uCOS-II任务间通信之信号量 [转载]

2023-05-16

uCOS-II任务间通信之信号量
信号量是什么?信号量有什么用?
信号量是可以用来表示一个或多个事件的发生,还可以用来对共享资源的访问。
uCOS-II提供了5个对信号量进行操作的函数。如下所示:
1. 建立一个信号量 -- OSSemCreate()
2. 等待一个信号量 -- OSSemPend()
3. 发送一个信号量 -- OSSemPost()
4. 无等待地请求一个信号量 -- OSSemAccept()
5. 查询一个信号量的当前状态 -- OSSemQuery()

OSSemCreate()的实现代码如下:

OS_EVENT *OSSemCreate (INT16U cnt)
{
    OS_EVENT *pevent;
 
    OS_ENTER_CRITICAL();
    pevent = OSEventFreeList;                                          //(1)
    if (OSEventFreeList != (OS_EVENT *)0) {                            //(2)
        OSEventFreeList = (OS_EVENT *)OSEventFreeList->OSEventPtr;
    }
    OS_EXIT_CRITICAL();
    if (pevent != (OS_EVENT *)0) {                                     //(3)
        pevent->OSEventType = OS_EVENT_TYPE_SEM;                       //(4)
        pevent->OSEventCnt  = cnt;                                     //(5)
        OSEventWaitListInit(pevent);                                   //(6)
    }
    return (pevent);                                                   //(7)
}

在MCU看来,创建一个信号量就是申请一个事件控制块,接着初始化这个事件控制块。
首先,它从空闲任务控制块链表中得到一个事件控制块(1),并对空闲事件控制链表的指针进行适当的调整,使它指向下一个空闲的事件控制块(2)。如果这时有任务控制块可用(3),就将该任务控制块的事件类型设置成信号量OS_EVENT_TYPE_SEM(4)。其它的信号量操作函数OSSem???()通过检查该域来保证所操作的任务控制块类型的正确。例如,这可以防止调用OSSemPost()函数对一个用作邮箱的任务控制块进行操作。
接着,用信号量的初始值对任务控制块进行初始化(5)(如果信号量是用来表示一个或者多个事件的发生,那么该信号量的初始值应设为0,如果信号量是用于对共享资源的访问,那么该信号量的初始值应设为1,并调用OSEventWaitListInit()函数对事件控制任务控制块的等待任务列表进行初始化(6)。因为信号量正在被初始化,所以这时没有任何任务等待该信号量。
最后,OSSemCreate()返回给调用函数一个指向任务控制块的指针。以后对信号量的所有操作,如OSSemPend(), OSSemPost(), OSSemAccept()和OSSemQuery()都是通过该指针完成的。因此,这个指针实际上就是该信号量的句柄。如果系统中没有可用的任务控制块,OSSemCreate()将返回一个NULL指针。
创建好一个信号之后,可以调用OSSemQuery()查询一个信号的状态。该函数有两个参数:一个是指向信号量对应事件控制块的指针pevent,另一个是指向用于记录信号量信息的数据结构OS_SEM_DATA。
简单来说就是把信号量对应的事件控制块的信息复制到数据结构OS_SEM_DATA。

OSSemQuery()程序代码如下:

INT8U OSSemQuery (OS_EVENT *pevent, OS_SEM_DATA *pdata)
{
    INT8U  i;
    INT8U *psrc;
    INT8U *pdest;
 
    OS_ENTER_CRITICAL();
    if (pevent->OSEventType != OS_EVENT_TYPE_SEM) {       //(1)
        OS_EXIT_CRITICAL();
        return (OS_ERR_EVENT_TYPE);
    }
    pdata->OSEventGrp = pevent->OSEventGrp;               //(2)
    psrc              = &pevent->OSEventTbl[0];
    pdest             = &pdata->OSEventTbl[0];
    for (i = 0; i < OS_EVENT_TBL_SIZE; i++) {
        *pdest++ = *psrc++;
    }
    pdata->OSCnt      = pevent->OSEventCnt;               //(3)
    OS_EXIT_CRITICAL();
    return (OS_NO_ERR);
}


