Eigen教程7 - Eigen和Matlab的比较

2023-05-16

博客新址: http://blog.xuezhisd.top
邮箱:xuezhisd@126.com


Eigen和Matlab比较

// 参考 - http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
// 一个关于Eigen的快速参考
// Matlab和Eigen的对应用法
// Main author: Keir Mierle
// 注释:张学志

#include <Eigen/Dense>

Matrix<double, 3, 3> A;               // 固定大小的双精度矩阵,和Matrix3d一样。
Matrix<double, 3, Dynamic> B;         // 固定行数,列数为动态大小
Matrix<double, Dynamic, Dynamic> C;   // 行数和列数都是动态大小,和MatrixXd一样。
Matrix<double, 3, 3, RowMajor> E;     // 行优先的矩阵(默认是列优先)
Matrix3f P, Q, R;                     // 3x3 的浮点型矩阵
Vector3f x, y, z;                     // 3x1 的浮点型矩阵(列向量)
RowVector3f a, b, c;                  // 1x3 的浮点型矩阵(行向量)
VectorXd v;                           // 动态大小的双精度列向量
double s;                            

// 基本用法
// Eigen          // Matlab           // 注释
x.size()          // length(x)        // 向量的长度
C.rows()          // size(C,1)        // 矩阵的行数
C.cols()          // size(C,2)        // 矩阵的列数
x(i)              // x(i+1)           // 访问向量元素(Matlab的下标从1开始计数)
C(i,j)            // C(i+1,j+1)       // 访问矩阵元素

A.resize(4, 4);   // 如果开启了断言,将会出现运行时错误。
B.resize(4, 9);   // 如果开启了断言,将会出现运行时错误。
A.resize(3, 3);   // 运行正常,矩阵的大小没有变化及。(A的行数和列数都是固定大小的)
B.resize(3, 9);   // 运行正常,仅动态列数发生了变化。(B的列数是动态变化的)
                  
A << 1, 2, 3,     // 初始化A。元素也可以是矩阵,先按列堆叠,再按行堆叠。
     4, 5, 6,     
     7, 8, 9;     
B << A, A, A;     // B 是3个A水平排列
A.fill(10);       // 将A的所有元素填充为10

// Eigen                                    // Matlab                       注释
MatrixXd::Identity(rows,cols)               // eye(rows,cols)               //单位矩阵
C.setIdentity(rows,cols)                    // C = eye(rows,cols)           //单位矩阵
MatrixXd::Zero(rows,cols)                   // zeros(rows,cols)             //全零矩阵
C.setZero(rows,cols)                        // C = zeros(rows,cols)         //全零矩阵
MatrixXd::Ones(rows,cols)                   // ones(rows,cols)              //全一矩阵
C.setOnes(rows,cols)                        // C = ones(rows,cols)          //全一矩阵
MatrixXd::Random(rows,cols)                 // rand(rows,cols)*2-1          //MatrixXd::Random 返回范围为(-1, 1)的均匀分布的随机数
C.setRandom(rows,cols)                      // C = rand(rows,cols)*2-1      //返回范围为(-1, 1)的均匀分布的随机数
VectorXd::LinSpaced(size,low,high)          // linspace(low,high,size)'     //返回size个等差数列,第一个数为low,最后一个数为high
v.setLinSpaced(size,low,high)               // v = linspace(low,high,size)' //返回size个等差数列,第一个数为low,最后一个数为high
VectorXi::LinSpaced(((hi-low)/step)+1,      // low:step:hi                  //以step为步长的等差数列。((hi-low)/step)+1为个数
                    low,low+step*(size-1))  //


