C++中类所占的内存大小以及成员函数的存储位置

2023-05-16

类所占内存的大小是由成员变量(静态变量除外)决定的,虚函数指针和虚基类指针也属于数据部分,成员函数是不计算在内的。因为在编译器处理后,成员变量和成员函数是分离的。成员函数还是以一般的函数一样的存在。a.fun()是通过fun(a.this)来调用的。所谓成员函数只是在名义上是类里的。
其实成员函数的大小不在类的对象里面,同一个类的多个对象共享函数代码
普通函数:属于全局函数,不受具体类和对象的限制,可以直接调用。
C++ 普通成员函数本质上是一个包含隐式形参(this指针)的普通函数,成员函数的地址,在编译期就已确定。对象调用成员函数时,编译器可以确定这些函数的地址,并通过传入this指针和其他参数,完成函数的调用,所以类中就没有必要存储成员函数的信息。
比如:A.test() ,A对象调用其成员函数test()。事实上可以理解成 test(&A)
实际上,编译器把普通成员函数当成全局函数来调用,只不过增加了一个叫this的形参,指向的其实就是生成的对象,用来建立对象和成员函数之间的联系。

class CBase 
{ 
}; 
// sizeof(CBase)=1;

为什么空的什么都没有是1呢?
c++要求每个实例在内存中都有独一无二的地址。空类也会被实例化,所以编译器会给空类隐含的添加一个字节,这样空类实例化之后就有了独一无二的地址了。所以空类的sizeof为1。

class CBase 
{ 
    int a; 
    char p; 
}; 
// sizeof(CBase)=8;

字节对齐的问题。int 占4字节
char占一字节,补齐3字节

class CBase 
{ 
public: 
    CBase(void); 
    virtual ~CBase(void); 
private: 
    int  a; 
    char *p; 
}; 
// sizeof(CBase)=12

C++ 类中有虚函数的时候有一个指向虚函数的指针(vptr),在32位系统分配指针大小为4字节。无论多少个虚函数,只有这一个指针,4字节。
//注意一般的函数是没有这个指针的,而且也不占类的内存。

class CChild : public CBase 
{ 
public: 
    CChild(void); 
    ~CChild(void); 
    virtual void test();
private: 
    int b; 
}; 
// sizeof(CChild)=16;

可见子类的大小是本身成员变量的大小加上父类的大小。

class A {};    // sizeof(A)=1
 
class B{};     // sizeof(B)=1 
 
class C:public A{
    virtual void fun()=0;
};             // sizeof(C)=4     
  
class D:public B,public C{};   // sizeof(D)=8

类D的大小更让人疑惑吧,类D是由类B,C派生过来的,它的大小应该为二者之和5,为什么却是8 呢?这是因为为了提高实例在内存中的存取效率。类的大小往往被调整到系统的整数倍。并采取就近的法则,距离哪个最近的倍数,就是该类的大小,所以类D的大小为8个字节。

// ====== 测试一 ======
class Test {
private:
    int n;
    char c;
    short s;
};

Test t21;
cout << sizeof(t21) << endl;
// 运行结果:8

// ====== 测试二 ======
class Test {
public:
	//构造函数
    Test() {

    }
	//普通成员
    int func0() {
        return n;
    }
	//友元函数
    friend int func1();
	//常成员函数
    int func2() const {
        return s;
    }
	//内联函数
    inline void func3() {
        cout << "inline function" << endl;
    }
	//静态成员函数
    static void func4() {
        cout << "static function" << endl;
    }
	//析构函数
    ~Test() {

    }

private:
    int n;
    char c;
    short s;
};

int func1() {
    Test t;
    return t.c;
}

Test t22;
cout << sizeof(t22) << endl;
// 运行结果:8

// ====== 测试三 ======
class Test {
public:
    Test() {

    }

    int func0() {
        return n;
    }

    friend int func1();

    int func2() const {
        return s;
    }

    inline void func3() {
        cout << "inline function" << endl;
    }

    static void func4() {
        cout << "static function" << endl;
    }
	//虚函数,需要一个虚函数指针的开销
    virtual void func5() {
        cout << "virtual function" << endl;
    }

    ~Test() {

    }

private:
    int n;
    char c;
    short s;
};

int func1() {
    Test t;
    return t.c;
}

Test t23;
cout << sizeof(t23) << endl;
// x86目标平台运行结果:12;x64目标平台下运行结果:16

因 C++中成员函数和非成员函数都是存放在代码区的,故类中一般成员函数、友元函数,内联函数还是静态成员函数都不计入类的内存空间,测试一和测试二对比可证明这一点
测试三中,因出现了虚函数,故类要维护一个指向虚函数表的指针,分别在 x86目标平台和x64目标平台下编译运行的结果可证明这一点

