Linux下调试段错误的方法[Segmentation Fault]--GDB

2023-05-16

原文

1、段错误是什么?

段错误是指访问的内存超出了系统给这个程序所设定的内存空间,例如访问了不存在的内存地址、访问了系统保护的内存地址、访问了只读的内存地址等等情况。


A segmentation fault (often shortened to segfault) is a particular error condition that can occur during the operation of computer software. In short, a segmentation fault occurs when a program attempts to access a memory location that it is not allowed to access, or attempts to access a memory location in a way that is not allowed (e.g., attempts to write to a read-only location, or to overwrite part of the operating system). Systems based on processors like the Motorola 68000 tend to refer to these events as Address or Bus errors.

Segmentation is one approach to memory management and protection in the operating system. It has been superseded by paging for most purposes, but much of the terminology of segmentation is still used, "segmentation fault" being an example. Some operating systems still have segmentation at some logical level although paging is used as the main memory management policy.

On Unix-like operating systems, a process that accesses invalid memory receives the SIGSEGV signal. On Microsoft Windows, a process that accesses invalid memory receives the STATUS_ACCESS_VIOLATION exception.  

2、段错误产生的原因:

2.1 访问不存在的内存地址

#include<stdio.h>
#include<stdlib.h>
void main()
{
        int *ptr = NULL;
        *ptr = 0;
}

2.2 访问系统保护的内存地址

#include<stdio.h>
#include<stdlib.h>
void main()
{
        int *ptr = (int *)0;
        *ptr = 100;
}

2.3 访问只读的内存地址

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
void main()
{
        char *ptr = "test";
        strcpy(ptr, "TEST");
}

2.4 栈溢出

#include<stdio.h>
#include<stdlib.h>
void main()
{
        main();
}

3. 段错误信息的获取

3.1 dmesg

dmesg可以在应用程序crash掉时,显示内核中保存的相关信息。如下所示,通过dmesg命令可以查看发生段错误的程序名称、引起段错误发生的内存地址、指令指针地址、堆栈指针地址、错误代码、错误原因等。以程序2.3为例:

panfeng@ubuntu:~/segfault$ dmesg
[ 2329.479037] segfault3[2700]: segfault at 80484e0 ip 00d2906a sp bfbbec3c error 7 in libc-2.10.1.so[cb4000+13e000]  

3.2 -g

使用gcc编译程序的源码时,加上-g参数,这样可以使得生成的二进制文件中加入可以用于gdb调试的有用信息。以程序2.3为例:

panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c  

3.3 nm

使用nm命令列出二进制文件中的符号表,包括符号地址、符号类型、符号名等,这样可以帮助定位在哪里发生了段错误。以程序2.3为例:
panfeng@ubuntu:~/segfault$ nm segfault3
08049f20 d _DYNAMIC
08049ff4 d _GLOBAL_OFFSET_TABLE_
080484dc R _IO_stdin_used
         w _Jv_RegisterClasses
08049f10 d __CTOR_END__
08049f0c d __CTOR_LIST__
08049f18 D __DTOR_END__
08049f14 d __DTOR_LIST__
080484ec r __FRAME_END__
08049f1c d __JCR_END__
08049f1c d __JCR_LIST__
0804a014 A __bss_start
0804a00c D __data_start
t __do_global_ctors_aux
t __do_global_dtors_aux
0804a010 D __dso_handle
         w __gmon_start__
0804848a T __i686.get_pc_thunk.bx
08049f0c d __init_array_end
08049f0c d __init_array_start
T __libc_csu_fini
T __libc_csu_init
         U __libc_start_main@@GLIBC_2.0
0804a014 A _edata
0804a01c A _end
080484bc T _fini
080484d8 R _fp_hw
080482bc T _init
T _start
0804a014 b completed.6990
0804a00c W data_start
0804a018 b dtor_idx.6992
080483c0 t frame_dummy
080483e4 T main
         U memcpy@@GLIBC_2.0

3.4 ldd

使用ldd命令查看二进制程序的共享链接库依赖,包括库的名称、起始地址,这样可以确定段错误到底是发生在了自己的程序中还是依赖的共享库中。以程序2.3为例:

panfeng@ubuntu:~/segfault$ ldd ./segfault3
    linux-gate.so.1 =>  (0x00e08000)
    libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0x00675000)
    /lib/ld-linux.so.2 (0x00482000)  

