Go实现分布式锁

2023-05-16

Go分布式锁

目录

  • Go分布式锁
    • 进程内加锁
    • trylock
    • 基于 redis 的 setnx
    • 基于 zk
    • 基于 etcd
    • redlock
    • 如何选择

在单机程序并发或并行修改全局变量时,需要对修改行为加锁以创造临界区。为什么需要加锁呢?可以看看下段代码:

package main

import (
    "sync"
)

// 全局变量
var counter int

func main() {
    var wg sync.WaitGroup
    for i := 0; i < 1000; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            counter++
        }()
    }

    wg.Wait()
    println(counter)
}

多次运行会得到不同的结果:

❯❯❯ go run local_lock.go
945
❯❯❯ go run local_lock.go
937
❯❯❯ go run local_lock.go
959

进程内加锁

想要得到正确的结果的话,把对 counter 的操作代码部分加上锁:

// ... 省略之前部分
var wg sync.WaitGroup
var l sync.Mutex
for i := 0; i < 1000; i++ {
    wg.Add(1)
    go func() {
        defer wg.Done()
        l.Lock()
        counter++
        l.Unlock()
    }()
}

wg.Wait()
println(counter)
// ... 省略之后部分

这样就可以稳定地得到计算结果了:

❯❯❯ go run local_lock.go
1000

trylock

package main

import (
    "sync"
)

// Lock try lock
type Lock struct {
    c chan struct{}
}

// NewLock generate a try lock
func NewLock() Lock {
    var l Lock
    l.c = make(chan struct{}, 1)
    l.c <- struct{}{}
    return l
}

// Lock try lock, return lock result
func (l Lock) Lock() bool {
    lockResult := false
    select {
    case <-l.c:
        lockResult = true
    default:
    }
    return lockResult
}

// Unlock , Unlock the try lock
func (l Lock) Unlock() {
    l.c <- struct{}{}
}

var counter int

func main() {
    var l = NewLock()
    var wg sync.WaitGroup
    for i := 0; i < 10; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            if !l.Lock() {
                // log error
                println("lock failed")
                return
            }
            counter++
            println("current counter", counter)
            l.Unlock()
        }()
    }
    wg.Wait()
}

因为我们的逻辑限定每个 goroutine 只有成功执行了 Lock 才会继续执行后续逻辑,因此在 Unlock 时可以保证 Lock struct 中的 channel 一定是空,从而不会阻塞,也不会失败。

在单机系统中,trylock 并不是一个好选择。因为大量的 goroutine 抢锁可能会导致 cpu 无意义的资源浪费。有一个专有名词用来描述这种抢锁的场景:活锁。

活锁指的是程序看起来在正常执行,但实际上 cpu 周期被浪费在抢锁,而非执行任务上,从而程序整体的执行效率低下。活锁的问题定位起来要麻烦很多。所以在单机场景下,不建议使用这种锁。

基于 redis 的 setnx

package main

import (
    "fmt"
    "sync"
    "time"

    "github.com/go-redis/redis"
)

func incr() {
    client := redis.NewClient(&redis.Options{
        Addr:     "localhost:6379",
        Password: "", // no password set
        DB:       0,  // use default DB
    })

    var lockKey = "counter_lock"
    var counterKey = "counter"

    // lock
    resp := client.SetNX(lockKey, 1, time.Second*5)
    lockSuccess, err := resp.Result()

    if err != nil || !lockSuccess {
        fmt.Println(err, "lock result: ", lockSuccess)
        return
    }

    // counter ++
    getResp := client.Get(counterKey)
    cntValue, err := getResp.Int64()
    if err == nil {
        cntValue++
        resp := client.Set(counterKey, cntValue, 0)
        _, err := resp.Result()
        if err != nil {
            // log err
            println("set value error!")
        }
    }
    println("current counter is ", cntValue)

    delResp := client.Del(lockKey)
    unlockSuccess, err := delResp.Result()
    if err == nil && unlockSuccess > 0 {
        println("unlock success!")
    } else {
        println("unlock failed", err)
    }
}

func main() {
    var wg sync.WaitGroup
    for i := 0; i < 10; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            incr()
        }()
    }
    wg.Wait()
}

看看运行结果:

❯❯❯ go run redis_setnx.go
<nil> lock result:  false
<nil> lock result:  false
<nil> lock result:  false
<nil> lock result:  false
<nil> lock result:  false
<nil> lock result:  false
<nil> lock result:  false
<nil> lock result:  false
<nil> lock result:  false
current counter is  2028
unlock success!