// Matrix 切片和块。下面列出的所有表达式都是可读/写的。
// 使用模板参数更快(如第2个)。注意:Matlab是的下标是从1开始的。
// Eigen                           // Matlab                        // 注释
x.head(n)                          // x(1:n)                        //前n个元素
x.head<n>()                        // x(1:n)                        //前n个元素
x.tail(n)                          // x(end - n + 1: end)           //倒数n个元素
x.tail<n>()                        // x(end - n + 1: end)           //倒数n个元素
x.segment(i, n)                    // x(i+1 : i+n)                  //切片
x.segment<n>(i)                    // x(i+1 : i+n)                  //切片
P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols) //块
P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols) //块
P.row(i)                           // P(i+1, :)                     //第i行
P.col(j)                           // P(:, j+1)                     //第j列
P.leftCols<cols>()                 // P(:, 1:cols)                  //前cols列
P.leftCols(cols)                   // P(:, 1:cols)                  //前cols列
P.middleCols<cols>(j)              // P(:, j+1:j+cols)              //中间cols列
P.middleCols(j, cols)              // P(:, j+1:j+cols)              //中间cols列
P.rightCols<cols>()                // P(:, end-cols+1:end)          //后cols列
P.rightCols(cols)                  // P(:, end-cols+1:end)          //后cols列
P.topRows<rows>()                  // P(1:rows, :)                  //前rows行
P.topRows(rows)                    // P(1:rows, :)                  //前rows行
P.middleRows<rows>(i)              // P(i+1:i+rows, :)              //中间rows行
P.middleRows(i, rows)              // P(i+1:i+rows, :)              //中间rows行
P.bottomRows<rows>()               // P(end-rows+1:end, :)          //最后rows行
P.bottomRows(rows)                 // P(end-rows+1:end, :)          //最后rows行
P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)             //左上角块
P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)     //右上角块
P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)     //左下角块
P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end) //右下角块
P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)                 //左上角块
P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)         //右上角块
P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)         //左下角块
P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end) //右下角块


// 特别说明:Eigen的交换函数进行了高度优化
// Eigen                           // Matlab
R.row(i) = P.col(j);               // R(i, :) = P(:, j)
R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1]) //交换列


// Views, transpose, etc;
// Eigen                           // Matlab
R.adjoint()                        // R'                    // 共轭转置
R.transpose()                      // R.' or conj(R')       // 可读/写 转置
R.diagonal()                       // diag(R)               // 可读/写 对角元素
x.asDiagonal()                     // diag(x)               // 对角矩阵化
R.transpose().colwise().reverse()  // rot90(R)              // 可读/写 逆时针旋转90度
R.rowwise().reverse()              // fliplr(R)             // 水平翻转
R.colwise().reverse()              // flipud(R)             // 垂直翻转
R.replicate(i,j)                   // repmat(P,i,j)         // 复制矩阵,垂直复制i个,水平复制j个


// 四则运算,和Matlab相同。但Matlab中不能使用*=这样的赋值运算符
// 矩阵 - 向量    矩阵 - 矩阵      矩阵 - 标量
y  = M*x;          R  = P*Q;        R  = P*s;
a  = b*M;          R  = P - Q;      R  = s*P;
a *= M;            R  = P + Q;      R  = P/s;
                   R *= Q;          R  = s*P;
                   R += Q;          R *= s;
                   R -= Q;          R /= s;