当我们创建好了信号量之后,就可以使用信号量了。使用信号量需要调用OSSemPost()和OSSemPend()。关于具体怎么使用信号量,就得先看看这两个系统函数的代码。
先看等待信号量OSSemPend()的代码:

void OSSemPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
{
    OS_ENTER_CRITICAL();
    if (pevent->OSEventType != OS_EVENT_TYPE_SEM) {           //(1)
        OS_EXIT_CRITICAL();
        *err = OS_ERR_EVENT_TYPE;
    }
    if (pevent->OSEventCnt > 0) {                             //(2)
        pevent->OSEventCnt--;                                 //(3)
        OS_EXIT_CRITICAL();
        *err = OS_NO_ERR;
    } else if (OSIntNesting > 0) {                            //(4)
        OS_EXIT_CRITICAL();
        *err = OS_ERR_PEND_ISR;
    } else {
        OSTCBCur->OSTCBStat    |= OS_STAT_SEM;                //(5)
        OSTCBCur->OSTCBDly      = timeout;                    //(6)
        OSEventTaskWait(pevent);                              //(7)
        OS_EXIT_CRITICAL();
        OSSched();                                            //(8)
        OS_ENTER_CRITICAL();
        if (OSTCBCur->OSTCBStat & OS_STAT_SEM) {              //(9)
            OSEventTO(pevent);                                //(10)
            OS_EXIT_CRITICAL();
            *err = OS_TIMEOUT;
        } else {
            OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0;          //(11)
            OS_EXIT_CRITICAL();
            *err = OS_NO_ERR;
        }
    }
}

在MCU看来,这么多代码就是做了一个重要的事情:就是将任务控制块中的状态标志.OSTCBStat置1,也就是把任务置于睡眠状态。这样任务就处于等待信号量来激活任务的状态了。可以这样理解,当任务等待一个信号量的时候,任务是被挂起了,需要等待发送信号量来激活。
下面具体分析下代码的实现过程。
首先检查指针pevent所指的任务控制块是否是由OSSemCreate()建立的(1)。如果信号量当前是可用的(信号量的计数值大于0)(2),将信号量的计数值减1 (3),然后函数将“无错”错误代码返回给它的调用函数。显然,如果正在等待信号量,这时的输出正是我们所希望的,也是运行OSSemPend()函数最快的路径。
如果此时信号量无效(计数器的值是0),OSSemPend()函数要进一步检查它的调用函数是不是中断服务子程序(4)。在正常情况下,中断服务子程序是不会调用OSSemPend()函数的。这里加入这些代码,只是为了以防万一。当然,在信号量有效的情况下,即使是中断服务子程序调用的OSSemPend(),函数也会成功返回,不会出任何错误。
OSSemPend()函数通过将任务控制块中的状态标志.OSTCBStat置1,把任务置于睡眠状态(5),等待时间也同时置入任务控制块中(6),该值在OSTimeTick()函数中被逐次递减。注意,OSTimeTick()函数对每个任务的任务控制块的.OSTCBDly域做递减操作(只要该域不为0)。真正将任务置入睡眠状态的操作在OSEventTaskWait()函数中执行(7)。
因为当前任务已经不是就绪态了,所以任务调度函数将下一个最高优先级的任务调入,准备运行(8)。当信号量有效或者等待时间到后,调用OSSemPend()函数的任务将再一次成为最高优先级任务。这时OSSched()函数返回。这之后,OSSemPend()要检查任务控制块中的状态标志,看该任务是否仍处于等待信号量的状态(9)。如果是,说明该任务还没有被OSSemPost()函数发出的信号量唤醒。事实上,该任务是因为等待超时而由TimeTick()函数把它置为就绪状态的。这种情况下,OSSemPend()函数调用OSEventTO()函数将任务从等待任务列表中删除(10),并返回给它的调用任务一个“超时”的错误代码。如果任务的任务控制块中的OS_STAT_SEM标志位没有置位,就认为调用OSSemPend()的任务已经得到了该信号量,将指向信号量ECB的指针从该任务的任务控制块中删除,并返回给调用函数一个“无错”的错误代码(11)。


接下来看下发送信号量的代码:

INT8U OSSemPost (OS_EVENT *pevent)
{
    OS_ENTER_CRITICAL();
    if (pevent->OSEventType != OS_EVENT_TYPE_SEM) {              //(1)
        OS_EXIT_CRITICAL();
        return (OS_ERR_EVENT_TYPE);
    }
    if (pevent->OSEventGrp) {                                    //(2)
        OSEventTaskRdy(pevent, (void *)0, OS_STAT_SEM);          //(3)
        OS_EXIT_CRITICAL();
        OSSched();                                               //(4)
        return (OS_NO_ERR);
    } else {
        if (pevent->OSEventCnt < 65535) {
            pevent->OSEventCnt++;                                //(5)
            OS_EXIT_CRITICAL();
            return (OS_NO_ERR);
        } else {
            OS_EXIT_CRITICAL();
            return (OS_SEM_OVF);
        }
    }
}