通过代码和执行结果可以看到,我们远程调用 setnx 实际上和单机的 trylock 非常相似,如果获取锁失败,那么相关的任务逻辑就不应该继续向前执行。

setnx 很适合在高并发场景下,用来争抢一些“唯一”的资源。比如交易撮合系统中卖家发起订单,而多个买家会对其进行并发争抢。这种场景我们没有办法依赖具体的时间来判断先后,因为不管是用户设备的时间,还是分布式场景下的各台机器的时间,都是没有办法在合并后保证正确的时序的。哪怕是我们同一个机房的集群,不同的机器的系统时间可能也会有细微的差别。

所以,我们需要依赖于这些请求到达 redis 节点的顺序来做正确的抢锁操作。如果用户的网络环境比较差,那也只能自求多福了。

基于 zk

package main

import (
    "time"

    "github.com/samuel/go-zookeeper/zk"
)

func main() {
    c, _, err := zk.Connect([]string{"127.0.0.1"}, time.Second) //*10)
    if err != nil {
        panic(err)
    }
    l := zk.NewLock(c, "/lock", zk.WorldACL(zk.PermAll))
    err = l.Lock()
    if err != nil {
        panic(err)
    }
    println("lock succ, do your business logic")

    time.Sleep(time.Second * 10)

    // do some thing
    l.Unlock()
    println("unlock succ, finish business logic")
}

基于 zk 的锁与基于 redis 的锁的不同之处在于 Lock 成功之前会一直阻塞,这与我们单机场景中的 mutex.Lock 很相似。

其原理也是基于临时 sequence 节点和 watch api,例如我们这里使用的是 /lock 节点。Lock 会在该节点下的节点列表中插入自己的值,只要节点下的子节点发生变化,就会通知所有 watch 该节点的程序。这时候程序会检查当前节点下最小的子节点的 id 是否与自己的一致。如果一致,说明加锁成功了。

这种分布式的阻塞锁比较适合分布式任务调度场景,但不适合高频次持锁时间短的抢锁场景。按照 Google 的 chubby 论文里的阐述,基于强一致协议的锁适用于 粗粒度 的加锁操作。这里的粗粒度指锁占用时间较长。我们在使用时也应思考在自己的业务场景中使用是否合适。

基于 etcd

package main

import (
    "log"

    "github.com/zieckey/etcdsync"
)

func main() {
    m, err := etcdsync.New("/lock", 10, []string{"http://127.0.0.1:2379"})
    if m == nil || err != nil {
        log.Printf("etcdsync.New failed")
        return
    }
    err = m.Lock()
    if err != nil {
        log.Printf("etcdsync.Lock failed")
        return
    }

    log.Printf("etcdsync.Lock OK")
    log.Printf("Get the lock. Do something here.")

    err = m.Unlock()
    if err != nil {
        log.Printf("etcdsync.Unlock failed")
    } else {
        log.Printf("etcdsync.Unlock OK")
    }
}

etcd 中没有像 zookeeper 那样的 sequence 节点。所以其锁实现和基于 zookeeper 实现的有所不同。在上述示例代码中使用的 etcdsync 的 Lock 流程是:

  1. 先检查 /lock 路径下是否有值,如果有值,说明锁已经被别人抢了
  2. 如果没有值,那么写入自己的值。写入成功返回,说明加锁成功。写入时如果节点被其它节点写入过了,那么会导致加锁失败,这时候到 3
  3. watch /lock 下的事件,此时陷入阻塞
  4. /lock 路径下发生事件时,当前进程被唤醒。检查发生的事件是否是删除事件(说明锁被持有者主动 unlock),或者过期事件(说明锁过期失效)。如果是的话,那么回到 1,走抢锁流程。

redlock

package main

import (
    "fmt"
    "time"

    "github.com/garyburd/redigo/redis"
    "gopkg.in/redsync.v1"
)

func newPool(server string) *redis.Pool {
    return &redis.Pool{
        MaxIdle:     3,
        IdleTimeout: 240 * time.Second,

        Dial: func() (redis.Conn, error) {
            c, err := redis.Dial("tcp", server)
            if err != nil {
                return nil, err
            }
            return c, err
        },

        TestOnBorrow: func(c redis.Conn, t time.Time) error {
            _, err := c.Do("PING")
            return err
        },
    }
}

func newPools(servers []string) []redsync.Pool {
    pools := []redsync.Pool{}
    for _, server := range servers {
        pool := newPool(server)
        pools = append(pools, pool)
    }

    return pools
}

func main() {
    pools := newPools([]string{"127.0.0.1:6379", "127.0.0.1:6378", "127.0.0.1:6377"})
    rs := redsync.New(pools)
    m := rs.NewMutex("/lock")

    err := m.Lock()
    if err != nil {
        panic(err)
    }
    fmt.Println("lock success")
    unlockRes := m.Unlock()
    fmt.Println("unlock result: ", unlockRes)

}

redlock 也是一种阻塞锁,单个节点操作对应的是 set nx px 命令,超过半数节点返回成功时,就认为加锁成功。

关于 redlock 的设计曾经在社区引起一场口水战,分布式专家各抒己见。不过这个不是我们要讨论的内容,相关链接在参考资料中给出。

如何选择

业务还在单机就可以搞定的量级时,那么按照需求使用任意的单机锁方案就可以。

如果发展到了分布式服务阶段,但业务规模不大,比如 qps < 1000,使用哪种锁方案都差不多。如果公司内已有可以使用的 zk/etcd/redis 集群,那么就尽量在不引入新的技术栈的情况下满足业务需求。

业务发展到一定量级的话,就需要从多方面来考虑了。首先是你的锁是否在任何恶劣的条件下都不允许数据丢失,如果不允许,那么就不要使用 redis 的 setnx 的简单锁。

如果要使用 redlock,那么要考虑你们公司 redis 的集群方案,是否可以直接把对应的 redis 的实例的 ip+port 暴露给开发人员。如果不可以,那也没法用。

对锁数据的可靠性要求极高的话,那只能使用 etcd 或者 zk 这种通过一致性协议保证数据可靠性的锁方案。但可靠的背面往往都是较低的吞吐量和较高的延迟。需要根据业务的量级对其进行压力测试,以确保分布式锁所使用的 etcd/zk 集群可以承受得住实际的业务请求压力。需要注意的是,etcd 和 zk 集群是没有办法通过增加节点来提高其性能的。要对其进行横向扩展,只能增加搭建多个集群来支持更多的请求。这会进一步提高对运维和监控的要求。多个集群可能需要引入 proxy,没有 proxy 那就需要业务去根据某个业务 id 来做 sharding。如果业务已经上线的情况下做扩展,还要考虑数据的动态迁移。这些都不是容易的事情。

在选择具体的方案时,还是需要多加思考,对风险早做预估。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Go实现分布式锁 的相关文章

  • 【C++】程序运行时间计算的方式

    1 利用C 43 43 标准库 std chrono xff0c 如下计算一个主体程序的运行时间 xff0c 算出来的时间差值单位为毫秒 lt float std milli gt 表示用毫秒表示 auto t start 61 std c
  • FPGA之蜂鸣器播放音乐《花海》

