C++进阶—>Socket通信那点事

2023-05-16

1、网络中进程之间如何通信?

本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类:

  • 消息传递(管道、FIFO、消息队列)
  • 同步(互斥量、条件变量、读写锁、文件和写记录锁、信号量)
  • 共享内存(匿名的和具名的)
  • 远程过程调用(Solaris门和Sun RPC)

但这些都不是本文的主题!我们要讨论的是网络中进程之间如何通信?首要解决的问题是如何唯一标识一个进程,否则通信无从谈起!在本地可以通过进程PID来唯一标识一个进程,但是在网络中这是行不通的。其实TCP/IP协议族已经帮我们解决了这个问题,网络层的“ip地址可以唯一标识网络中的主机,而传输层的“协议+端口可以唯一标识主机中的应用程序(进程)。这样利用三元组(ip地址,协议,端口)就可以标识网络的进程了,网络中的进程通信就可以利用这个标志与其它进程进行交互。

使用TCP/IP协议的应用程序通常采用应用编程接口:UNIX  BSD的套接字(socket)和UNIX System V的TLI(已经被淘汰),来实现网络进程之间的通信。就目前而言,几乎所有的应用程序都是采用socket,而现在又是网络时代,网络中进程通信是无处不在,这就是我为什么说“一切皆socket”。

2、什么是Socket?

上面我们已经知道网络中的进程是通过socket来通信的,那什么是socket呢?socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,都可以用“打开open –> 读写write/read –> 关闭close”模式来操作。我的理解就是Socket就是该模式的一个实现,socket即是一种特殊的文件,一些socket函数就是对其进行的操作(读/写IO、打开、关闭),这些函数我们在后面进行介绍。

3、socket的基本操作

既然socket是“open—write/read—close”模式的一种实现,那么socket就提供了这些操作对应的函数接口。下面以TCP为例,介绍几个基本的socket接口函数。

3.1、socket()函数


int socket(int domain, int type, int protocol);  

socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字,而socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。

正如可以给fopen的传入不同参数值,以打开不同的文件。创建socket的时候,也可以指定不同的参数创建不同的socket描述符,socket函数的三个参数分别为:

  • domain:即协议域,又称为协议族(family)。常用的协议族有,AF_INETAF_INET6AF_LOCAL(或称AF_UNIX,Unix域socket)、AF_ROUTE等等。协议族决定了socket的地址类型,在通信中必须采用对应的地址,如AF_INET决定了要用ipv4地址(32位的)与端口号(16位的)的组合、AF_UNIX决定了要用一个绝对路径名作为地址。
  • type:指定socket类型。常用的socket类型有,SOCK_STREAMSOCK_DGRAMSOCK_RAWSOCK_PACKETSOCK_SEQPACKET等等(socket的类型有哪些?)。
  • protocol:故名思意,就是指定协议。常用的协议有,IPPROTO_TCPIPPTOTO_UDPIPPROTO_SCTPIPPROTO_TIPC等,它们分别对应TCP传输协议、UDP传输协议、STCP传输协议、TIPC传输协议(这个协议我将会单独开篇讨论!)。

注意:并不是上面的type和protocol可以随意组合的,如SOCK_STREAM不可以跟IPPROTO_UDP组合。当protocol为0时,会自动选择type类型对应的默认协议。

当我们调用socket创建一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数,否则就当调用connect()listen()时系统会自动随机分配一个端口。

3.2、bind()函数

正如上面所说bind()函数把一个地址族中的特定地址赋给socket。例如对应AF_INETAF_INET6就是把一个ipv4或ipv6地址和端口号组合赋给socket。


int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);  

函数的三个参数分别为:

  • sockfd:即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描述字绑定一个名字。
  • addr:一个const struct sockaddr *指针,指向要绑定给sockfd的协议地址。这个地址结构根据地址创建socket时的地址协议族的不同而不同,如ipv4对应的是: 
    
    struct sockaddr_in {
        sa_family_t    sin_family; /* address family: AF_INET */
        in_port_t      sin_port;   /* port in network byte order */
        struct in_addr sin_addr;   /* internet address */
    };
    