理解了等待信号量函数的源码后理解发送信号量函数的源码也就很容易了。
以上源码的作用简单来说就是查找有没有任务在等待这个信号量,如果有,就把该任务从睡眠态拉回就绪态。
首先检查参数指针pevent指向的任务控制块是否是OSSemCreate()函数建立的(1),接着检查是否有任务在等待该信号量(2)。如果该任务控制块中的.OSEventGrp域不是0,说明有任务正在等待该信号量。这时,就要调用函数OSEventTaskRdy(),把其中的最高优先级任务从等待任务列表中删除(3)并使它进入就绪状态。然后,调用OSSched()任务调度函数检查该任务是否是系统中的最高优先级的就绪任务(4)。如果是,这时就要进行任务切换[当OSSemPost()函数是在任务中调用的],准备执行该就绪任务。如果不是,OSSched()直接返回,调用OSSemPost()的任务得以继续执行。如果这时没有任务在等待该信号量,该信号量的计数值就简单地加1 (5)。


本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

uCOS-II任务间通信之信号量 [转载] 的相关文章

  • freertos和ucos的区别

    一 freeRTOS比uCOS II优胜的地方 xff1a 1 内核ROM和耗费RAM都比uCOS 小 xff0c 特别是RAM 这在单片机里面是稀缺资源 xff0c uCOS至少要5K以上 xff0c 而freeOS用2 3K也可以跑的很
  • linux与freertos区别,谈谈uCOS和freeRTOS这两种实时系统的结构以及编程思想

    距离上次总结 xff0c 已经过去有差不多半年了 xff0c 最近又到了自己半年一次的总结了 首先说说自己的编程风格的变化 xff0c 在上一篇 第三篇文 中提到的数据结构 配置文件结构 预编译结构 xff0c 目前已经逐渐适应 xff0c
  • 白话----之UCOS 信号量和邮箱

    总体理解 xff1a 两个任务需要共同访问一个共同的资源 xff0c 来切换或跳到不同的动作执行 这就产生信号量 两个任务 需要根据不同的按键选择 xff0c 来执行不同的动作 xff0c 产生邮箱 信号量和邮箱 我通过一个例子来学习的 希
  • 推荐ucos-II 3本参考书 经典

    在这里给大家推荐三本学习ucos的必看书籍 1 xff08 比较难买 xff09 嵌入式实时操作系统uc os II教程 西安电子科技大学出版 这本书对UCOS的源代码分析的非常清楚 比作者原著 在某种程度上要好 xff0c 这本书对关键的
  • uCOS-II任务间通信之信号量 [转载]

    uCOS II任务间通信之信号量 信号量是什么 xff1f 信号量有什么用 xff1f 信号量是可以用来表示一个或多个事件的发生 xff0c 还可以用来对共享资源的访问 uCOS II提供了5个对信号量进行操作的函数 如下所示 xff1a
  • 一步一步教你使用uCOS-II

    第一篇 UCOS介绍 第一篇 UCOS介绍 这个大家都知道 呵呵 考虑到咱们学习的完整性还是在这里唠叨一下 让大家再熟悉一下 高手们忍耐一下吧 xff01 uC OS II Micro Control Operation System Tw
  • STM32之RTOS:uCOS和FreeRTOS

    RTOS全称是 Real Time Operating System xff0c 中文就是实时操作系统 RTOS是指一类系统 xff0c 如 uC OS xff0c FreeRTOS xff0c RTX xff0c RT Thread 等
  • uCOS消息队列相关函数的理解

    OSQCreate xff1a 创建消息队列函数 有四个入口参数 xff1a 消息队列指针 xff1b 消息队列名称 xff1b 消息队列大小 xff08 不能为0 xff09 xff1b 返回错误类型 函数过程 xff1a 首先进行安全检
  • uCOS任务信号量相关函数代码理解

    强调任务信号量思想 xff1a 任务信号量只是一个标志 xff0c 获取成功就是指把信号量计数值减1 xff1b 释放就是指把信号量计数值加1 xff08 溢出则计数值不变 xff09 获取信号量需要判断信号量是否可用 xff08 大于0
  • Huawei LiteOS与freeRTOS、Ucos主流嵌入式操作内核的区别

