算法设计与实现--贪心篇

2023-12-05

贪心算法

贪心算法是一种在每一步选择中都采取当前状态下最优决策的算法,以期望能够通过一系列局部最优的选择达到全局最优。贪心算法的关键是定义好局部最优的选择,并且不回退,即一旦做出了选择,就不能撤销。

一般来说,贪心算法适用于满足以下两个条件的问题:

  1. 最优子结构性质(Optimal Substructure): 问题的最优解包含了其子问题的最优解。这意味着可以通过子问题的最优解来构造原问题的最优解。
  2. 贪心选择性质(Greedy Choice Property): 当考虑做某个选择时,贪心算法总是选择当前看起来最优的解,而不考虑其他可能性。这个选择是局部最优的,希望通过这种选择能够达到全局最优。

关键的两步
提出贪心策略:观察问题特征,构造贪心选择
证明贪心正确:假设最优方案,通过替换证明

相关问题

1、部分背包问题

问题描述

部分背包问题是背包问题的一个变体,与 0-1 背包问题和完全背包问题不同。在部分背包问题中,每个物品可以选择一部分放入背包,而不是必须选择放入或不放入。

以下是部分背包问题的算法思想:

  1. 计算单位价值: 对每个物品计算单位价值,单位价值等于物品的价值/物品的重量。

    单位价值=物品的价值/物品的重量

  2. 按单位价值降序排序: 将所有物品按照单位价值降序排列,这样就可以优先选择单位价值较高的物品。

  3. 贪心选择: 从排好序的物品列表中按顺序选择物品放入背包。对于每个物品,可以选择一部分(即部分背包),而不必全部选择。

  4. 计算总价值: 根据所选物品计算放入背包的总价值

算法实现

#include <stdio.h>
#include <stdlib.h>

// 物品的结构
struct Item{
	int weight;  // 物品重量 
	int value;   // 物品价值 
}; 

// 1计算单位价值
double computeUnitValue(struct Item item){
	double result = item.value/item.weight;
	return result;
} 

// 2 按单位价值进行降序排序
// 在这个比较函数中,参数的类型为 const void*,
//这是因为这个函数是用于通用排序算法(例如 qsort)的,
//而通用排序算法不关心待排序元素的具体类型
int compare(const void* a,const void* b) {
	// *(struct Item*) 
	// 这是一种类型转换,将通用指针 const void* 转换为具体类型 struct Item*
	 double unitValueA = computeUnitValue(*(struct Item*)a);
	 double unitValueB = computeUnitValue(*(struct Item*)b);
	 
	 if(unitValueA < unitValueB){
	 	return 1;
	 }else if(unitValueA > unitValueB){
	 	return -1;
	 }else{
	 	return 0;
	 }
}

// 3 贪心算法
double fractionalKnapsack(struct Item items[],int n,int vtl) {
	// 跟据单位价值降序排列 
	qsort(items,n,sizeof(struct Item),compare);
	
	// 最大总价值 
	double maxValue = 0.0;  
	
	// 从排好序的物品列表中贪心选择,选择单位价值大的物品
	// 此时的items 是已经是跟据单位价值降序排序的,所以items[0] 是单位价值最大的物品 
	for(int i=0;i<n;i++){
		//  如果背包的容量>=物品的容量,则贪心策略,将整个物品放入背包 
		if(vtl>=items[i].weight){
			maxValue += items[i].value;  //  最大的价值更新 
			vtl -= items[i].weight;		// 背包容量更新 
		}else{ // 如果背包容量没法将整个物品放入,则计算他的单位价值,然后单位价值*剩余背包容量 
			maxValue += computeUnitValue(items[i])*vtl;
			break;
		}
	} 
	
	return maxValue;
}


// 主函数
int main() {
    struct Item items[] = {{10, 60}, {20, 100}, {30, 120}};
    int n = sizeof(items) / sizeof(items[0]);
    int vtl = 50; // 背包容量 

    double maxValue = fractionalKnapsack(items, n, capacity);

    printf("Maximum value that can be obtained = %.2f\n", maxValue);

    return 0;
}

2、哈夫曼编码

哈夫曼编码(Huffman Coding)是一种基于字符出现频率的编码方式,它通过使用较短的比特序列来表示出现频率较高的字符,从而实现对数据的高效压缩。这种编码方式是由大卫·哈夫曼(David A. Huffman)于1952年提出的。