    /* Internet address. */
    struct in_addr {
        uint32_t       s_addr;     /* address in network byte order */
    };  
    ipv6对应的是: 
    
    struct sockaddr_in6 { 
        sa_family_t     sin6_family;   /* AF_INET6 */ 
        in_port_t       sin6_port;     /* port number */ 
        uint32_t        sin6_flowinfo; /* IPv6 flow information */ 
        struct in6_addr sin6_addr;     /* IPv6 address */ 
        uint32_t        sin6_scope_id; /* Scope ID (new in 2.4) */ 
    };
    
    struct in6_addr { 
        unsigned char   s6_addr[16];   /* IPv6 address */ 
    };  
    Unix域对应的是: 
    
    #define UNIX_PATH_MAX    108
    
    struct sockaddr_un { 
        sa_family_t sun_family;               /* AF_UNIX */ 
        char        sun_path[UNIX_PATH_MAX];  /* pathname */ 
    };  
  • addrlen:对应的是地址的长度。

通常服务器在启动的时候都会绑定一个众所周知的地址(如ip地址+端口号),用于提供服务,客户就可以通过它来接连服务器;而客户端就不用指定,有系统自动分配一个端口号和自身的ip地址组合。这就是为什么通常服务器端在listen之前会调用bind(),而客户端就不会调用,而是在connect()时由系统随机生成一个。

3.3、listen()、connect()函数

如果作为一个服务器,在调用socket()bind()之后就会调用listen()来监听这个socket,如果客户端这时调用connect()发出连接请求,服务器端就会接收到这个请求。


int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);  

listen函数的第一个参数即为要监听的socket描述字,第二个参数为相应socket可以排队的最大连接个数。socket()函数创建的socket默认是一个主动类型的,listen函数将socket变为被动类型的,等待客户的连接请求。

connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址,第三个参数为socket地址的长度。客户端通过调用connect函数来建立与TCP服务器的连接。

3.4、accept()函数

TCP服务器端依次调用socket()bind()listen()之后,就会监听指定的socket地址了。TCP客户端依次调用socket()connect()之后就想TCP服务器发送了一个连接请求。TCP服务器监听到这个请求之后,就会调用accept()函数取接收请求,这样连接就建立好了。之后就可以开始网络I/O操作了,即类同于普通文件的读写I/O操作。


int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);  

accept函数的第一个参数为服务器的socket描述字,第二个参数为指向struct sockaddr *的指针,用于返回客户端的协议地址,第三个参数为协议地址的长度。如果accpet成功,那么其返回值是由内核自动生成的一个全新的描述字,代表与返回客户的TCP连接。

注意:accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的,称为监听socket描述字;而accept函数返回的是已连接的socket描述字。一个服务器通常通常仅仅只创建一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每个由服务器进程接受的客户连接创建了一个已连接socket描述字,当服务器完成了对某个客户的服务,相应的已连接socket描述字就被关闭。

3.5、read()、write()等函数

万事具备只欠东风,至此服务器与客户已经建立好连接了。可以调用网络I/O进行读写操作了,即实现了网咯中不同进程之间的通信!网络I/O操作有下面几组:

  • read()/write()
  • recv()/send()
  • readv()/writev()
  • recvmsg()/sendmsg()
  • recvfrom()/sendto()

我推荐使用recvmsg()/sendmsg()函数,这两个函数是最通用的I/O函数,实际上可以把上面的其它函数都替换成这两个函数。它们的声明如下:


       #include <unistd.h>

       ssize_t read(int fd, void *buf, size_t count);
       ssize_t write(int fd, const void *buf, size_t count);

       #include <sys/types.h>
       #include <sys/socket.h>

       ssize_t send(int sockfd, const void *buf, size_t len, int flags);
       ssize_t recv(int sockfd, void *buf, size_t len, int flags);

       ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
       ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);

       ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
       ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);
  

read函数是负责从fd中读取内容.当读成功时,read返回实际所读的字节数,如果返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。如果错误为EINTR说明读是由中断引起的,如果是ECONNREST表示网络连接出了问题。

write函数将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是全部的数据。2)返回的值小于0,此时出现了错误。我们要根据错误类型来处理。如果错误为EINTR表示在写的时候出现了中断错误。如果为EPIPE表示网络连接出现了问题(对方已经关闭了连接)。