                   
// 逐像素操作Vectorized operations on each element independently
// Eigen                       // Matlab        //注释
R = P.cwiseProduct(Q);         // R = P .* Q    //逐元素乘法
R = P.array() * s.array();     // R = P .* s    //逐元素乘法(s为标量)
R = P.cwiseQuotient(Q);        // R = P ./ Q    //逐元素除法
R = P.array() / Q.array();     // R = P ./ Q    //逐元素除法
R = P.array() + s.array();     // R = P + s     //逐元素加法(s为标量)
R = P.array() - s.array();     // R = P - s     //逐元素减法(s为标量)
R.array() += s;                // R = R + s     //逐元素加法(s为标量)
R.array() -= s;                // R = R - s     //逐元素减法(s为标量)
R.array() < Q.array();         // R < Q         //逐元素比较运算
R.array() <= Q.array();        // R <= Q        //逐元素比较运算
R.cwiseInverse();              // 1 ./ P        //逐元素取倒数
R.array().inverse();           // 1 ./ P        //逐元素取倒数
R.array().sin()                // sin(P)        //逐元素计算正弦函数
R.array().cos()                // cos(P)        //逐元素计算余弦函数
R.array().pow(s)               // P .^ s        //逐元素计算幂函数
R.array().square()             // P .^ 2        //逐元素计算平方
R.array().cube()               // P .^ 3        //逐元素计算立方
R.cwiseSqrt()                  // sqrt(P)       //逐元素计算平方根
R.array().sqrt()               // sqrt(P)       //逐元素计算平方根
R.array().exp()                // exp(P)        //逐元素计算指数函数
R.array().log()                // log(P)        //逐元素计算对数函数
R.cwiseMax(P)                  // max(R, P)     //逐元素计算R和P的最大值
R.array().max(P.array())       // max(R, P)     //逐元素计算R和P的最大值
R.cwiseMin(P)                  // min(R, P)     //逐元素计算R和P的最小值
R.array().min(P.array())       // min(R, P)     //逐元素计算R和P的最小值
R.cwiseAbs()                   // abs(P)        //逐元素计算R和P的绝对值
R.array().abs()                // abs(P)        //逐元素计算绝对值
R.cwiseAbs2()                  // abs(P.^2)     //逐元素计算平方
R.array().abs2()               // abs(P.^2)     //逐元素计算平方
(R.array() < s).select(P,Q );  // (R < s ? P : Q)                             //根据R的元素值是否小于s,选择P和Q的对应元素
R = (Q.array()==0).select(P,A) // R(Q==0) = P(Q==0) R(Q!=0) = P(Q!=0)         //根据Q中元素等于零的位置选择P中元素
R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P)     // 对P中的每个元素应用func函数


// Reductions.
int r, c;
// Eigen                  // Matlab                 //注释
R.minCoeff()              // min(R(:))              //最小值
R.maxCoeff()              // max(R(:))              //最大值
s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i); //计算最小值和它的位置
s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i); //计算最大值和它的位置
R.sum()                   // sum(R(:))              //求和(所有元素)
R.colwise().sum()         // sum(R)                 //按列求和
R.rowwise().sum()         // sum(R, 2) or sum(R')'  //按行求和
R.prod()                  // prod(R(:))                 //累积
R.colwise().prod()        // prod(R)                    //按列累积
R.rowwise().prod()        // prod(R, 2) or prod(R')'    //按行累积
R.trace()                 // trace(R)                   //迹
R.all()                   // all(R(:))                  //是否所有元素都非零
R.colwise().all()         // all(R)                     //按列判断,是否该列所有元素都非零
R.rowwise().all()         // all(R, 2)                  //按行判断,是否该行所有元素都非零
R.any()                   // any(R(:))                  //是否有元素非零
R.colwise().any()         // any(R)                     //按列判断,是否该列有元素都非零
R.rowwise().any()         // any(R, 2)                  //按行判断,是否该行有元素都非零


// 点积,范数等
// Eigen                  // Matlab           // 注释
x.norm()                  // norm(x).         //范数(注意:Eigen中没有norm(R))
x.squaredNorm()           // dot(x, x)        //平方和(注意:对于复数而言,不等价)
x.dot(y)                  // dot(x, y)        //点积
x.cross(y)                // cross(x, y)      //交叉积,需要头文件 #include <Eigen/Geometry>


 类型转换
// Eigen                  // Matlab             // 注释
A.cast<double>();         // double(A)          //变成双精度类型
A.cast<float>();          // single(A)          //变成单精度类型
A.cast<int>();            // int32(A)           //编程整型
A.real();                 // real(A)            //实部
A.imag();                 // imag(A)            //虚部
// 如果变换前后的类型相同,不做任何事情。


// 注意:Eigen中,绝大多数的涉及多个操作数的运算都要求操作数具有相同的类型
MatrixXf F = MatrixXf::Zero(3,3);
A += F;                // 非法。Matlab中允许。(单精度+双精度)
A += F.cast<double>(); // 将F转换成double,并累加。(一般都是在使用时临时转换)