4. 段错误的调试方法

4.1 使用printf输出信息

这个是看似最简单但往往很多情况下十分有效的调试方式,也许可以说是程序员用的最多的调试方式。简单来说,就是在程序的重要代码附近加上像printf这类输出信息,这样可以跟踪并打印出段错误在代码中可能出现的位置。为了方便使用这种方法,可以使用条件编译指令#ifdef DEBUG和#endif把printf函数包起来。这样在程序编译时,如果加上-DDEBUG参数就能查看调试信息;否则不加该参数就不会显示调试信息。

4.2 使用gcc和gdb

4.2.1 调试步骤

1、为了能够使用gdb调试程序,在编译阶段加上-g参数,以程序2.3为例:

panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c  
2、使用gdb命令调试程序:


panfeng@ubuntu:~/segfault$ gdb ./segfault3 
GNU gdb (GDB) 7.0-ubuntu
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "i486-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/panfeng/segfault/segfault3...done.
(gdb)   
3、进入gdb后,运行程序:


(gdb) run
Starting program: /home/panfeng/segfault/segfault3 

Program received signal SIGSEGV, Segmentation fault.
0x001a306a in memcpy () from /lib/tls/i686/cmov/libc.so.6
(gdb)   
从输出看出,程序2.3收到SIGSEGV信号,触发段错误,并提示地址0x001a306a、调用memcpy报的错,位于/lib/tls/i686/cmov/libc.so.6库中

4、完成调试后,输入quit命令退出gdb:


(gdb) quit
A debugging session is active.

    Inferior 1 [process 3207] will be killed.

Quit anyway? (y or n) y  

4.2.2 适用场景

1、仅当能确定程序一定会发生段错误的情况下使用。

2、当程序的源码可以获得的情况下,使用-g参数编译程序。

3、一般用于测试阶段,生产环境下gdb会有副作用:使程序运行减慢,运行不够稳定,等等。

4、即使在测试阶段,如果程序过于复杂,gdb也不能处理。

4.3 使用core文件和gdb

在4.2节中提到段错误会触发SIGSEGV信号,通过man 7 signal,可以看到SIGSEGV默认的handler会打印段错误出错信息,并产生core文件,由此我们可以借助于程序异常退出时生成的core文件中的调试信息,使用gdb工具来调试程序中的段错误。

4.3.1 调试步骤

1、在一些Linux版本下,默认是不产生core文件的,首先可以查看一下系统core文件的大小限制:


panfeng@ubuntu:~/segfault$ ulimit -c
0  

2、可以看到默认设置情况下,本机Linux环境下发生段错误时不会自动生成core文件,下面设置下core文件的大小限制(单位为KB):


panfeng@ubuntu:~/segfault$ ulimit -c 1024
panfeng@ubuntu:~/segfault$ ulimit -c
1024  

3、运行程序2.3,发生段错误生成core文件:


panfeng@ubuntu:~/segfault$ ./segfault3
段错误 (core dumped)  

4、加载core文件,使用gdb工具进行调试:


panfeng@ubuntu:~/segfault$ gdb ./segfault3 ./core 
GNU gdb (GDB) 7.0-ubuntu
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "i486-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/panfeng/segfault/segfault3...done.

warning: Can't read pathname for load map: 输入/输出错误.
Reading symbols from /lib/tls/i686/cmov/libc.so.6...(no debugging symbols found)...done.
Loaded symbols for /lib/tls/i686/cmov/libc.so.6
Reading symbols from /lib/ld-linux.so.2...(no debugging symbols found)...done.
Loaded symbols for /lib/ld-linux.so.2
Core was generated by `./segfault3'.
Program terminated with signal 11, Segmentation fault.
#0  0x0018506a in memcpy () from /lib/tls/i686/cmov/libc.6  

从输出看出,同4.2.1中一样的段错误信息。

5、完成调试后,输入quit命令退出gdb:


(gdb) quit  

4.3.2 适用场景

1、适合于在实际生成环境下调试程序的段错误(即在不用重新发生段错误的情况下重现段错误)。

2、当程序很复杂,core文件相当大时,该方法不可用。

4.4 使用objdump

4.4.1 调试步骤

1、使用dmesg命令,找到最近发生的段错误输出信息:


panfeng@ubuntu:~/segfault$ dmesg
... ...
[17257.502808] segfault3[3320]: segfault at 80484e0 ip 0018506a sp bfc1cd6c error 7 in libc-2.10.1.so[110000+13e000]  

其中,对我们接下来的调试过程有用的是发生段错误的地址:80484e0和指令指针地址:0018506a。

2、使用objdump生成二进制的相关信息,重定向到文件中:


panfeng@ubuntu:~/segfault$ objdump -d ./segfault3 > segfault3Dump  

其中,生成的segfault3Dump文件中包含了二进制文件的segfault3的汇编代码。

3、在segfault3Dump文件中查找发生段错误的地址:


panfeng@ubuntu:~/segfault$ grep -n -A 10 -B 10 "80484e0" ./segfault3Dump 
121- 80483df:    ff d0                    call   *%eax
122- 80483e1:    c9                       leave  
123- 80483e2:    c3                       ret    
124- 80483e3:    90                       nop
125-
126-080483e4 <main>:
127- 80483e4:    55                       push   %ebp
128- 80483e5:    89 e5                    mov    %esp,%ebp
129- 80483e7:    83 e4 f0                 and    $0xfffffff0,%esp
130- 80483ea:    83 ec 20                 sub    $0x20,%esp
131: 80483ed:    c7 44 24 1c e0 84 04     movl   $0x80484e0,0x1c(%esp)
132- 80483f4:    08 
133- 80483f5:    b8 e5 84 04 08           mov    $0x80484e5,%eax
134- 80483fa:    c7 44 24 08 05 00 00     movl   $0x5,0x8(%esp)
135- 8048401:    00 
136- 8048402:    89 44 24 04              mov    %eax,0x4(%esp)
137- 8048406:    8b 44 24 1c              mov    0x1c(%esp),%eax
138- 804840a:    89 04 24                 mov    %eax,(%esp)
139- 804840d:    e8 0a ff ff ff           call   804831c <memcpy@plt>
140- 8048412:    c9                       leave  
141- 8048413:    c3                       ret      

通过对以上汇编代码分析,得知段错误发生main函数,对应的汇编指令是movl $0x80484e0,0x1c(%esp),接下来打开程序的源码,找到汇编指令对应的源码,也就定位到段错误了。

4.4.2 适用场景

1、不需要-g参数编译,不需要借助于core文件,但需要有一定的汇编语言基础。

2、如果使用了gcc编译优化参数(-O1,-O2,-O3)的话,生成的汇编指令将会被优化,使得调试过程有些难度。

4.5 使用catchsegv

catchsegv命令专门用来扑获段错误,它通过动态加载器(ld-linux.so)的预加载机制(PRELOAD)把一个事先写好的库(/lib/libSegFault.so)加载上,用于捕捉断错误的出错信息。


panfeng@ubuntu:~/segfault$ catchsegv ./segfault3
Segmentation fault (core dumped)
*** Segmentation fault
Register dump:

 EAX: 00000000   EBX: 00fb3ff4   ECX: 00000002   EDX: 00000000
 ESI: 080484e5   EDI: 080484e0   EBP: bfb7ad38   ESP: bfb7ad0c

 EIP: 00ee806a   EFLAGS: 00010203

 CS: 0073   DS: 007b   ES: 007b   FS: 0000   GS: 0033   SS: 007b

 Trap: 0000000e   Error: 00000007   OldMask: 00000000
 ESP/signal: bfb7ad0c   CR2: 080484e0

Backtrace:
/lib/libSegFault.so[0x3b606f]
??:0(??)[0xc76400]
/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xe6)[0xe89b56]
/build/buildd/eglibc-2.10.1/csu/../sysdeps/i386/elf/start.S:122(_start)[0x8048351]

Memory map:

00258000-00273000 r-xp 00000000 08:01 157 /lib/ld-2.10.1.so
00273000-00274000 r--p 0001a000 08:01 157 /lib/ld-2.10.1.so
00274000-00275000 rw-p 0001b000 08:01 157 /lib/ld-2.10.1.so
003b4000-003b7000 r-xp 00000000 08:01 13105 /lib/libSegFault.so
003b7000-003b8000 r--p 00002000 08:01 13105 /lib/libSegFault.so
003b8000-003b9000 rw-p 00003000 08:01 13105 /lib/libSegFault.so
00c76000-00c77000 r-xp 00000000 00:00 0 [vdso]
00e0d000-00e29000 r-xp 00000000 08:01 4817 /lib/libgcc_s.so.1
00e29000-00e2a000 r--p 0001b000 08:01 4817 /lib/libgcc_s.so.1
00e2a000-00e2b000 rw-p 0001c000 08:01 4817 /lib/libgcc_s.so.1
00e73000-00fb1000 r-xp 00000000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb1000-00fb2000 ---p 0013e000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb2000-00fb4000 r--p 0013e000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb4000-00fb5000 rw-p 00140000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb5000-00fb8000 rw-p 00000000 00:00 0
08048000-08049000 r-xp 00000000 08:01 303895 /home/panfeng/segfault/segfault3
08049000-0804a000 r--p 00000000 08:01 303895 /home/panfeng/segfault/segfault3
0804a000-0804b000 rw-p 00001000 08:01 303895 /home/panfeng/segfault/segfault3
09432000-09457000 rw-p 00000000 00:00 0 [heap]
b78cf000-b78d1000 rw-p 00000000 00:00 0
b78df000-b78e1000 rw-p 00000000 00:00 0
bfb67000-bfb7c000 rw-p 00000000 00:00 0 [stack]  

5. 一些注意事项

1、出现段错误时,首先应该想到段错误的定义,从它出发考虑引发错误的原因。

2、在使用指针时,定义了指针后记得初始化指针,在使用的时候记得判断是否为NULL。

3、在使用数组时,注意数组是否被初始化,数组下标是否越界,数组元素是否存在等。

4、在访问变量时,注意变量所占地址空间是否已经被程序释放掉。

5、在处理变量时,注意变量的格式控制是否合理等。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Linux下调试段错误的方法[Segmentation Fault]--GDB 的相关文章

随机推荐

  • Ubuntu删除root密码

    想让root恢复成初始时候一样 xff1a 没有密码 xff1b 切换root账号输入密码错误 xff1b 使用下面的命令 xff1a 删除root账号密码 sudo passwd d root 锁定root账号 sudo passwd l
  • 指针+1的问题

    指针 43 1 并不是指针代表的地址值 43 1 指针变量加1 xff0c 即向后移动1 个位置表示指针变量指向下一个数据元素的首地址 而不是在原地址基础上加1 至于真实的地址加了多少 xff0c 要看原来指针指向的数据类型是什么 char
  • 手把手带你学习Spring框架

    一 介绍Spring框架 1 1学习Spring框架的原因 企业级应用是指那些为商业组织 xff0c 大型企业而创建并部署的解决方案 这些大型企业级应用的结构复杂 xff0c 涉及的外部资源众多 xff0c 事务密集 xff0c 数据规模大
  • Typora+Gitee+PicGo实现markdown图片自动插入

    Typora 43 Gitee 43 PicGo实现markdown图片自动插入 文章目录 Typora 43 Gitee 43 PicGo实现markdown图片自动插入写到前面效果展示搭建步骤下载并安装Picgo安装node js创建g
  • 关于泛型的类型擦除

    关于泛型的类型擦除 什么是泛型 xff1f 在探讨类型擦除之前 xff0c 我们还是先了解一下 xff0c 泛型的概念 泛型是为了参数化类型 xff0c 定义方法时传入形参 xff0c 而调用方法时使用形参 xff0c 参数化类型就是由确定
  • AndroidRuntime java.lang.AbstractMethodError解决方案

    AndroidRuntime java lang AbstractMethodError解决方案 背景介绍 今天同事尝试编译apk的release版本 xff0c 编译成功 xff0c 但是运行时 xff0c 却爆出这个运行时异常 xff0
  • MVI是噱头还是真有用?