其它的我就不一一介绍这几对I/O函数了,具体参见man文档或者baidu、Google,下面的例子中将使用到send/recv。

3.6、close()函数

在服务器与客户端建立连接之后,会进行一些读写操作,完成了读写操作就要关闭相应的socket描述字,好比操作完打开的文件要调用fclose关闭打开的文件。


#include <unistd.h>
int close(int fd);  

close一个TCP socket的缺省行为时把该socket标记为以关闭,然后立即返回到调用进程。该描述字不能再由调用进程使用,也就是说不能再作为read或write的第一个参数。

注意:close操作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。

3.7、其余函数补充

    上述内容均转自:http://www.cnblogs.com/skynet/,下面为对其socket相关函数的补充。

int send( SOCKET s, const char FAR *buf, int len, int flags ); //面连连接的通信发送数据

第一个参数指定发送端套接字描述符;
第二个参数指明一个存放应用程序要发送数据的缓冲区;
第三个参数指明实际要发送的数据的字节数,即长度;
第四个参数一般置0。

int recv( SOCKET s, char FAR *buf, int len, int flags );  //面向连接的通信接受数据

第一个参数指定接收端套接字描述符;
第二个参数指明一个缓冲区,该缓冲区用来存放recv函数接收到的数据;
第三个参数指明buf的长度;
第四个参数一般置0。

int sendto(int sockfd, const void *msg,int len, unsigned int flags, const struct sockaddr *to, int tolen);  //面向无连接的通信发送数据

第一个参数指定发送端套接字描述符;
第二个参数指明一个存放应用程序要发送数据的缓冲区;
第三个参数指明实际要发送的数据的字节数,即长度;
第四个参数一般置0;
第五个参数为存储目的地的IP地址和端口的地址结构体,一般使用sockaddr_in结构体然后转成sockaddr*类型;
第六个参数为sizeof(sockaddr)。

int recvfrom(int sockfd,void *buf,int len,unsigned int lags,struct sockaddr *from,int *fromlen);   //面向无连接的通信接受数据

第一个参数指定接受端套接字描述符;
第二个参数指明一个存放应用程序要接受数据的缓冲区;
第三个参数指明要接受数据的字节数,即长度;
第四个参数一般置0;
第五个参数为存储源地址的IP地址和端口的地址结构体,一般使用sockaddr_in结构体然后转成sockaddr*类型;
第六个参数为sizeof(sockaddr)。

4、socket中TCP的三次握手建立连接详解

我们知道tcp建立连接要进行“三次握手”,即交换三个分组。大致流程如下:

  • 客户端向服务器发送一个SYN J
  • 服务器向客户端响应一个SYN K,并对SYN J进行确认ACK J+1
  • 客户端再想服务器发一个确认ACK K+1

只有就完了三次握手,但是这个三次握手发生在socket的那几个函数中呢?请看下图:

image

图1、socket中发送的TCP三次握手

从图中可以看出,当客户端调用connect时,触发了连接请求,向服务器发送了SYN J包,这时connect进入阻塞状态;服务器监听到连接请求,即收到SYN J包,调用accept函数接收请求向客户端发送SYN K ,ACK J+1,这时accept进入阻塞状态;客户端收到服务器的SYN K ,ACK J+1之后,这时connect返回,并对SYN K进行确认;服务器收到ACK K+1时,accept返回,至此三次握手完毕,连接建立。

总结:客户端的connect在三次握手的第二个次返回,而服务器端的accept在三次握手的第三次返回。

5、socket中TCP的四次握手释放连接详解

上面介绍了socket中TCP的三次握手建立过程,及其涉及的socket函数。现在我们介绍socket中的四次握手释放连接的过程,请看下图:

image

图2、socket中发送的TCP四次握手

图示过程如下:

  • 某个应用进程首先调用 close主动关闭连接,这时TCP发送一个FIN M;
  • 另一端接收到FIN M之后,执行被动关闭,对这个FIN进行确认。它的接收也作为文件结束符传递给应用进程,因为FIN的接收意味着应用进程在相应的连接上再也接收不到额外数据;
  • 一段时间之后,接收到文件结束符的应用进程调用 close关闭它的socket。这导致它的TCP也发送一个FIN N;
  • 接收到这个FIN的源发送端TCP对它进行确认。

这样每个方向上都有一个FIN和ACK。

6、关于socket通信中的个人学习及理解随笔

6.1TCP/IP通信示意图


6.2 bind何时用

(1)采用TCP通信时,客户端不需要bind()他自己的IP和端口号,而服务器必须要bind()自己本机的IP和端口号;
(2)若采用UDP通信时(这里是有客户端和服务器之分才这么说的,若是指定特定端口的UDP对等通信则不一样了),客户端也可以不需要bind()他自己的IP和端口号,而服务器需要bind自己IP地址和端口号;

6.3 socket套接字对象有啥用

在socket编程之前,需要调用socket函数创建一个socket对象,该函数返回该socket对象的描述符。为什么每次都需要一个socket对象及socket对象有啥用。关于socket可以参考《struct socket 结构详解》文章,socket结构体如下:

struct socket   
{   
    socket_state              state;   
    unsigned long             flags;   
    const struct proto_ops    *ops;   
    struct fasync_struct      *fasync_list;   
    struct file               *file;   
    struct sock               *sk;   
    wait_queue_head_t         wait;   
    short                     type;   
};
其中,struct sock 包含有一个 sock_common 结构体,而sock_common结构体又包含有struct inet_sock 结构体,而struct inet_sock 结构体的部分定义如下:
struct inet_sock   
{   
    struct sock     sk;   
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)   
    struct ipv6_pinfo   *pinet6;   
#endif   
    __u32           daddr;          //IPv4的目的地址。   
    __u32           rcv_saddr;      //IPv4的本地接收地址。   
    __u16           dport;          //目的端口。   
    __u16           num;            //本地端口(主机字节序)。  
    …………      
}
由此可知,socket对象即相当于网络通讯中的数据包,里面包含了网络通信的各种相关数据、协议等信息,当然源地址、端口和目的地址、端口也包含在其中。简单的理解就把socket当作网络通信传输的数据包,在编程时是必须的 若不正确定义socket会导致程序错误。

6.4 connect函数干了啥

在TCP客户端,首先调用一个socket()函数,得到一个socket描述符s,然后通过connect函数对服务器进行连接,连接成功后,就可以利用这个s描述符使用send/recv函数收发数据了。对于为什么在connect之后使用send/recv收发数据不需要输入源、目的地址和端口,因为在connect函数调用之后将源地址、端口和目的地址、端口存储在对应的socket中了,至于socket中除此之外还存储了哪些东西 这里不做深究,感兴趣的可以研究此函数源码。

6.5 accept函数产生socket占没占新端口

/* 参数:sockfd 监听套接字,即服务器端创建的用于listen的socket描述符。  
 * 参数:addr  这是一个结果参数,它用来接受一个返回值,这返回值指定客户端的地址  
 * 参数:len 描述 addr 的长度  
 */ 
int accept(int sockfd, struct sockaddr* addr, socklen_t* len)
accept函数主要用于服务器端,一般位于listen函数之后,默认会阻塞进程,直到有一个客户请求连接,建立好连接后,它返回的一个新的套接字 socketfd_new ,此后,服务器端即可使用这个新的套接字socketfd_new与该客户端进行通信,而sockfd 则继续用于监听其他客户端的连接请求。

毫无疑问accept函数所产生的accept函数所产生的socket套接字套接字并未占用原套接字的端口,这是因为一个端口只能绑定到一个socket中若再绑定到别的socket中则会报错;accept函数所产生的socketfd_new套接字只是复制了原监听套接字sockfd 里面的相关信息而已,并未与端口进行绑定。当客户端与服务端进行通信的时候socketfd_new套接字接受并与之通信。而对于连接服务器端的请求则使用的是通过bind函数绑定的socket套接字与其建立连接。