// Eigen 可以将已存储数据的缓存 映射成 Eigen矩阵
float array[3];
Vector3f::Map(array).fill(10);            // create a temporary Map over array and sets entries to 10
int data[4] = {1, 2, 3, 4};
Matrix2i mat2x2(data);                    // 将 data 复制到 mat2x2
Matrix2i::Map(data) = 2*mat2x2;           // 使用 2*mat2x2 覆写data的元素 
MatrixXi::Map(data, 2, 2) += mat2x2;      // 将 mat2x2 加到 data的元素上 (当编译时不知道大小时,可选语法)


// 求解线性方程组 Ax = b。结果保存在x中。      Matlab: x = A \ b.
x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky>
x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky>
x = A.lu()  .solve(b));  // 稳定,快速       #include <Eigen/LU>
x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR>        //Eigen 3.3.2中没有?
x = A.svd() .solve(b));  // 稳定,慢速       #include <Eigen/SVD>       //Eigen 3.3.2中没有?
// .ldlt() -> .matrixL() and .matrixD()                         //?
// .llt()  -> .matrixL()                                        //?
// .lu()   -> .matrixL() and .matrixU()                         //?
// .qr()   -> .matrixQ() and .matrixR()                         //?
// .svd()  -> .matrixU(), .singularValues(), and .matrixV()     //?


// 特征值问题
// Eigen                          // Matlab
A.eigenvalues();                  // eig(A);
EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A)
eig.eigenvalues();                // diag(val)          //特征值,向量形式
eig.eigenvectors();               // vec                //特征向量,矩阵形式
// 对于自伴矩阵(Hermitian矩阵或对称矩阵),使用SelfAdjointEigenSolver<>

参考

  • http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Eigen教程7 - Eigen和Matlab的比较 的相关文章

  • opencv中矩阵的超快中值(与matlab一样快)

    我正在 openCV 中编写一些代码 想要找到一个非常大的矩阵数组 单通道灰度 浮点数 的中值 我尝试了几种方法 例如对数组进行排序 使用 std sort 和选择中间条目 但与 matlab 中的中值函数相比 它非常慢 准确地说 在 ma
  • 在 C/C++ 中调用 MATLAB API

    我刚刚从某处听说 对于数值计算 MATLAB 确实提供了一些用户友好的 API 如果你在 C C 代码中调用这些 API 你可以显着加快计算速度 但我在MATLAB文档中没有找到这样的信息 例如http www mathworks com
  • 傅里叶变换定理 matlab

    我目前正在尝试理解二维傅里叶位移定理 根据我到目前为止所了解到的情况 图像空间中的平移会导致相位差异 但不会导致频率空间中的幅度差异 我试图用一个小例子来演示这一点 但它只适用于行的移位 而不适用于列的移位 这是一个小演示 我只在这里显示幅
  • 同时重新排序和旋转图像的高效方法

    为了快速加载 jpeg 我为turbojpeg 实现了一个 mex wrapper 以有效地将 大 jpeg 读入 MATLAB 对于 4000x3000px 的图像 实际解码只需要大约 120 毫秒 而不是 5 毫秒 然而 像素顺序是 R
  • 如何在Matlab中将世界坐标转换为像素索引

    我有 512x512x313 体积的 dicom 图像 并且我有一个以世界坐标表示的点 57 7475 63 4184 83 1515 我如何在 Matlab 中获得该世界坐标的相应像素坐标 我不想戳破你的幻想 但你所要求的是不可能的 我能
  • 从 Java 运行 MATLAB 函数

    我在 MATLAB 中有一个 m 文件 我想从 Java 调用该文件 并以字符串或 Java 中的任何形式获取解决方案 这听起来很简单 但由于某种原因我无法让它发挥作用 我试过这个 matlab nosplash wait nodeskto
  • 从 imread 返回的 ndims

    我正在从文件夹中选取图像 尺寸为128 128 为此 我使用以下代码行 FileName PathName uigetfile jpg Select the Cover Image file fullfile PathName FileNa
  • MATLAB - GUI 和 OPC 服务器