    LiteOS与freeRTOS Ucos主流嵌入式操作内核的区别 云社区 华为云
  • UCOS II 中信号量的使用

    UCOS II 中信号量的使用 UCOS II 中信号量的使用1 声明信号量2 创建信号量3 请求信号量4 发送信号量5 删除信号量 UCOS II 中信号量的使用 1 声明信号量 例如 xff1a OS EVENT Fun semp 声明
  • uCos中的信号量机制

    文章目录 1 背景2 概述2 1 主要机制及应用2 2 同步或通信的基本方式 3 信号量3 1 主要机制及应用3 2 分类3 3 互斥信号量3 3 1 嵌套 递归 资源访问3 3 2 删除安全 3 4 各种互斥机制的比较3 5 二值信号量3
  • UCOS学习(三)——任务管理基础

    大家好哇 xff01 我是小光 xff0c 嵌入式爱好者 xff0c 一个想要成为系统架构师的大二学生 最近开始学习UCOS操作系统 xff0c 后面会更新一些关于UCOS学习笔记 今天学习了任务管理基础知识 感谢你的阅读 xff0c 不对
  • ucos信号量集

    事件标志组 信号量集 的使用 xff1a span class token keyword static span OS STK task testled span class token punctuation span STARTUP
  • ucos源码分析(一)

    时间 2018 01 27 本人目前是大三学生 电子信息工程专业 xff0c 在大学前俩年的时间 xff0c 一直在使用和学习单片机 xff0c 不过也仅仅是从 xff15 xff11 到 xff13 xff12 xff0c 马上要面临就业
  • ucos OSTimeDly

    来源 xff1a http blog sina com cn s blog 5f9b3de40100e182 html OSTimeDly 在Task中 xff0c 一般执行一段时间之后调用OSTimeDly推迟一段时间再继续运行 xff0
  • UCOS2的文件目录

    想着闲着也是闲着 把之前学习ucos2源码的笔记整理一下 复盘一次 总结内容将其写为博客作为学习的输出 一 为什么要学RTOS或者IOTOS 我在大一时 开始进入实验室接触单片机 摸爬滚打的参加了几次比赛 也因此入了嵌入式的坑 大三时开始思
  • ucos2-cpu_c.c-位带操作

    在uC CPU ARM Cortex M3 cpu c c中有两个位带访问的函数 使用位带访问技术来对内存或外设地址addr中的第bit nbr位进行清零操作 void CPU BitBandClr CPU ADDR addr CPU IN
  • ucos-ii嵌入式操作系统任务调度(一)----任务调度的过程及实现原理

    先给自己打个广告 本人的微信公众号正式上线了 搜索 张笑生的地盘 主要关注嵌入式软件开发 股票基金定投 足球等等 希望大家多多关注 有问题可以直接留言给我 一定尽心尽力回答大家的问题 二维码如下 一 概念 在单片机裸机程序中 我们以函数为最
  • Micriμm μC/OS-III RTOS 中的分配和释放

    我们使用 Micrium 的 C OS III RTOS 和 Renesas 的 RX62N 我们构建了一个必须动态分配和释放数据的系统 我们发现了功能malloc and free 与 RTOS 配合得不好 然而 RTOS 为此提供了一个

随机推荐

  • TortoiseSVN使用教程[多图超详细]

    安装及下载client 端 下载Windows 端程序 xff1a http tortoisesvn net downloads 一般而言 xff0c 如果是32 bit的Windows XP 应该使用TortoiseSVN 1 4 x x
  • 将UIColor转换为RGB值

    objc view plain copy 将UIColor转换为RGB值 NSMutableArray changeUIColorToRGB UIColor color NSMutableArray RGBStrValueArr 61 NS
  • 业余时间你在做什么,你就会变成什么样的人?

    改变 xff0c 从业余时间开始 博客定位 xff1a 技术 43 思考 其余统统不要 2017 xff0c 我来了 xff01
  • Xcode9 无证书真机调试

    写在前面 公司分配了新的测试机 证书99台名额已满 所以上网找教程 学习了一下如何使用Xcode无证书进行真机调试 一 创建证书 1 运行Xcode xff0c Xcode Preference 添加账号 xff08 能在appstore下
  • CSP考试复习:第一单元 C++语言基础 1.1 程序结构

    第一单元 C 43 43 语言基础 1 1 程序结构 1 程序框架 注释 xff1a 注释有两种 xff0c 一种是 xff0c 另一种是 必须单独放置一行 xff0c 或代码所在行 的后面 xff1b 而 成对存在 xff0c 可以插入到
  • Intel Realsense T265开箱测试

