算法

2023-05-16

算法(Algorithm):计算机解题的基本思想方法和步骤。

算法的描述:是对要解决一个问题或要完成一项任务所采取的方法和步骤的描述,包括需要什么数据(输入什么数据、输出什么结果)、采用什么结构、使用什么语句以及如何安排这些语句等。通常使用自然语言、结构化流程图、伪代码等来描述算法。

 

一、计数、求和、求阶乘等简单算法

此类问题都要使用循环,要注意根据问题确定循环变量的初值、终值或结束条件,更要注意用来表示计数、和、阶乘的变量的初值。

例:用随机函数产生100个[0,99]范围内的随机整数,统计个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数并打印出来。

本题使用数组来处理,用数组a[100]存放产生的确100个随机整数,数组x[10]来存放个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数。即个位是1的个数存放在x[1]中,个位是2的个数存放在x[2]中,……个位是0的个数存放在数组x[10]。

 

 

五、排序问题

1.选择法排序(升序)

基本思想:

1)对有n个数的序列(存放在数组a(n)中),从中选出最小的数,与第1个数交换位置;

2)除第1 个数外,其余n-1个数中选最小的数,与第2个数交换位置;

3)依次类推,选择了n-1次后,这个数列已按升序排列。

程序代码如下:

 

2.冒泡法排序(升序)

基本思想:(将相邻两个数比较,小的调到前头)

1)有n个数(存放在数组a(n)中),第一趟将每相邻两个数比较,小的调到前头,经n-1次两两相邻比较后,最大的数已“沉底”,放在最后一个位置,小数上升“浮起”;

2)第二趟对余下的n-1个数(最大的数已“沉底”)按上法比较,经n-2次两两相邻比较后得次大的数;

3)依次类推,n个数共进行n-1趟比较,在第j趟中要进行n-j次两两比较。

程序段如下:

 

3.合并法排序(将两个有序数组A、B合并成另一个有序的数组C,升序)

基本思想:

1)先在A、B数组中各取第一个元素进行比较,将小的元素放入C数组;

2)取小的元素所在数组的下一个元素与另一数组中上次比较后较大的元素比较,重复上述比较过程,直到某个数组被先排完;

3)将另一个数组剩余元素抄入C数组,合并排序完成。

程序段如下:

六、查找问题

顺序查找法(在一列数中查找某数x)

基本思想:一列数放在数组a[1]---a[n]中,待查找的数放在x 中,把x与a数组中的元素从头到尾一一进行比较查找。用变量p表示a数组元素下标,p初值为

1,使x与a[p]比较,如果x不等于a[p],则使p=p+1,不断重复这个过程;一旦x等于a[p]则退出循环;另外,如果p大于数组长度,循环也应该停止。(这个过程可由下语句实现)

 

 

思考:将上面程序改写一查找函数Find,若找到则返回下标值,找不到返回-1

②基本思想:一列数放在数组a[1]---a[n]中,待查找的关键值为key,把key与a数组中的元素从头到尾一一进行比较查找,若相同,查找成功,若找不到,则查找失败。(查找子过程如下。index:存放找到元素的下标。)

七、二分法

在一个数组中,知道一个数值,想确定他在数组中的位置下标,如数组:A[5] = {1,2,6,7,9};我知道其中的值为6,那么他的下标位置就是3。

 

 

八、限幅滤波法

对于随机干扰 , 限幅滤波是一种有效的方法;

基本方法:比较相邻n 和 n - 1时刻的两个采样值y(n)和 y(n – 1),根据经验确定两次采样允许的最大偏差。如果两次采样值的差值超过最大偏差范围 ,认为发生可随机干扰 ,并认为后一次采样值y(n)为非法值 ,应予删除 ,删除y(n)后 ,可用y(n – 1) 代替y(n);若未超过所允许的最大偏差范围 ,则认为本次采样值有效。

下面是限幅滤波程序:(A值可根据实际情况调整,value 为有效值 ,new_value 为当前采样值滤波程序返回有效的实际值 )

 

九、中位值滤波法

中位值滤波法能有效克服偶然因素引起的波动或采样不稳定引起的误码等脉冲干扰;