6.6 UDP通信嘚吧嘚

UDP通信是无连接的通信,因此其通信速度更快,但由于其没有想TCP/IP那种数据容错机制,若通信不佳,则往往UDP在数据通信的时候会导致数据丢失;实时通信上使用的是UDP协议,如QQ、微信等,数据传输中则使用的是TCP协议,如文件传输、视频在线播放等。


创建UDP通信的套接字函数往往如下:

m_udpSocket=socket(AF_INET,SOCK_DGRAM,0); //SOCK_DGRAM为UDP流 SOCK_STREAM为TCP流


UDP通信的时候无需绑定端口和地址(当然在UDP通信时存在服务器的情况下 服务器是需要使用bind绑定的),在通信时要指定发送者或接受者的地址和端口,函数如下:

int sendto(int sockfd, const void *msg,int len, unsigned int flags, const struct sockaddr *to, int tolen);  //面向无连接的通信发送数据
第一个参数指定发送端套接字描述符;
第二个参数指明一个存放应用程序要发送数据的缓冲区;
第三个参数指明实际要发送的数据的字节数,即长度;
第四个参数一般置0;
第五个参数为存储目的地的IP地址和端口的地址结构体,一般使用sockaddr_in结构体然后转成sockaddr*类型;
第六个参数为sizeof(sockaddr)。
int recvfrom(int sockfd,void *buf,int len,unsigned int lags,struct sockaddr *from,int *fromlen);   //面向无连接的通信接受数据
第一个参数指定接受端套接字描述符;
第二个参数指明一个存放应用程序要接受数据的缓冲区;
第三个参数指明要接受数据的字节数,即长度;
第四个参数一般置0;
第五个参数为存储接收到的源地址的IP地址和端口的地址结构体,一般使用sockaddr_in结构体然后转成sockaddr*类型;
第六个参数为sizeof(sockaddr)。


使用UDP通信的流程较为简单大致步骤如下:

/***********************下面函数是发送UDP数据的***********************/

        char hostname[50];
	int Result;
	Result=gethostname(hostname,50);   //获取本地主机名给hostname
	if(Result!=0)
	{
		MessageBox("主机查找错误!","Error!",MB_OK);
		return FALSE;
	}
	HOSTENT* hst=NULL;
	CString strTemp;
	struct in_addr ia; 

	hst = gethostbyname((LPCTSTR)hostname);	//通过主机名获得本地主机相关设备信息给hst


	memcpy(&ia.s_addr,hst->h_addr_list[0],sizeof(ia.s_addr)); //将本机的ip地址拷给ia结构体

	SOCKADDR_IN m_Addr   //定义存储地址和端口的结构体m_Addr
        m_Addr.sin_addr=ia;
	m_Addr.sin_family=AF_INET;
	m_Addr.sin_port=htons(1234);

        m_sendSocket = socket(AF_INET,SOCK_DGRAM,0)  //定义UDP套接字
        int Result=sendto(m_sendSocket,m_msg,m_msg.GetLength(),0,(sockaddr*)&m_SevAddr,sizeof(SOCKADDR)); //发送数据m_msg给目的地址
	if(Result==SOCKET_ERROR)
	{
		MessageBox("信息发送失败!");
		return;

	}
/***********************下面函数是接受UDP数据的***********************/
       char buf[30];
       SOCKADDR_IN AddrMsgSend;
	int len=sizeof(SOCKADDR);
	SOCKET  m_socket = socket(AF_INET,SOCK_DGRAM,0);
	int result;
        result=recvfrom(m_socket,buf,30,0,(sockaddr*)&AddrMsgSend,&len);
	if(result!=SOCKET_ERROR)
		MessageBox("Error!");


当然为了省去每次发送数据都要输入目标地址和端口的麻烦,可以使用connect函数进行连接,这样与目的地址和端口连接之后即可使用send和secv函数进行数据的收发了!