    文章目录 前言一 蜂鸣器1 蜂鸣器简介 xff1a 2 有源蜂鸣器 xff1a 3 无源蜂鸣器 xff1a 二 简谱常识1 音符时值 xff1a 2 简谱名 xff1a 3 简谱名频率 xff1a 三 程序设计1 调用ROM IP核储存每个
  • Verilog语法基础HDL Bits训练 01

    文章目录 前言一 Basics simple wire1 RTL代码2 仿真波形图 二 Basics four wires1 RTL代码2 仿真波形图 三 Basics Not gate1 RTL代码2 仿真波形图 四 Basics And
  • c++文件写入数据

    span class token macro property span class token directive hash span span class token directive keyword include span spa
  • 基于HC-08蓝牙模块的蓝牙通讯

    RXD接TXD xff0c TXD接RXD 通过手机的蓝牙助手可以完成亮灭LED1和LED2的操作 当发送A时 xff0c LED1亮 发送B时 xff0c LED1灭 当发送C时 xff0c LED2亮 xff0c 当发送D时 xff0c
  • 计算机网络笔记

    文章目录 计算机网络课程笔记第一章 概述1 计算机网络的定义2 网络分类3 网络分层及协议3 1 网络分层的原因3 2 协议 xff1a 对等通信双方的通信规则3 3 网络服务类型 xff1a 面向连接和面向非连接3 4 服务原语 xff1
  • 关于OSPF区域划分

    区域划分的好处 背景 随着网络规模不断扩大 xff0c 结构也日趋复杂 xff0c 路由器完成路由计算所消耗的内存 CPU资源也越来越多网络发生故障的可能性也随之增加 xff0c 如果区域内某处发生故障 xff0c 整个区域内的路由器都要重
  • 多目标多角度的快速模板匹配算法(基于NCC,效果无限接近Halcon中........)

    多目标多角度的快速模板匹配算法 xff08 基于NCC xff0c 效果无限接近Halcon中 工程应用一 多目标多角度的快速模板匹配算法 xff08 基于NCC xff0c 效果无限接近Halcon中 Imageshop 博客园 主要是我
  • 蓝桥杯嵌入式第十三届模拟题做题笔记

    这届的蓝桥杯电子类延期了 xff0c 最近就很无聊 xff0c 想做点东西但是又什么啥也不会 xff0c five一个 在小破站寻求各路大佬的帮助 不求大家的赞了 xff0c 只希望大家能够分享知识 xff0c 帮助一下迷茫的人 首先第一眼
  • Code::Blocks

    Code Blocks出现A debugging check in this application has failed xff1f 虽然不懂 xff0c 但好像有一个灰常easy的解决方法 xff1a Settings gt Edito
  • Logidim中异或的符号表示

    logisim中的表达式以 代表异或
  • 本人开发环境基本配置一览 ~/.bashrc

    系统 xff1a ubuntu18 04 xff0c bashrc环境文件 1 配置CUDA路径 xff1b cudnn用deb包安装的 xff0c 会直接被装到系统相应路径 xff0c 不需要手动添加路径引用 2 ROS CUDA exp
  • QT笔记(一)

    学习目标 xff1a 总结学习的QT 学习内容 xff1a 1 QT的一些固定格式 2 控件和事件 3 信号和槽 记录内容 xff1a 1 QT的固定格式 1 引用头文件 自己创建的头文件用 34 34 括起 xff0c eg 96 inc
  • 17 C++11常用语法

    文章目录 一 C 43 43 11简介二 列表初始化2 1 容器如何支持花括号初始化 三 变量类型的推导3 1 编译时类型推导 xff1a auto3 2 decltype类型推导3 3 运行时类型推导 typeid 四 final ove
  • Git小乌龟(TortoiseGit)使用详情

    项目可能大概也许maybe要用到Git小乌龟 xff0c 正好水篇文章 下载及安装 首先没有下载Git的先下载 xff0c 官网下载地址 xff0c 安装时直接一直next就行 然后是小乌龟的下载 xff0c 官网下载地址 xff0c 不知
  • 一张图阐述UML状态图的画法【软件工程】