哈夫曼编码的基本思想:

  1. 构建哈夫曼树(Huffman Tree)
    • 对于需要编码的字符,根据其出现频率构建一个哈夫曼树。
    • 频率越高的字符在树中离根越近,频率越低的字符在树中离根越远。(首先选择最小的两个频)
  2. 分配编码
    • 遍历哈夫曼树的路径,给每个字符分配一个独一无二的二进制编码。
    • 一般来说,向左走表示添加一个0,向右走表示添加一个1。
  3. 生成哈夫曼编码表
    • 将每个字符与其对应的二进制编码建立映射关系,形成哈夫曼编码表。

算法实现

#include <stdio.h>
#include <stdlib.h>

// 哈夫曼树节点结构
struct HuffmanNode {
    char data;
    int frequency;
    struct HuffmanNode* left;
    struct HuffmanNode* right;
};

// 字符频率表结构
struct FrequencyTable {
    char data;
    int frequency;
};

// 优先队列中的元素
struct PriorityQueueElement {
    struct HuffmanNode* node;
    struct PriorityQueueElement* next;
};

// 优先队列结构
struct PriorityQueue {
    struct PriorityQueueElement* front;
};

// 初始化优先队列
void initPriorityQueue(struct PriorityQueue* pq) {
    pq->front = NULL;
}

// 插入元素到优先队列
void insertPriorityQueue(struct PriorityQueue* pq, struct HuffmanNode* node) {
    struct PriorityQueueElement* newElement = (struct PriorityQueueElement*)malloc(sizeof(struct PriorityQueueElement));
    newElement->node = node;
    newElement->next = NULL;

    if (pq->front == NULL || node->frequency < pq->front->node->frequency) {
        newElement->next = pq->front;
        pq->front = newElement;
    } else {
        struct PriorityQueueElement* current = pq->front;
        while (current->next != NULL && current->next->node->frequency <= node->frequency) {
            current = current->next;
        }
        newElement->next = current->next;
        current->next = newElement;
    }
}

// 从优先队列中取出最小元素
struct HuffmanNode* extractMinPriorityQueue(struct PriorityQueue* pq) {
    if (pq->front == NULL) {
        return NULL;
    }

    struct HuffmanNode* minNode = pq->front->node;
    struct PriorityQueueElement* temp = pq->front;
    pq->front = pq->front->next;
    free(temp);

    return minNode;
}

// 构建哈夫曼树
struct HuffmanNode* buildHuffmanTree(struct FrequencyTable frequencies[], int n) {
    struct PriorityQueue pq;
    initPriorityQueue(&pq);

    // 初始化优先队列,每个节点作为一个单独的树
    for (int i = 0; i < n; ++i) {
        struct HuffmanNode* newNode = (struct HuffmanNode*)malloc(sizeof(struct HuffmanNode));
        newNode->data = frequencies[i].data;
        newNode->frequency = frequencies[i].frequency;
        newNode->left = newNode->right = NULL;
        insertPriorityQueue(&pq, newNode);
    }

    // 重复合并节点,直到队列中只剩下一个节点,即哈夫曼树的根
    while (pq.front->next != NULL) {
        struct HuffmanNode* leftChild = extractMinPriorityQueue(&pq);
        struct HuffmanNode* rightChild = extractMinPriorityQueue(&pq);

        struct HuffmanNode* newNode = (struct HuffmanNode*)malloc(sizeof(struct HuffmanNode));
        newNode->data = '\0'; // 内部节点没有字符数据
        newNode->frequency = leftChild->frequency + rightChild->frequency;
        newNode->left = leftChild;
        newNode->right = rightChild;

        insertPriorityQueue(&pq, newNode);
    }

    // 返回哈夫曼树的根节点
    return extractMinPriorityQueue(&pq);
}

// 生成哈夫曼编码
void generateHuffmanCodes(struct HuffmanNode* root, int code[], int top) {
    if (root->left != NULL) {
        code[top] = 0;
        generateHuffmanCodes(root->left, code, top + 1);
    }

    if (root->right != NULL) {
        code[top] = 1;
        generateHuffmanCodes(root->right, code, top + 1);
    }

    if (root->left == NULL && root->right == NULL) {
        printf("Character: %c, Code: ", root->data);
        for (int i = 0; i < top; ++i) {
            printf("%d", code[i]);
        }
        printf("\n");
    }
}