    我想在 MATLAB 中设计一个图形用户界面 可以使用 MATLAB 的过程控制对象链接和嵌入 OPC 工具箱连续读取数据 我怎样才能实现这个 我已经设计了图形用户界面 但我无法将数据读入图形用户界面 就这样做 type opctoolMA
  • 使用 R2010b 中的符号工具箱来求解和/或 linsolve

    我前几天问了一个问题here https stackoverflow com questions 20317038 matlab linear congruence solver that supports a non prime modu
  • Matlab颜色检测

    我试图一致地检测同一场景的图像之间的某种颜色 这个想法是根据颜色配置文件识别一组对象 因此 例如 如果给我一个带有绿色球的场景 并且我选择绿色作为我的调色板的一部分 我想要一个具有反映它检测到球的矩阵的函数 任何人都可以为这个项目推荐一些
  • 动态调整自定义刻度数

    Taking SO 的一个例子 https stackoverflow com a 7139485 97160 我想根据当前视图调整轴刻度 这是默认行为 除非设置自定义的刻度数 下图展示了由此产生的行为 左侧是默认行为 右侧是带有自定义刻度
  • Eigen 中的元素最大值和正部分

    我想在特征中取两个向量 矩阵的元素最大值 到目前为止 我已经编写了这段代码 template
  • getappdata 在 MATLAB 中返回空矩阵

    我有一段代码 我在其中使用setappdata然后我使用以下方式调用数据getappdata即使它不为空 它也会返回一个空矩阵 我的一段简化代码如下 function edit1 Callback hObject eventdata han
  • 如何在向量中的所有点之间绘制线?

    我有一个包含二维空间中一些点的向量 我希望 MATLAB 用从每个点到每个其他点绘制的线来绘制这些点 基本上 我想要一个所有顶点都连接的图 你能用情节来做到这一点吗 如果可以 怎么做 一种解决方案是使用该函数为每个点组合创建一组索引MESH
  • Matlab 一个图上有多个图例 2014b

    我想在一个地块上有多个传说 该解决方案在 2014b 版本之前完美运行 我试图弄清楚如何使用手柄优雅地制作它 但到目前为止还没有成功 欢迎任何想法 2013b 的示例 x 1 50 y1 sin x 2 y2 cos x 2 f figur
  • 将标量添加到特征矩阵(向量)

    我刚刚开始使用 Eigen 库 无法理解如何向所有矩阵成员添加标量值 假设我有一个矩阵 Eigen Matrix3Xf mtx Eigen Matrix3Xf Ones 3 4 mtx mtx 1 main cxx 104 13 error
  • Matlab 图像数据的 hist 函数

    我是 Matlab 新手 我想制作自己的函数 与 imhist 显示图像数据的直方图 完成相同的工作 但我对此完全是新手 我不知道如何做开发这样的功能 我开始做一些东西 但它非常不完整 function output args myhist
  • 命令 A(~A) 在 matlab 中的真正作用是什么

    我一直在寻找找到矩阵非零最小值的最有效方法 并在论坛上找到了这个 设数据为矩阵A A A nan minNonZero min A 这是非常短且高效的 至少在代码行数方面 但我不明白当我们这样做时会发生什么 我找不到任何关于此的文档 因为它
  • Matlab的导入函数的范围是什么?

    我正在尝试将一些用 Matlab 编写的代码转换为独立的 编译的 Matlab 应用程序 然而 在出现一些奇怪的错误之后 我意识到代码大量使用了从路径中添加和删除的操作 以避免多次使用多个具有相同名称 但结果 计算不同 的函数这一事实 环顾
  • 获取向量幂的有效方法

    我编写了一个代码 在数值上使用勒让德多项式直至某个高 n 阶 例如 case 8 p 6435 x 8 12012 x 6 6930 x 4 1260 x 2 35 128 return case 9 如果向量x太长这会变得很慢 我发现说之

