如果面试官问你CAS,你还这么答,可能就要回去等通知了

2023-05-16

前言

大家好,我是JAVA高级开发之路,一个总在为粉丝解决面试题的程序员。

最近有几个粉丝说在面试面试中遇到了CAS的问题,连着几次面试都没有让面试官满意,区区CAS底层源码,怎能难倒咱们这届程序员们呢?都支棱起来,跟我一起来搞定CAS底层源码

什么是CAS

CAS的全称是Compare-And-Swap,它是CPU并发原语。

它的功能是判断内存某个位置的值是否为预期值,如果是则更改为新的值,这个过程是原子的

CAS并发原语体现在Java语言中就是sun.misc.Unsafe类的各个方法。调用UnSafe类中的CAS方法,JVM会帮我们实现出CAS汇编指令,这是一种完全依赖于硬件的功能,通过它实现了原子操作,再次强调,由于CAS是一种系统原语,原语属于操作系统应用范畴,是由若干条指令组成,用于完成某个功能的一个过程,并且原语的执行必须是连续的,在执行过程中不允许被中断,也就是说CAS是一条CPU的原子指令,不会造成所谓的数据不一致的问题,也就是说CAS是线程安全的。

我们来先看下这个代码:

如果面试官问你CAS,你还这么答,可能就要回去等通知了

如果面试官问你CAS,你还这么答,可能就要回去等通知了

大家猜一下结果是什么?

第二次打印会不会被赋值为 9999

上面代码的执行结果为:

如果面试官问你CAS,你还这么答,可能就要回去等通知了

如果面试官问你CAS,你还这么答,可能就要回去等通知了

那么为什么回事这样的结果?我们一起来看看中间的原理

这是因为我们执行第一个的时候,期望值和原本值是满足的,因此修改成功,但是第二次后,主内存的值已经修改成了6666,不满足期望值,因此返回了false,本次写入失败

如果面试官问你CAS,你还这么答,可能就要回去等通知了

如果面试官问你CAS,你还这么答,可能就要回去等通知了

这个就像是git的版本号一样,如果没有更改那么就可以提交,否则先把以前的pull下来合并之后再去提交;

CAS的底层原理

首先我们先看看 
atomicInteger.getAndIncrement()方法的源码

如果面试官问你CAS,你还这么答,可能就要回去等通知了

如果面试官问你CAS,你还这么答,可能就要回去等通知了

在这里细心的读者就发现了底层调用了一共unsafe类的getAndAddAInt方法。

我们去看看unsafee方法

如果面试官问你CAS,你还这么答,可能就要回去等通知了

如果面试官问你CAS,你还这么答,可能就要回去等通知了

Unsafe是CAS的核心类,由于Java方法无法直接访问底层系统,需要通过本地(Native)方法来访问,Unsafe相当于一个后门,基于该类可以直接操作特定的内存数据。Unsafe类存在sun.misc包中,其内部方法操作可以像C的指针一样直接操作内存,因为Java中的CAS操作的执行依赖于Unsafe类的方法。

注意Unsafe类的所有方法都是native修饰的,也就是说unsafe类中的方法都直接调用操作系统底层资源执行相应的任务。

为什么Atomic修饰的包装类,能够保证原子性,依靠的就是底层的unsafe类。

如果面试官问你CAS,你还这么答,可能就要回去等通知了

如果面试官问你CAS,你还这么答,可能就要回去等通知了

var5:就是我们从主内存中拷贝到工作内存中的值

那么操作的时候,需要比较工作内存中的值,和主内存中的值进行比较

假设执行 compareAndSwapInt返回false,那么就一直执行 while方法,直到期望的值和真实值一样

  • 如果相同,更新var5 + var4 并返回true
  • 如果不同,继续取值然后再比较,直到更新完成

  • val1:AtomicInteger对象本身
  • var2:该对象值得引用地址
  • var4:需要变动的数量
  • var5:用var1和var2找到的内存中的真实值用该对象当前的值与var5比较

这里没有用synchronized,而用CAS,这样提高了并发性,也能够实现一致性,是因为每个线程进来后,进入的do while循环,然后不断的获取内存中的值,判断是否为最新,然后在进行更新操作。

假设线程A和线程B同时执行getAndInt操作(分别跑在不同的CPU上)