本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

C++进阶—>Socket通信那点事 的相关文章

  • tomcat 开放远程调试端口

    1 开启远程调试端口 WIN系统 在catalina bat里 SET CATALINA OPTS server Xdebug Xnoagent Djava compiler NONE Xrunjdwp transport dt socke
  • 优雅地断开TCP连接

    socket关闭 close 和shutdown 的差异 对于一个tcp连接 在c语言里一般有2种方法可以将其关闭 close sock fd 或者 shutdown sock fd 多数情况下这2个方法的效果没有区别 可以互换使用 除了
  • QTcpSocket 发送数据心得

    遇到不会用的函数前 最好还是看看手册QAQ 今天居然吃了这个大亏 先交代一下背景 在做TCP客户端的发送数据功能 要和服务器程序进行TCP IP通信 且根据通信协议要发送数组或者结构体 并且数组的每一个位都是有效数据位 因此不能像大多数人一
  • 关于非同一局域网下两台设备之间的网络通信(服务器的作用)

    看过很多关于局域网下的两台设备之间的通信方式 最多的就是通过socket进行tcp ip通信 建立一个服务端 再建立一个客户端 客户端向服务端发起请求连接 然后再进行两端的通信 但发现其实这却存在着很多的问题与不足 如果是不在同一局域网下的
  • 如何实现在一个 Socket 应用程序中同时支持 IPv4 和 IPv6

    如何实现在一个 Socket 应用程序中同时支持 IPv4 和 IPv6 如何巧妙地设计代码结构 陈 鲁 软件工程师 IBM 孙 妍 软件工程师 IBM 简介 当今的网络主流是 IPv4 网络 但随着 IP 地址的日益短缺 IPv6 网络开
  • Java NIO介绍(二)————无堵塞io和Selector简单介绍

    无堵塞IO介绍 既然NIO相比于原来的IO在读取速度上其实并没有太大区别 因为NIO出来后 IO的低层已经以NIO为基础重新实现了 那么NIO的优点是什么呢 NIO是一种同步非阻塞的I O模型 也是I O多路复用的基础 而且已经被越来越多地
  • Socket传输文件/传输图片(Windows)

    利用UDP socket 来传输文件与图片 流程图如下 主要流程 1 client端发送command请求 上传数据或者下载数据 选择文件路径 2 server端应答 start代表开始传输 no代表拒绝 3 fopen打开文件进行读取 f
  • linux进程间通信---本地socket套接字(二)---多进程实现一个server对应多个client

    先给自己打个广告 本人的微信公众号正式上线了 搜索 张笑生的地盘 主要关注嵌入式软件开发 股票基金定投 足球等等 希望大家多多关注 有问题可以直接留言给我 一定尽心尽力回答大家的问题 想要获取完整源码的 关注公众号后回复 socket2 即
  • 计算机网络-----网络编程

    网络编程 实战 网络基础 1 什么是计算机网络 2 什么是网络编程 3 网络编程中的主要问题 4 网络通信要素 5 通信协议分层思想 IP和端口号 1 IP 1 1定义 1 2IP的分类 2 端口号 2 1定义 2 2端口号的分类 网络通信
  • 使用socket判断http请求或http响应的传输结束

    使用socket判断http请求或http响应的传输结束 先把header直到 r n r n整个地收下来 1 传输完毕就关闭connection 即recv收到0个字节 2 有内容 if Transfer Encoding chunked
  • Qt之TCP心跳包

    Qt之TCP心跳包 当Qt作为客户端程序 而服务器需要监控客户端的在线状态时 就需要Qt端发送心跳包 心跳包可以是TCP也可以是UDP 这里介绍TCP心跳包的实现方法 心跳包通常要单开一个线程 在进程运行的过程中一直执行 代码示例 h文件
  • Java中的NIO和IO的对比分析

    总的来说 java中的IO和NIO主要有三点区别 IO NIO 面向流 面向缓冲 阻塞IO 非阻塞IO 无 选择器 Selectors 1 面向流与面向缓冲 Java NIO和IO之间第一个最大的区别是 IO是面向流的 NIO是面向缓冲区的
  • JAVA socket编程实例

    转载文章 原作者无从考证 感谢作者的无私奉献 事实上网络编程简单的理解就是两台计算机相互通讯数据而已 对于程序员而言 去掌握一种编程接口并使用一种编程模型相对就会显得简单的多了 Java SDK提供一些相对简单的Api来完成这些工作 Soc
  • java Socket 简单实现客户端与服务器间通信(仿聊天室)

    java Socket TCP协议简单实现客户端与服务器间的通信 打赏 执行效果 启动服务器和3个客户端 进行群聊和私聊 执行过程 服务端 首先创建服务器套接字ServerSocket对象并绑定端口 启动服务器 然后ServerSocket
  • Windows平台下MingGW的网络socket编程模型