总结

  • 空的类是会占用内存空间的,而且大小是1,原因是C++要求每个实例在内存中都有独一无二的地址。
  • 类内部的成员变量:
    普通的变量:是要占用内存的,但是要注意对齐原则(这点和struct类型很相似)。
    static修饰的静态变量:不占用内容,原因是编译器将其放在全局变量区。
  • 类内部的成员函数:
    普通函数:不占用内存。
    虚函数:要占用4个字节(32位系统)或8个字节(64位系统),用来指定虚函数的虚拟函数表的入口地址。所以一个类的虚函数所占用的地址是不变的,和虚函数的个数是没有关系的
  • C++编译系统中,数据和函数是分开存放的(函数放在代码区;数据主要放在栈区和堆区,静态/全局区以及文字常量区也有),实例化不同对象时,只给数据分配空间,各个对象调用函数时都都跳转到(内联函数例外)找到函数在代码区的入口执行,可以节省拷贝多份代码的空间
  • 类的静态成员变量编译时被分配到静态/全局区,因此静态成员变量是属于类的,所有对象共用一份,不计入类的内存空间。
  • 内联函数(声明和定义都要加inline)也是存放在代码区,在编译阶段,编译器会用内联函数的代码替换掉函数,避免了函数跳转和保护现场的开销。不要将成员函数的这种存储方式和inline(内联)函数的概念混淆。不要误以为用inline声明(或默认为inline)的成员函数,其代码段占用对象的存储空间,而不用inline声明的成员函数,其代码段不占用对象的存储空间。不论是否用inline声明(或默认为inline),成员函数的代码段都不占用对象的存储空间。用inline声明的作用是在编译时期,将函数的代码段复制插人到函数调用点,而若不用inline声明,在调用该函数时,流程转去函数代码段的入口地址,在执行完该函数代码段后,流程返回函数调用点。inline与成员函数是否占用对象的存储空间无关

综上所述

  • 同一个类创建的多个对象,其数据成员是各用各的,互不相通(静态成员变量是共享的)。
  • 成员函数是共享共用的,多个对象共用一份代码,所有类成员函数和非成员函数代码存放在代码区
  • 不论成员函数在类内定义还是在类外定义,成员函数的代码段都用同一种方式存储。

在这里插入图片描述
参考链接:
C++成员函数在内存中的存储方式
C++ 类在内存中的存储方式

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

C++中类所占的内存大小以及成员函数的存储位置 的相关文章

  • vim 支持 python

    https www jianshu com p 3e606e31da5f 前段时间刚玩linux时为了图个简单打算直接用vim来写python代码省得再下个软件 xff08 好吧 xff0c 其实是自己下了好多次都失败了 xff0c 一气之
  • 用户态和核心态的概念以及为什么要区别?以及两者之间的切换

    一 用户态和核心态的概念 用户态 xff1a 内核态与用户态是操作系统的两种运行级别 当程序运行在3级特权级上时 xff0c 就可以称之为运行在用户态 xff0c 因为这是最低特权级 xff0c 是普通的用户进程运行的特权级 xff0c 大
  • strstr(str1,str2)函数使用时注意事项

    可能有的人还没听过strstr函数 xff0c 个人认为这个一个很实用的函数 xff0c strstr str1 str2 函数是字符串处理函数之一 xff0c 位于头文件 string h 中 对于处理字符串的一些问题有很大的帮助 定义
  • Java This 的用法

    JAVA This的用法 先写一个要调用的类 都放在名为test的包下面 在这里插入代码片package test span class token keyword public span span class token keyword
  • 关于松耦合和紧耦合的理解

    松耦合系统通常是基于消息的系统 xff0c 此时客户端和远程服务并不知道对方是如何实现的 客户端和服务之间的通讯由消息的架构支配 只要消息符合协商的架构 xff0c 则客户端或服务的实现就可以根据需要进行更改 xff0c 而不必担心会破坏对
  • 第六篇 键盘中断与应用程序读取键盘缓冲区

    这篇博文主要介绍在X86下键盘的中断过程 xff0c 以及应用程序如何利用中断读取键盘缓冲区内容 一 撰写该篇博文的背景介绍 在我们全屏看视频时 xff0c 按下Esc键 xff0c 播放器还原或者最小化 xff1b 在利用其他软件的时候
  • 发现一个aruco在线生成器,可以在线生成aruco CharucoBoard GridBoard AprilTag 图片, 真香

    最近在研究 opencv 检测 aruco标记项目 xff0c 想弄点aruco标记码来测试 xff0c 发现网上很少在线生成aruco标记码的工具 xff0c 导致在做测试时候浪费了很多时间去搞这个码 xff0c 基本上大家都用 xff0
  • FreeRTOS基础六:中断管理1