// 主函数
int main() {
    struct FrequencyTable frequencies[] = {{'A', 2}, {'B', 1}, {'C', 1}, {'D', 1},{'E',4}
	};
    int n = sizeof(frequencies) / sizeof(frequencies[0]);

    struct HuffmanNode* root = buildHuffmanTree(frequencies, n);

    int code[100];
    int top = 0;

    printf("Huffman Codes:\n");
    generateHuffmanCodes(root, code, top);

    return 0;
}

3、活动选择问题

活动选择问题(Activity Selection Problem)是一个经典的贪心算法问题, 也称为区间调度问题 。给定一组活动,每个活动都有一个开始时间和结束时间,目标是选择出最大可能的互不相交的活动子集。

以下是活动选择问题的算法思想:

  1. 将活动按照结束时间的先后顺序进行排序。
  2. 选择第一个活动作为初始活动,并将其加入最终选择的活动子集。
  3. 从第二个活动开始,依次判断每个活动是否与已选择的活动相容(即结束时间是否早于下一个活动的开始时间),如果相容,则将该活动加入最终选择的活动子集。
  4. 重复步骤3,直到遍历完所有活动。

通过贪心策略, 每次选择结束时间最早的活动 ,可以确保选择的活动子集最大化。因为如果一个活动与已选择的活动相容,那么它一定是结束时间最早的活动,选择它不会影响后续活动的选择。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

代码实现

该算法的核心就是 每次选择结束时间最早的活动

#include <stdio.h>
#include <stdlib.h>

// 活动结构
struct Activity {
    int start;
    int end;
};

// 比较函数,用于按结束时间升序排序
int compare(const void* a, const void* b) {
    return ((struct Activity*)a)->end - ((struct Activity*)b)->end;
}

// 活动选择算法
void activitySelection(struct Activity activities[], int n) {
    // 按结束时间升序排序
    qsort(activities, n, sizeof(struct Activity), compare);

    // 第一个活动总是被选择
    printf("Selected activity: (%d, %d)\n", activities[0].start, activities[0].end);

    // 从第二个活动开始选择
    int lastActivity = 0;
    for (int i = 1; i < n; ++i) {
        // 如果活动的开始时间晚于或等于上一个已选择活动的结束时间,选择该活动
        if (activities[i].start >= activities[lastActivity].end) {
            printf("Selected activity: (%d, %d)\n", activities[i].start, activities[i].end);
            lastActivity = i;
        }
    }
}

// 主函数
int main() {
    struct Activity activities[] = {{1, 4}, {3, 5}, {0, 6}, {5, 7}, {3, 9}, {5, 9}, {6, 10}, {8, 11}, {8, 12}, {2, 14}, {12, 16}};
    int n = sizeof(activities) / sizeof(activities[0]);

    printf("Activity schedule:\n");
    activitySelection(activities, n);

    return 0;
}

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

算法设计与实现--贪心篇 的相关文章

  • 为什么使用abs()或fabs()而不是条件否定?

    在 C C 中 为什么要使用abs or fabs 不使用以下代码即可查找变量的绝对值 int absoluteValue value lt 0 value value 这与较低级别的指令较少有关吗 您提出的 有条件的abs 并不等于std
  • 将处理后的图形绘制到另一个图形中

    我想将一个经过处理的图形绘制到另一个图形中 I have two graphics var gHead Graphics FromImage h var gBackground Graphics FromImage b Transform
  • 添加对共享类的多个 WCF 服务的服务引用

    我正在尝试将我的 WCF Web 服务拆分为几个服务 而不是一个巨大的服务 但是 Visual Studio Silverlight 客户端 复制了两个服务共享的公共类 这是一个简单的例子来说明我的问题 在此示例中 有两个服务 两者都返回类
  • 在 C++11 中省略返回类型

    我最近发现自己在 C 11 模式下的 gcc 4 5 中使用了以下宏 define RETURN x gt decltype x return x 并编写这样的函数 template
  • Linux TUN/TAP:无法从 TAP 设备读回数据