1. AtomicInteger里面的value原始值为3,即主内存中AtomicInteger的 value 为3,根据JMM模型,线程A和线程B各自持有一份价值为3的副本,分别存储在各自的工作内存

2. 线程A通过getIntVolatile(var1 , var2) 拿到value值3,这是线程A被挂起(该线程失去CPU执行权)

3. 线程B也通过getIntVolatile(var1, var2)方法获取到value值也是3,此时刚好线程B没有被挂起,并执行了compareAndSwapInt方法,比较内存的值也是3,成功修改内存值为4,线程B打完收工,一切OK

4. 这是线程A恢复,执行CAS方法,比较发现自己手里的数字3和主内存中的数字4不一致,说明该值已经被其它线程抢先一步修改过了,那么A线程本次修改失败,只能够重新读取后在来一遍了,也就是在执行do while。

5. 线程A重新获取value值,因为变量value被volatile修饰,所以其它线程对它的修改,线程A总能够看到,线程A继续执行compareAndSwapInt进行比较替换,直到成功。

Unsafe类 + CAS思想:也就是自旋,自我旋转。

底层汇编

Unsafe类中的compareAndSwapInt是一个本地方法,该方法的实现位于unsafe.cpp中

  • 先想办法拿到变量value在内存中的地址
  • 通过Atomic::cmpxchg实现比较替换,其中参数X是即将更新的值,参数e是原内存的值

CAS缺点

CAS不加锁,保证一次性,但是需要多次比较

  • 但是对于多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候只能用锁来保证原子性

  • 循环时间长,开销大(因为执行的是do while,如果比较不成功一直在循环,最差的情况,就是某个线程一直取到的值和预期值都不一样,这样就会无限循环)
  • 只能保证一个共享变量的原子操作当对一个共享变量执行操作时,我们可以通过循环CAS的方式来保证原子操作
  • 引出来ABA问题?

ABA问题

总结

CAS

CAS是compareAndSwap,比较当前工作内存中的值和主物理内存中的值,如果相同则执行规定操作,否者继续比较直到主内存和工作内存的值一致为止

CAS应用

CAS有3个操作数,内存值V,旧的预期值A,要修改的更新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则不操作

对此,你有什么要补充的吗?欢迎在评论区留言。

写在最后

现在很多程序员们面试都是靠背面试题,这个只能适用于基础面,如果想要去大厂的话,一定要把钻研深度,这样才能在众多面试者中脱颖而出。

随着金九银十的结束,也有很多粉丝私聊小编,说自己拿到了大厂offer,同时小编再三请求下才让他们整理出了这份最新的互联网大厂面经

如果面试官问你CAS,你还这么答,可能就要回去等通知了

领取方式:点赞+收藏后,后台私聊小编:面经,即可免费领取


最后祝大家升职加薪,给个点赞+收藏,我们下次再见!

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

如果面试官问你CAS,你还这么答,可能就要回去等通知了 的相关文章

  • 正则表达式 (学习笔记)

    正则表达式的难度不在于难懂 xff0c 而在于对它的表述没有恰当的分类和组织 xff0c 所以弄得很零散难以记忆 按照自己的理解和归纳记录一份笔记 xff0c 以备遗忘时查看 正则表达式 regular expressions 是一种用来匹
  • Linux usb 2. 协议分析

    文章目录 0 背景1 USB 协议传输格式1 1 Packet1 1 1 Token Packet1 1 2 Data Packet1 1 3 Handshake Packet1 1 4 Special Packet 1 2 Transac
  • RISCV 入门 (学习笔记)

    文章目录 1 risv 相关背景1 1 arm 授权费1 2 riscv 发展历史1 3 riscv 风险 2 指令集2 1 可配置的通用寄存器组2 2 规整的指令编码2 3 简洁的存储器访问指令2 4 高效的分支跳转指令2 5 简洁的子程
  • Linux usb 1. 总线简介

    文章目录 1 USB 发展历史1 1 USB 1 0 2 01 2 USB 3 01 3 速度识别1 4 OTG1 5 phy 总线1 6 传输编码方式 2 总线拓扑2 1 Device 内部的逻辑关系2 2 Compound Compos
  • Linux usb 3. Host 详解

    文章目录 1 简介2 Usb Core 驱动设备模型2 1 Usb Device Layer2 1 1 device struct usb device 2 1 2 driver struct usb device driver 2 1 3
  • Linux usb 4. Device 详解