    嵌入式实时系统需要对外界的某个事件做出及时的响应动作 例如串口外设收到了一帧数据后 xff0c 需要通知数据解析任务 xff0c 同时还要将数据帧传递给解析任务 xff0c 完成数据的处理 设计出一种好的策略来完成这个过程时需要考虑以下几个
  • FreeRTOS基础四:队列

    简介 FreeRTOS中的队列是一种用于实现 任务与任务 xff0c 任务与中断 以及 中断与任务 之间的通信 机制 此外 xff0c 任务从队列读数据或者写入数据到队列时 xff0c 都可能被阻塞 这个特性使得任务可以被设计成基于事件驱动
  • FreeRTOS基础二:堆内存管理之heap_4方案

    背景知识 从FreeRTOS V9 0 0内核版本开始 xff0c 内核对象占用的内存可以在编译期间静态分配 xff0c 也可以在运行期间动态分配 内核对象如 xff1a tasks xff08 任务 xff09 xff0c queues
  • MQ与Webservice的区别

    Webservice 和MQ MessageQueue 都是解决跨平台通信的常用手段 xff0c 两者有哪些区别呢 xff1f 个人认为最本质的区别在于 Webservice近乎实时通信 xff0c 而MQ却通常是延时通信 什么意思呢 xf
  • uORB通信机制和添加自己的topics学习笔记

    本文参考 Ubuntu16 04下PX4环境快速搭建及uORB通信机制进行操作 结合网上一篇uROB的介绍PX4 Pixhawk uORB深入理解和应用进行深入的了解 1 简介 uORB Micro Object Request Broke
  • 看到一篇很好的介绍磁力计原理的博客

    详细内容戳这里http blog sina com cn s blog 402c071e0102v8ig html
  • QT工程转换为VS2013项目文件

    xff08 win7系统 xff09 1 点击开始 xff0c 输入cmd xff0c 打开cmd 2 输入cd c apm点击回车键 注 xff1a apm是我的qt的工程文件夹 xff0c 最好放在c盘 xff0c 其他盘转换都不成功
  • C语言:函数返回字符串的四种方法

    转载连接 xff1a 1 https blog csdn net turkeyzhou article details 6104135 comments 2 https www cnblogs com qingergege p 649668
  • C语言:字符串中查找指定字符——strchr()和strrchr()

    参考文章连接 xff1a 1 http c biancheng net cpp html 161 html 2 http c biancheng net cpp html 172 html 1 头文件 xff1a include lt st
  • C语言:整型、浮点型和字符串间转换

    参考文章链接 xff1a 1 http c biancheng net cpp html 1573 html 2 http c biancheng net cpp html 1574 html 1 整型 浮点型 gt 字符串 整数转换为字符
  • 学习贵在坚持!

    最近学习颇为不顺 xff0c 周围都是一些不利的消息 xff0c 有些心灰意冷 可是这不是与我写本文的初衷相悖了么 xff1f 看到了比自己优秀的人干出来辉煌的事情 xff0c 写出来文字优美的文章 xff0c 自己就有相形见绌的自卑感 可
  • Qt中 QString 和int, char等的“相互”转换

    原文链接 xff1a https blog csdn net ei nino article details 7297791 Qt中 int float double转换为QString 有两种方法 1 使用QString number 如

随机推荐

  • 计算器第二版:C语言,VC++6.0

    使用栈实现 xff0c 前缀表达式变后缀表达式的原理 xff0c 但是没有转换 xff0c 是边转换边实现 xff1a include lt stdio h gt include lt stdlib h gt include lt coni
  • 计算器第三版:C语言,递归,VC++6.0

    参考文章 xff1a https blog csdn net u011692041 article details 49796343 https blog csdn net u011692041 article details 497991
  • 计算器第四版:C++,QT

    核心算法和第二版一样 xff1a 头文件 xff1a calculate h ifndef CALCULATE H define CALCULATE H include lt QMainWindow gt include lt QPushB
  • USB协议概念学习

    1 USB总线结构 usb的总线拓扑结构如下所示 xff1a 从USB总线结构可以看出 xff0c 主要由3部分组成 xff1a USB主机 Host USB线缆 USB设备 hub Func等 USB主机 xff1a 一般成为USB Ho
  • 创新工场两道笔试题0919

    题目1 字符串去重 xff0c 老题目 xff0c 只是要求不能开辟新空间用来复制原字符串 思路 xff1a 使用布尔型的简单hash表可以节省空间 xff0c 用来存储字符是否出现的信息 xff0c 刚开始hash表里面都是false x
  • ROS仿真机器人学习笔记二:创建4轮小车模型及相关xraco文件修改