    MVI 是噱头还是真有用 xff1f 今天逛技术论坛的时候偶然发现了这个词 xff0c 眼前一亮 xff0c 因为之前活跃在大众面前的架构模式是MVC MVP MVVM xff0c 至于MVI真的是第一次看到 xff0c 心里一慌 xff0
  • API调用次数限制实现

    API调用次数限制实现 在开发接口服务器的过程中 xff0c 为了防止客户端对于接口的滥用 xff0c 保护服务器的资源 xff0c 通常来说我们会对于服务器上的各种接口进行调用次数的限制 比如对于某个 用户 xff0c 他在一个时间段 x
  • SVN 问题Cannot load supported formats: Cannot run program "svn": CreateProcess error=2, ϵͳÕҲ»µ½ָ¶

    AndroidStudio SVN问题解决 今天在尝试使用Android Studio的SVN得时候出现 Cannot load supported formats Cannot run program svn CreateProcess
  • 你是哪个级别?(工程师级别划分)

    工程师的划分 初级工程师 xff08 实习生 xff09 中级工程师 xff08 普通员工 xff0c 小组长 xff09 高级工程师 xff08 CTO 技术研发领头人 xff09 初级工程师 和入门级别基本上可以等同 xff0c 他们一
  • Python Koans(1)-assert

    span class hljs comment usr bin env python span span class hljs comment coding utf 8 span span class hljs keyword from s
  • [初学Python]学习如何编写GUI界面(初级)

    sublime 这个文本编辑器好像就是用python写的 所以一直也挺好奇如何利用Pycharm编写有界面的python应用 言归正传 xff0c Python界面程序编写主要依靠一个库叫做Tkinter 下载Tkinter 我使用的是Ub
  • Youtube 视频自动播放

    最近在做一项目的时候 xff0c 需要播放Youtube视频 播放方式大体有三种 1 WebView xff08 我最终用的 xff09 2 Youtube SDK xff08 需要谷歌开发者账户 xff09 3 VideoView 其他两
  • Clion的激活方法

    弹出注册窗口选择Activate License Server 输入 http xidea online xff0c 然后点击 Activate 完成认证即可
  • CocosCreator学习1-按钮点击

    Cocos Creator小白学习 实现button点击事件 关于cocos creator 本人就是小白一个 xff0c 什么都不会 xff0c 只能慢慢从头开始摸索着来 xff0c 自己也希望能够在写自己的学习过程中 xff0c 能够给
  • 多传感器融合中的时间同步2-论文阅读

    文章目录 前言主要内容pps对于INS时间戳校准作用原理 测试结果参考文献 前言 阅读硕士论文 GPS INS组合导航系统研究及实现 xff0c 该论文第5章为时间同步系统设计 xff0c 为GPS INS系统设计的时间同步系统部分内容非常
  • GUI读取图片和变换图片

    GUI读取图片和变换图片 这个程序的主要功能是一个按钮读取图片 xff0c 另一个用来对图片进行变换的 xff0c 过程很简单 GUI中的varargout函数将句柄handles保存的hObject输出 xff0c hObject是当前回
  • Java泛型--泛型应用--泛型接口、泛型方法、泛型数组、泛型嵌套

    1 泛型接口 1 1泛型接口的基本概念 1 2泛型接口实现的两种方式 定义子类 xff1a 在子类的定义上也声明泛型类型 interface Info lt T gt 在接口上定义泛型 public T getVar 定义抽象方法 xff0
  • SLA的基本概念

    SLA的基本概念 现在的产品和系统都非常的复杂 xff0c 彼此连接依赖越来越复杂 xff0c 为了整体的高速运转 xff0c 对每个部件的稳定性越来越高 xff0c 越来越精密 xff0c 发展到一定程度 xff0c 人力已经无法掌控 x
  • Linux下调试段错误的方法[Segmentation Fault]--GDB

    原文 1 段错误是什么 xff1f 段错误是指访问的内存超出了系统给这个程序所设定的内存空间 xff0c 例如访问了不存在的内存地址 访问了系统保护的内存地址 访问了只读的内存地址等等情况 A segmentation fault ofte