    前言 xff1a 最近因为要做VIO xff0c 在实验室蹭到一个Realsense T265来用 xff0c 仅此记录下简单测试过程 xff08 官方文档写非常清楚 xff0c 建议详细阅读 xff0c 链接 xff1a https gi
  • posix thread介绍

    xfeff xfeff posix thread是 操作系统级 xff08 OS level xff09 的API规范 xff0c 主要用来定义线程及线程间同步的相关操作 xff0c 采用C语言定义 posix规范主要在unix like类
  • PX4飞控之自主起飞Takeoff控制逻辑

    本文主要以PX4飞控1 5 5版本为例 xff0c 介绍Navigator中自主起飞 xff08 Takeoff xff09 算法控制逻辑 注 xff1a mission任务中的自主起飞与此模块不同 Takeoff与导航中的其他模块类似 x
  • PX4飞控之导航及任务架构

    本文重点介绍PX4飞控的Navigator和mission控制框架和逻辑 Navigator导航部分是无人机自主飞行控制的核心所在 xff0c 其中包括自主起飞 自主降落 自主返航 自主任务以及GPS失效保护等各个部分 搞懂这个部分有助于理
  • PX4飞控之位置控制(1)整体架构

    位置控制是无人机飞控的核心算法之一 xff0c 一方面根据commander中的flag标志位和Navigator中提供的航点信息进行控制 xff08 自主模式下 xff09 xff0c 另一方面得到期望姿态角 xff08 setpoint
  • spring整合ehcache找不到org.springframework.cache.ehcache.EhCacheCacheManager的解决方案

    一般org springframework cache ehcache EhCacheCacheManager和org springframework cache ehcache EhCacheManagerFactoryBean会同时找不
  • CC3200之GPIO引脚分析

    预备知识 xff1a xff08 1 xff09 volatile关键字 xff1a volatile定义的变量一般为无需开发者自己赋值 xff0c 会自动改变的变量 在普通的程序中 xff0c 编译器都具有优化功能 xff0c 为了避免浪
  • OpenStack 之 OVS介绍

    一 概述 Open vSwitch的官方定义 xff1a Open vSwitch是一个具有工业级质量的多层虚拟交换机 通过可编程扩展 xff0c 可以实现大规模网络的自动化 xff08 配置 管理 维护 xff09 它支持现有标准管理接口
  • OVN是OVS 5倍的性能--性能测试报告

    我们已经对OVN做了许多次的性能测试 xff0c 但是缺少一个OVN和 xff08 ML2 43 OVS xff09 的性能对比测试 我和许多人一起对比了这2种后端 本文是第一部分 xff1a 控制平面的性能对比 后面会另外发文公布数据平面
  • OpenStack 中的5种分配IPv6地址的方式

    在OpenStack Pike版本中创建IPv6子网时 xff0c 有五种设置地址方式供选择 上图中这五种方式显示不全 xff0c 现将其全部展示 No options specified xff08 Default xff09 xff0c
  • STM32 | TCP通信实例分析

    1024G 嵌入式资源大放送 xff01 包括但不限于C C 43 43 单片机 Linux等 关注微信公众号 嵌入式大杂烩 xff0c 回复1024 xff0c 即可免费获取 xff01 前言 关于socket的笔记 xff0c 之前已经
  • RT-Thread和Freertos的区别?

    关注 嵌入式大杂烩 xff0c 选择 星标公众号 一起进步 xff01 Freertos是一个国外推出的一个迷你的实时操作系统内核 xff0c 开源 xff0c 功能包括 xff1a 任务管理 时间管理 信号量 消息队列 内存管理 记录功能
  • C语言 | 函数指针作为函数的参数

    1024G 嵌入式资源大放送 xff01 包括但不限于C C 43 43 单片机 Linux等 关注微信公众号 嵌入式大杂烩 xff0c 回复1024 xff0c 即可免费获取 xff01 函数指针有两种常用的用法 xff0c 一种是作为结
  • 解析I2C通信协议

    一 I2C的概念 1 I2C总线是PHLIPS公司推出的一种串行总线 xff0c I2C总线只有两根双向信号线 其中一根是数据线SDA xff0c 另一根是时钟线SCL 2 每个接到I2C总线上的器件都有唯一的地址 发送数据到总线上的称为发
  • uCOS-II任务间通信之信号量 [转载]

    uCOS II任务间通信之信号量 信号量是什么 xff1f 信号量有什么用 xff1f 信号量是可以用来表示一个或多个事件的发生 xff0c 还可以用来对共享资源的访问 uCOS II提供了5个对信号量进行操作的函数 如下所示 xff1a