    问题是关于如何正确配置想要使用 Tun Tap 模块的 Linux 主机 My Goal 利用现有的路由软件 以下为APP1和APP2 但拦截并修改其发送和接收的所有消息 由Mediator完成 我的场景 Ubuntu 10 04 Mach
  • ASP .NET MVC,创建类似路由配置的永久链接

    我需要帮助在 MVC 网站中创建类似 URL 路由的永久链接 Slug 已设置为 www xyz com profile slug 代码为 routes MapRoute name Profile url profile slug defa
  • std::map 和二叉搜索树

    我读过 std map 是使用二叉搜索树数据结构实现的 BST 是一种顺序数据结构 类似于数组中的元素 它将元素存储在 BST 节点中并按其顺序维护元素 例如如果元素小于节点 则将其存储在节点的左侧 如果元素大于节点 则将其存储在节点的右侧
  • 为什么 BOOST_FOREACH 不完全等同于手工编码的?

    From 增强文档 http www boost org doc libs 1 48 0 doc html foreach html foreach introduction what is literal boost foreach li
  • 在 C# 中将位从 ulong 复制到 long

    所以看来 NET 性能计数器类型 http msdn microsoft com en us library system diagnostics performancecounter aspx有一个恼人的问题 它暴露了long对于计数器
  • 范围和临时初始化列表

    我试图将我认为是纯右值的内容传递到范围适配器闭包对象中 除非我将名称绑定到初始值设定项列表并使其成为左值 否则它不会编译 这里发生了什么 include
  • 用于从字符串安全转换的辅助函数

    回到 VB6 我编写了一些函数 让我在编码时无需关心字符串的 null 和 数字的 null 和 0 等之间的区别 编码时 没有什么比添加特殊情况更能降低我的工作效率了用于处理可能导致一些不相关错误的数据的代码 9999 10000 如果我
  • “MyClass”的类型初始值设定项引发异常

    以下是我的Windows服务代码 当我调试代码时 我收到错误 异常 CSMessageUtility CSDetails 的类型初始值设定项引发异常 using System using System Collections Generic
  • Qt - 设置不可编辑的QComboBox的显示文本

    我想将 QComboBox 的文本设置为某些自定义文本 不在 QComboBox 的列表中 而不将此文本添加为 QComboBox 的项目 此行为可以在可编辑的 QComboBox 上实现QComboBox setEditText cons
  • 通过等待任务或访问其 Exception 属性都没有观察到任务的异常

    这些是我的任务 我应该如何修改它们以防止出现此错误 我检查了其他类似的线程 但我正在使用等待并继续 那么这个错误是怎么发生的呢 通过等待任务或访问其 Exception 属性都没有观察到任务的异常 结果 未观察到的异常被终结器线程重新抛出
  • 从匿名类型获取值

    我有一个方法如下 public void MyMethod object obj implement 我这样称呼它 MyMethod new myparam waoww 那么我该如何实施MyMethod 获取 myparam 值 Edit
  • 内核开发和 C++ [关闭]

    Closed 这个问题是基于意见的 help closed questions 目前不接受答案 从我know https stackoverflow com questions 580292 what languages are windo
  • 过度使用委托对性能来说是一个坏主意吗? [复制]

    这个问题在这里已经有答案了 考虑以下代码 if IsDebuggingEnabled instance Log GetDetailedDebugInfo GetDetailedDebugInfo 可能是一个昂贵的方法 因此我们只想在调试模式
  • 从类模板参数为 asm 生成唯一的字符串文字

    我有一个非常特殊的情况 我需要为类模板中声明的变量生成唯一的汇编程序名称 我需要该名称对于类模板的每个实例都是唯一的 并且我需要将其传递给asm关键字 see here https gcc gnu org onlinedocs gcc 12
  • 如何确定母版页中正在显示哪个子页?

    我正在母版页上编写代码 我需要知道正在显示哪个子 内容 页面 我怎样才能以编程方式做到这一点 我用这个 string pageName this ContentPlaceHolder1 Page GetType FullName 它以 AS
  • WPF/数据集:如何通过 XAML 将相关表中的数据绑定到数据网格列中?

    我正在使用 WPF DataSet 连接到 SQL Server Express XAML 和 C Visual Studio 2013 Express 我从名为 BankNoteBook 的现有 SQL Server Express 数据

随机推荐