    文章目录 I 介绍状态图II 一图搞定状态图画法 I 介绍状态图 状态图展示了一个特定对象的所有可能状态以及由于各种事件的发生而引起的状态间的转移 它有两大特征 xff1a 1 所有的变化都是针对某一个特定的对象 xff0c 这个对象会触发
  • 虚拟机中Ubuntu与主机共享文件夹

    虚拟机中Ubuntu与主机共享文件夹 xff0c 以及 mnt目录为空 xff0c 没有共享文件夹时的解决方案 1 启用共享文件夹 首先将虚拟机关机 xff0c 在虚拟机设置中 xff0c 选择选项面板 xff0c 选择共享文件夹 xff0
  • 【ROS】中级操作学习整理-TF坐标变换

    系列文章目录 ROS 中级操作学习整理 gazebo机器人仿真 ROS 中级操作学习整理 TF坐标变换 ROS 中级操作学习整理 传感器建模 ROS 中级操作学习整理 激光SLAM 文章目录 目录 目录 系列文章目录 文章目录 前言 一 R
  • STM32 芯片锁死无法烧录问题解决

    芯片锁死原因 xff1a 1 烧进去的工程对应器件与目标器件不一致 xff1b 2 烧进去的工程HSE VALUE与目标板上晶振频率不一致 xff1b 3 将烧录引脚烧录 本人在使用F411时犯下了 比较愚蠢的错误 xff0c 因为PB3引
  • 【TPMS】 - 发射端2

    TPMS项目 发射端SP370 目录章节介绍 一 SP370数据手册浏览二 源码学习三 SP370的RF的部分详解四 RF数据包的发送和数据包格式解析1 目录 章节介绍 1 SP370数据手册浏览 浏览SP370的数据手册 xff0c 看一

随机推荐

  • 【TPMS】 -接收端1

    TPMS项目 接受端TDA5235 目录章节介绍 一 TPMS接收板概况介绍二 TDA5235的专业知识1三 寄存器配置工具 目录 章节介绍 1 TPMS接收板概况介绍 本节开始接收板部分的课程 xff0c 先对接收板的整体情况 xff0c
  • ST_link突然不能使用了

    一 发现问题 今天 xff0c 我使用st link烧写程序时突然不能用了 xff0c 我昨天都还可以正常使用 我用手摸仿真器时很热 我意识到可能坏了 二 解决过程 xff08 1 xff09 用keil5查看debug设置时就能找到ST
  • OpenCV 读取视频并保存为另一个视频

    测试代码如下 xff1a 功能 xff1a 读取视频 xff0c 缩小处理后再存为另一个视频 方法1 include lt opencv2 opencv hpp gt include lt opencv2 highgui highgui c
  • XML和JSON

    XML 简介 xml是什么 XML是一种可扩展标记语言 Extensible Markup Language xff0c 它是一种用于在计算机网络上进行数据传输的标准格式 XML使用标记来标识数据 xff0c 并且可以自定义标记 xff0c
  • STM32单片机蜂鸣器实验

    蜂鸣器可以分为两种 xff1a 有源蜂鸣器与无源蜂鸣器 xff0c 这里的 源 指的是有没有自带震荡电路 xff0c 有源的蜂鸣器自带有震荡电路 xff0c 通电的瞬间就会发出声音 xff1b 而无源的蜂鸣器 xff0c 需要提供一个2 5
  • JVM虚拟机

    JVM 1 JVM 概述 x1f6b4 x1f6b4 x1f6b2 x1f6b4 虚拟机 xff08 Virtual Machine xff09 是一台虚拟的计算机 VMware属于系统虚拟机 xff0c 是对物理计算机的仿真 Java虚拟
  • 树莓派桌面WIFI图标消失,树莓派黑屏can‘t currently show the desktop

    方法一 xff1a 重装镜像 方法二 xff1a 找个树莓派显示器终端输入这行代码 sudo apt install wpasupplicant wpagui libengine pkcs11 openssl 转载B站视频 xff1a 完美
  • cuda10.1+cudnn10.1+tensorflow2.2.0+pytorch1.7.1下载安装及配置