    Windows平台下MingGW的网络socket编程模型 1 TCP服务器 include
  • node socket 简易聊天室

    服务端 const net require net const server net createServer 用户列表 let clients 监听连接 server on connection client gt client on d
  • 解决前端websocket数据帧接收数据大小限制(数据分帧)问题

    websocket前后台出现问题解决方法 一开始通过限制后台返回数据帧以125字节分隔分段数据返回给前台 但调试时发现只要加上其他的一些信息返回json string很容易就会超过了125字节 于是在后台修改了这个限制大小为2048 但是这
  • UDP服务recvfrom函数设置非阻塞

    基本概念 其实UDP的非阻塞也可以理解成和TCP是一样的 都是通过socket的属性去做 方法一 通过fcntl函数将套接字设置为非阻塞模式 方法二 通过套接字选项SO RECVTIMEO设置超时 方法一源码 编译 g udp server
  • Socket编程中的强制关闭与优雅关闭及相关socket选项

    以下描述主要是针对windows平台下的TCP socket而言 首先需要区分一下关闭socket和关闭TCP连接的区别 关闭TCP连接是指TCP协议层的东西 就是两个TCP端之间交换了一些协议包 FIN RST等 具体的交换过程可以看TC
  • broken pipe

    1 broken pipe的字面意思是 管道破裂 broken pip的原因是该管道的读端被关闭 2 broken pipe经常发生socket关闭之后 或者其他的描述符关闭之后 的write操作中 3 发生broken pipe错误时 进

随机推荐

  • ORA-12547与在 root 下执行 Oracle 程序时找不到 libclntsh.so.11.1解决方案

    在 root 下执行 Oracle 程序时找不到 libclntsh so 11 1时 如图所示libclntsh so 11 1 61 gt not found 解决方法 xff1a locate libclntsh so 11 1 找到
  • 【D3.js】力导向布局 + 圆形图片展示的人物关系

    前言 使用d3的力学图 xff08 力导向图 xff09 与生活中常见的人物关系图结合 xff0c 已经有了很好的例子 xff1a D3 js 进阶系列 2 0 力学图 43 人物关系图 xff0c 博主实现了下面这种样式 xff0c 已经
  • 【Android】adb 查看所有程序包名

    adb shell pm span class hljs keyword list span packages 列出所有的包名 adb shell pm list packages span class hljs label package
  • 【算法】大数乘法问题及其高效算法

    题目 编写两个任意位数的大数相乘的程序 xff0c 给出计算结果 比如 xff1a 题目描述 xff1a 输出两个不超过100位的大整数的乘积 输入 xff1a 输入两个大整数 xff0c 如1234567 和 123 输出 xff1a 输
  • 【算法】如何判断链表有环

    如何判断单链表是否存在环 有一个单向链表 xff0c 链表当中有可能出现 环 xff0c 就像题图这样 如何用程序判断出这个链表是有环链表 xff1f 不允许修改链表结构 时间复杂度O n xff0c 空间复杂度O 1 方法一 穷举遍历 方
  • 【Android】移动端接入Cronet实践

    移动端接入Cronet实践 QUIC协议获取Chromium源码编译CronetAndroid iOS buildsDesktop builds targets the current OS Running the ninja files生
  • Linux系统下安装Java环境

    目录 测试环境 下载JDK 终端模拟软件 安装前准备 tar包的安装方法 tar包的卸载 rpm包的安装方法 rpm包的卸载 测试环境 LInux系统版本 xff1a CentOS 7 64位 终端模拟软件 xff1a Xshell 6 J
  • 【Hexo】Hexo个人博客绑定域名

    Hexo个人博客绑定域名 当我们在用hexo搭建了个人博客之后 xff0c 用username github io访问难免有些奇怪 xff0c 下面就花3分钟时间对如何绑定个人域名进行描述 我这边是在阿里云买的一个域名 xff0c ycbl
  • 生产者消费者的代码实现