    系列文章目录 提示 xff1a 这里可以添加系列文章的所有文章的目录 xff0c 目录需要自己手动添加 例如 xff1a 第一章 Python 机器学习入门之pandas的使用 提示 xff1a 写完文章后 xff0c 目录可以自动生成 x
  • 旧电脑升级Windows11时检查CPU和TPM2.0不满足的解决方案(慎重)

    上个月微软发布了Windows11 22H2正式版 xff0c 不少新电脑也接收到了推送 xff0c 楼主的台式 xff08 i3 8100 军规星H310M xff09 也接收到了推送 xff0c 但是碍于Win11蛋疼的右键和状态栏消息
  • windows下安装docker

    windows下安装docker 0 前置条件 环境说明 xff1a windows11 家庭中文版 开启Hyper V xff08 可以百度如何开启 xff09 如何添加Hyper V 创建hyper txt xff0c 复制如下内容 x
  • STM32CubeMX配置生成FreeRTOS项目

    文章目录 1 安装STM32CubeMX软件1 1 下载安装1 2 安装要用到的芯片软件包 2 配置FreeRTOS项目2 1 创建工程2 2 配置SYS2 3 配置RCC2 4 配置系统运行时钟2 5 配置UART1串口作为调试代码2 6
  • ScrumMaster的教练职责

    ScrumMaster是Scrum团队的敏捷教练 Ken Rubin说 xff0c 类似于运动团队的教练 xff0c ScrumMaster观察团队使用Scrum的过程 xff0c 帮助团队提高工作绩效 教练不是顾问 xff0c 不提供解决
  • Autoware.Auto avp仿真详解

    1 定位 定位节点启动的是 ndt localizer 61 Node package 61 39 ndt nodes 39 executable 61 39 p2d ndt localizer exe 39 namespace 61 39
  • VMware + ubuntu16.04 + ROS kinetic 下配置realsense D435i 遇到的问题

    在配置Realsense D435i 的过程中 xff0c 遇到一个问题 执行 scripts patcg realsebse ubuntu lts sh 下载速度奇慢 10K s左右 而且会在接受到36 的时候不动了 xff0c 等了一晚
  • 白话tensorflow分布式部署和开发

    关于tensorflow的分布式训练和部署 xff0c 官方有个英文的文档介绍 xff0c 但是写的比较简单 xff0c 给的例子也比较简单 xff0c 刚接触分布式深度学习的可能不太容易理解 在网上看到一些资料 xff0c 总感觉说的不够
  • 全息投影技术

    1 概念 全息投影技术 xff08 front projectedholographic display xff09 也称 虚拟成像 技术是利用干涉和衍射原理记录并再现物体真实的 三维 图像的技术 全息投影技术不仅可以产生立体的空中幻像 x
  • Ardupilot飞控添加使用诺瓦泰GPS

    Ardupilot飞控添加使用诺瓦泰双天线GPS航向角的设置 一 添加诺瓦泰GPS heading角数据包解析代码 1 打开libraries AP GPS AP GPS NOVA h xff0c 添加如下代码 xff1a struct P
  • SD标准以及规范

    SD标准及规范 SD应用 SD标准让制造商能生产高性能之产品来提升数百万计消费者的体验 xff0c 包含听音乐 录制视频 摄影 数据储存以及使用移动电话 身为一个产业的标准 xff0c SD标准被用于行动存储产业的多个市场领域中 xff0c
  • 《视觉SLAM十四讲》学习笔记-状态估计问题

    最大后验与似然 经典slam模型可表示为 xff1a x k 61 f x k 1 u k 43 w k z k j 61 h y j x k 43 v
  • 机器人学领域的顶级期刊和会议

    印象中 xff0c 机器人学涉及机械 控制 计算机和电子等领域 xff0c 十足的交叉学科 xff0c 所以涉及到的概念和技术也非常多 因工作关系 xff0c 看了三周的SLAM入门 xff0c 用的是高翔的 视觉SLAM十四讲 这本教材
  • SQL解析过程

    转载自 xff1a http blog aliyun com 733 简介 SQL任务是ODPS中使用最频繁的一类作业 大部分用户开始使用ODPS时要做的第一件事情就是学习怎么写ODPS的SQL ODPS SQL是一种非常灵活的语言 兼容大
  • C++中类所占的内存大小以及成员函数的存储位置

    类所占内存的大小是由成员变量 xff08 静态变量除外 xff09 决定的 xff0c 虚函数指针和虚基类指针也属于数据部分 xff0c 成员函数是不计算在内的 因为在编译器处理后 xff0c 成员变量和成员函数是分离的 成员函数还是以一般