    一 cuda及cudnn下载 1 查看自己电脑是否支持GPU 方法 xff1a 鼠标移动到此电脑 xff0c 点击鼠标右键 xff0c 依次选择属性 设备管理器 显示适配器有以下图标 xff08 NVIDIA xff09 即可安装GPU x
  • C语言:strtok()函数简单用法

    strtok函数 切割字符串 第一个参数指定一个字符串 xff0c 它包含了0个或者多个由第二个参数 xff08 字符串 xff09 中的一个或多个分隔符分割的标记 strtok函数找到第一个参数中的下一个标记 xff0c 并将其用 39
  • ESP32之FreeRTOS--任务的创建和运行

    文章目录 前言一 创建任务和删除函数1 xTaskCreate 2 xTaskCreateStatic 3 xTaskCreateRestricted 4 vTaskDelete 二 任务函数和任务控制块TCB1 任务函数模板2 TCB 三
  • 如何将本地项目上传到gitee

    如何将本地项目上传到gitee 第一步 xff1a 首先你要有一个gitee仓库 新建仓库 填写仓库信息 xff1a 如图 第二步 xff1a 将创建好的仓库 xff0c pull xff08 拉取 xff09 到本地 通过git 命令 把
  • go语言操作es

    目录 go语言操作es解决golang使用elastic连接elasticsearch时自动转换连接地址初始化数据创建结构体方式字符串方式 xff1a 查找修改删除查找 集群搭建配置文件修改 go语言操作es go get github c
  • Context介绍

    目录 Context设计原理默认上下文取消信号传值方法小结 Context 上下文 context Context Go 语言中用来设置截止日期 同步信号 xff0c 传递请求相关值的结构体 上下文与 Goroutine 有比较密切的关系
  • 将视频转成ROS的bag包

    执行转化命令 python2 mp4 2 bag py lane video3 mp4 out camera bag 循环播放图片 xff0c 并重命名成自己需要的话题名 rosbag play l out camera bag camer
  • beego介绍(一)

    目录 beego 的 MVC 架构介绍参数配置默认配置解析不同级别的配置多个配置文件支持环境变量配置系统默认参数基础配置App 配置Web配置监听配置Session配置Log配置 路由设置基础路由基本 GET 路由基本 POST 路由注册一
  • TCP如何保证可靠性?

    TCP如何保证可靠性 xff1f TCP协议保证数据传输可靠性的方式主要有 xff1a 校验和 序列号 确认应答 超时重传 连接管理 流量控制 拥塞控制 1 校验和 计算方式 xff1a 在数据传输的过程中 xff0c 将发送的数据段都当做
  • 仿照java的jdk动态代理实现go语言动态代理

    仿照java的jdk动态代理实现go语言动态代理 通过学习java的jdk动态代理和Cglib动态代理 xff0c 仿照jdk动态代理用go实现了一个简单的动态代理 结构型模式 代理模式 代理模式中分为静态代理和动态代理 静态代理需要在编译
  • golang设计模式——装饰器模式

    装饰器模式 装饰器模式 xff1a 动态地给一个对象添加一些额外的职责 xff0c 就增加功能来说 xff0c 装饰模式比生成子类更为灵活 UML类图 xff1a 分析 首先我们需要理解 xff0c 为什么组合优于继承 xff1f 继承有诸
  • GoLang之unsafe分析

    GoLang之unsafe 目录 GoLang之unsafe1 前言2 指针类型转换3 指针运算4 获取大小和偏移5 关于string 1 前言 开发中 xff0c byte类型和string类型需要互相转换的场景并不少见 xff0c 直接
  • Go实现分布式锁

    Go分布式锁 目录 Go分布式锁进程内加锁trylock基于 redis 的 setnx基于 zk基于 etcdredlock如何选择 在单机程序并发或并行修改全局变量时 xff0c 需要对修改行为加锁以创造临界区 为什么需要加锁呢 xff