间的大陆个人实名认证用户 和 大陆全日制在校大学生在学生认证有效期内 xff0c 满足上述任一条件即可享受优惠价格 xff0c 同一用户只能保有一台学生优惠弹性计算产品 xff0c 一台数据库RDS产品 xff0
  • python用Selenium爬取携程网机票信息

    一 问题说明 1 selenium库是爬虫过程中比较讨巧的一个第三方库 xff0c 它能够跳过js ajax等交互 xff0c 上手比较容易 2 基础代码是根据其他博主参考而来 xff0c 但携程网站不断变化 xff0c 除ID等不变的信息
  • Docker---Docker-compose安装部署Samba服务

    Docker compose安装部署Samba服务 目录 Docker compose安装部署Samba服务一 环境准备二 创建docker compose yaml文件三 测试服务 一 环境准备 1 拉取samba镜像 xff1a doc
  • 金山词霸2005专业版序列号,绝对正确 JQ7M7-XCD38-834H2-TRTWJ-J7BG4

    金山词霸2005专业版序列号 xff0c 绝对正确 JQ7M7 XCD38 834H2 TRTWJ J7BG4
  • Java数据结构——用顺序表编写一个简易通讯录

    Java数据结构 用顺序表编写一个简易通讯录 1 定义线性表的抽象数据类型 xff08 接口 xff09 2 编写顺序表 xff08 类 xff09 3 编写测试程序 xff08 main方法所在的可运行类 xff09 Java数据结构 用
  • sprintf和snprintf用法

    1 sprintf 函数 sprintf 函数原型为 intsprintf char str const char format 其中的格式控制字符串与 printf 的格式控制字符串的作用是一样的 xff0c 表示的是参数的格式 xff0
  • 官网的订阅发布节点

    发布话题 1 usr bin env python 2 license removed for brevity 3 import rospy 4 from std msgs msg import String 5 6 def talker
  • Tkinter教程之Pack篇

    39 39 39 Tkinter教程之Pack篇 39 39 39 Pack为一布局管理器 xff0c 可将它视为一个弹性的容器 39 39 39 1 一个空的widget 39 39 39 不使用pack coding cp936 fro
  • Sqlserver中解析JSON

    参考 xff1a https www red gate com simple talk sql t sql programming consuming json strings in sql server 主要的过程代码单独贴出来 xff1