    文章目录 1 简介2 Platform Layer2 1 Platform Device2 2 Platform Driver 3 UDC Gadget Layer3 1 Gadget Bus3 2 Gadget Device3 2 1 E
  • Linux USB (目录)

    1 USB 总线简介 2 USB 协议分析 3 USB Host 详解 4 USB Device 详解 5 usbip USB Over IP 使用实例 6 USB HC UDC 测试 7 Linux 配置 ADBD
  • Linux usb 5. usbip (USB Over IP) 使用实例

    文章目录 0 简介1 Server 配置2 Client 配置参考资料 0 简介 USB Over IP 是一种应用很多的场景 xff0c 目前已经有现成的解决方案 usbip linux 和 windows 环境下都有配套软件 xff0c
  • 最全随机抽样算法(从N个数中抽取M个等)集合

    项目github地址 xff1a bitcarmanlee easy algorithm interview and practice 欢迎大家star xff0c 留言 xff0c 一起学习进步 1 从N个数中等概率抽取M个数 从N个样本
  • Linux usb 6. HC/UDC 测试

    文章目录 1 背景介绍2 Device gadget zero 2 1 96 gadget zero 96 创建2 2 SourceSink Function2 3 Loopback Function 3 Host usbtest ko 3
  • Linux usb 7. Linux 配置 ADBD

    文章目录 1 简介2 ADBD 源码3 Gadget Device 配置3 1 functionfs3 2 legacy 方式配置 functionfs3 3 configfs 方式配置 functionfs3 4 adb 使用配置 参考资
  • HW-RTOS 概述

    文章目录 1 背景介绍1 1 OS 实时难题1 2 Linux 实时补丁1 3 Xenomai 43 Linux 双内核1 4 HW RTOS1 5 More 2 优化点1 xff1a API2 1 原理介绍2 1 1 Software A
  • RISCV MMU 概述

    1 背景简介 Linux 内存管理包含很多内容 xff0c 主要知识点可以参考 Linux Mem 本文只描述其中的一个知识点 Paging and MMU 本文以全志 D1 为例 xff0c 包含了平头哥出品的一颗 Riscv64 的 C
  • 主流 RTOS 评估

    1 RT Thread RT Thread 是国内出产的一款非常优秀的 RTOS 它和 FreeRTOS uCos 等经典 RTOS 最大的不同是 xff1a 它不仅仅是一个实时内核 xff0c 还具备丰富的中间层组件 它提供了一个完整的软
  • Linux mem 2.8 Kfence 详解

    1 原理介绍 Kfence Kernel Electric Fence 是 Linux 内核引入的一种低开销的内存错误检测机制 xff0c 因为是低开销的所以它可以在运行的生产环境中开启 xff0c 同样由于是低开销所以它的功能相比较 KA
  • Linux Phy 驱动解析

    文章目录 1 简介2 phy device2 1 mdio bus2 2 mdio device2 3 mdio driver2 4 poll task2 4 1 自协商配置2 4 2 link 状态读取2 4 3 link 状态通知 3
  • 程序媛工作几年后的感受!体验?

    黑客技术 点击右侧关注 xff0c 了解黑客的世界 xff01 Java开发进阶 点击右侧关注 xff0c 掌握进阶之路 xff01 Python开发 点击右侧关注 xff0c 探讨技术话题 xff01 作者 xff1a hq nuan 来
  • ubuntu 通过 apt-get 安装软件失败时的解决方案

    最近在 vmware上的ubuntu系统下安装 软件时出现安装失败情况 xff0c 在网上搜了一通 xff0c 终于找到了解决方案 遇到的问题和解决方案如下 xff1a 一 apt get install vim二 apt get upda
  • JAVA自学之路 三:要动手

    原创 尚学堂科技 马士兵老师 JAVA自学之路 三 要动手 转载请注明出处 http www bjsxt com zixue zixuezhilu 3 html 无论如何 xff0c 请坚持不懈的动手实验 xff01 学习Java要动手 x
  • Eigen库的安装

    运行命令 xff1a sudo apt get install libeigen3 dev 假设默认安装到 usr local include里 可在终端中输入locate eigen3查看位置 xff0c 若实际中默认安装到了 usr i

随机推荐