    当消费者获得的数据为大写字母时 xff0c 则把大写字母转换成小写字母 xff0c 并显示 xff1b 当消费者获得的数据为小写字母时 xff0c 则把小写字母转换成大写字母 xff0c 并显示 xff1b 当消费者获得的数据为字符0 1
  • 基于RobHess的SIFT图像拼接知识点随笔

    1 SIFT算法具有尺度不变性在于构建的高斯尺度空间 xff1b 2 SIFT算法具有旋转不变性在于特征方向向量 xff1b 3 K d数以图像特征点的128维特征描述子均值为依据进行划分 构建 xff1b 4 特征点匹配是一个图像的所有特
  • 最小二乘法及OpenCv函数

    1 最小二乘法 我们以最简单的一元线性模型来解释最小二乘法 什么是一元线性模型呢 xff1f 监督学习中 xff0c 如果预测的变量是离散的 xff0c 我们称其为分类 xff08 如决策树 xff0c 支持向量机等 xff09 xff0c
  • Linux服务器网络不通情况分析以及常见检查方法

    在实际运维过程中 xff0c 经常会遇到网路不通的问题 xff0c 一般此类网络不通的问题都是业务端到端的排查 本文从后端linux服务器端自查是否服务器问题 通过多年的运维经验总结 xff0c 服务器端问题导致网络不通 xff0c 大致分
  • RANSAC算法实现去除误匹配并计算拼接矩阵-随笔

    1 RANSAC算法实现去除误匹配并计算拼接矩阵流程 1 从样本集中随机抽选一个RANSAC样本 xff0c 即4个匹配点对 xff08 至少4个匹配点对 xff0c 才能计算出3 3变换矩阵 xff09 xff1b 2 计算当错误概率为0
  • linux c++ 服务器端开发面试必看书籍

    由于很多朋友希望加入到Linux c 43 43 服务器端开发的队伍中 xff0c 本人就结合自己的面试经历并整理了自己阅读的相关书籍 xff0c 同大家分享 xff0c 一起进步 人个认为以下是进入这个方向的必看书籍 xff0c 各系列难
  • C++进阶—>const、define和enum的区别和用途

    1 区别 这三种都可以定义常量 define是宏定义 xff0c 编译器不对其进行错误检查 xff0c 在预编译阶段处理 xff0c 没有作用域限制属于全局常量 xff0c 在程序中编译器会对定义的常量名以数值进行替换 xff0c 且每次替
  • MFC中基于OpenCV实现Picture Control控件成像方法

    MFC中基于OpenCV实现Picture Control控件成像方法有两种 xff0c 一种是OpenCV2 2以前版本的绘制 xff0c 另外一种是OpenCV2 2以后版本的绘制 xff08 1 xff09 在OpenCV2 2之前的
  • MFC中CFileDialog及SHBrowseForFolder

    MFC中实现通过按钮来选择文件路径或文件夹路径 xff1b xff08 1 xff09 CFileDialog类能够选择文件 xff0c 并获取其路径 xff08 当然也可以通过获取文件路径再去除文件名而获得其所在文件夹路径 xff0c 前
  • C++进阶—>带你理解多字节编码与Unicode码

    本篇文章将讲解C 43 43 开发中容易混淆的另一个概念 多字节字符集与Unicode字符集 多字节字符与宽字节字符 char与wchar t 我们知道C 43 43 基本数据类型中表示字符的有两种 xff1a char wchar t c
  • BP神经网络及其C++实现

    0 前言 神经网络在我印象中一直比较神秘 xff0c 正好最近学习了神经网络 xff0c 特别是对Bp神经网络有了比较深入的了解 xff0c 因此 xff0c 总结以下心得 xff0c 希望对后来者有所帮助 神经网络在机器学习中应用比较广泛
  • C++进阶—>Socket通信那点事

    1 网络中进程之间如何通信 xff1f 本地的进程间通信 xff08 IPC xff09 有很多种方式 xff0c 但可以总结为下面4类 xff1a 消息传递 xff08 管道 FIFO 消息队列 xff09 同步 xff08 互斥量 条件