随机推荐

  • awk one lines

    From http www student northpark edu pemente awk awk1line txt HANDY ONE LINERS FOR AWK 22 July 2003 compiled by Eric Peme
  • PCL系列——拼接两个点云

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com PCL系列 PCL系列 读入PCD格式文件操作PCL系列 将点云数据写入PCD格式文件PCL系列 拼接两个点云PCL系列 从深
  • PCL系列——从深度图像(RangeImage)中提取NARF关键点

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com PCL系列 PCL系列 读入PCD格式文件操作PCL系列 将点云数据写入PCD格式文件PCL系列 拼接两个点云PCL系列 从深
  • PCL系列——如何可视化深度图像

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com PCL系列 PCL系列 读入PCD格式文件操作PCL系列 将点云数据写入PCD格式文件PCL系列 拼接两个点云PCL系列 从深
  • PCL系列——如何使用迭代最近点法(ICP)配准

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com PCL系列 PCL系列 读入PCD格式文件操作PCL系列 将点云数据写入PCD格式文件PCL系列 拼接两个点云PCL系列 从深
  • PCL系列——如何逐渐地配准一对点云

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com PCL系列 PCL系列 读入PCD格式文件操作PCL系列 将点云数据写入PCD格式文件PCL系列 拼接两个点云PCL系列 从深
  • PCL系列——三维重构之泊松重构

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com PCL系列 PCL系列 读入PCD格式文件操作PCL系列 将点云数据写入PCD格式文件PCL系列 拼接两个点云PCL系列 从深
  • PCL系列——三维重构之贪婪三角投影算法

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com PCL系列 PCL系列 读入PCD格式文件操作PCL系列 将点云数据写入PCD格式文件PCL系列 拼接两个点云PCL系列 从深
  • PCL系列——三维重构之移动立方体算法

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com PCL系列 PCL系列 读入PCD格式文件操作PCL系列 将点云数据写入PCD格式文件PCL系列 拼接两个点云PCL系列 从深
  • 解决Ubuntu中文显示为乱码

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com 1 安装所需软件 sudo apt get install zh autoconvert sudo apt get insta
  • hexo教程系列——hexo安装教程

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com 本文详细描述了如何在Github上 xff0c 使用hexo部署博客 安装Hexo 安装node js node js官方下载
  • Python中类成员函数均为虚函数的理解

    python中类成员函数均为虚函数 我们可以通过下面的函数见识其威力 class A def foo self print 39 a 39 class B A def foo self print 39 b 39 for x in A B
  • MxNet系列——Windows上安装MxNet

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com 开发环境 操作系统 xff1a Win7 64bit C 43 43 编译器 xff1a Visual Studio 2010
  • Eigen教程1 - 基础

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com 固定大小的矩阵和向量 参考链接 xff1a http eigen tuxfamily org dox 2 0 Tutorial
  • Eigen教程2 - 入门

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com 安装Eigen 无需安装 只需将Eigen位置添加到include路径中 Demo 1 MatrixXd xff0c X表示动
  • Eigen教程3 - 稀疏矩阵操作

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com 稀疏矩阵操作 操作和求解稀疏问题需要的模块 xff1a SparseCore SparseMatrix 和 SparseVec
  • Eigen教程4 - 稀疏矩阵快速参考指南

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com 本文对稀疏矩阵SparseMatrix的主要操作进行了总结 首先 xff0c 建议先阅读 Eigen教程2 稀疏矩阵操作 关于
  • Eigen教程5 - 求解稀疏线性方程组

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com Eigen中有一些求解稀疏系数矩阵的线性方程组 由于稀疏矩阵的特殊的表示方式 xff0c 因此获得较好的性能需要格外注意 查看
  • Eigen教程6 - Matrix-free solvers

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com Matrix free solvers 像ConjugateGradient 和 BiCGSTAB这样的迭代求解器可以用在 m
  • Eigen教程7 - Eigen和Matlab的比较

    博客新址 http blog xuezhisd top 邮箱 xff1a xuezhisd 64 126 com Eigen和Matlab比较 参考 http eigen tuxfamily org dox AsciiQuickRefere