对温度 液位等缓慢变化的被测参数用此法能收到良好的滤波效果 ,但是对于流量压力等快速变化的参数一般不宜采用中位值滤波法;

基本方法:对某一被测参数连续采样 n次(一般 n 取奇数) ,然后再把采样值按大小排列 ,取中间值为本次采样值。

下面是中位值滤波程序:

 

十.算术平均滤波法

算术平均滤波法适用于对一般的具有随机干扰的信号进行滤波。这种信号的特点是信号本身在某一数值范围附近上下波动 ,如测量流量、 液位;

基本方法:按输入的N 个采样数据 ,寻找这样一个 Y ,使得 Y 与各个采样值之间的偏差的平方和最小。

编写算术平均滤波法程序时严格注意:

一.为了加快数据测量的速度 ,可采用先测量数据 存放在存储器中 ,测完 N 点后 ,再对 N 个数据进行平均值计算;

二.选取适当的数据格式 ,也就是说采用定点数还是采用浮点数。其程序如下所示:

 

十一、递推平均滤波法

基本方法:采用队列作为测量数据存储器 , 设队列的长度为 N ,每进行一次测量 ,把测量结果放于队尾 ,而扔掉原来队首的一个数据 ,这样在队列中始终就有 N 个 “最新” 的数据。当计算平均值时 ,只要把队列中的 N 个数据进行算数平均 ,就可得到新的算数平均值。这样每进行一次测量 ,就可得到一个新的算术平均值。

 

十二、一阶滞后滤波法

优点:对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合;

缺点:相位滞后,灵敏度低.滞后程度取决于a值大小.不能消除滤波频率高于采样频率的1/2的干扰信号。程序如下:

 

十三、PID控制算法

在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器;

对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制;

PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(PI、PD、…)。

一 模拟PID调节器

 

PID调节器各校正环节的作用:

比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节器立即产生控制作用以减小偏差;

积分环节:主要用于消除静差,提高系统的无差度。积分时间常数TI越大,积分作用越弱,反之则越强;

微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。

PID调节器是一种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进行控制。

 

 

 

程序片段如下:

 

十四、开根号算法

单片机开平方的快速算法

因为工作的需要,要在单片机上实现开根号的操作。目前开平方的方法大部分是用牛顿迭代法。我在查了一些资料以后找到了一个比牛顿迭代法更加快速的方法。不敢独享,介绍给大家,希望会有些帮助。

1.原理

因为排版的原因,用pow(X,Y)表示X的Y次幂,用B[0],B[1],...,B[m-1]表示一个序列,其中[x]为下标。

假设:

B[x],b[x]都是二进制序列,取值0或1。

M = B[m-1]*pow(2,m-1) + B[m-2]*pow(2,m-2) + ... + B[1]*pow(2,1) + B[0]*pow(2,0)

N = b[n-1]*pow(2,n-1) + b[n-2]*pow(2,n-2) + ... + b[1]*pow(2,1) + n[0]*pow(2,0)

pow(N,2) = M

(1) N的最高位b[n-1]可以根据M的最高位B[m-1]直接求得。

设 m 已知,因为 pow(2, m-1) <= M <= pow(2, m),所以 pow(2, (m-1)/2) <= N <= pow(2, m/2)

如果 m 是奇数,设m=2*k+1,

那么 pow(2,k) <= N < pow(2, 1/2+k) < pow(2, k+1),

n-1=k, n=k+1=(m+1)/2

如果 m 是偶数,设m=2k,

那么 pow(2,k) > N >= pow(2, k-1/2) > pow(2, k-1),

n-1=k-1,n=k=m/2

所以b[n-1]完全由B[m-1]决定。

余数 M[1] = M - b[n-1]*pow(2, 2*n-2)

(2) N的次高位b[n-2]可以采用试探法来确定。

因为b[n-1]=1,假设b[n-2]=1,则 pow(b[n-1]*pow(2,n-1) + b[n-1]*pow(2,n-2), 2) = b[n-1]*pow(2,2*n-2) + (b[n-1]*pow(2,2*n-2) + b[n-2]*pow(2,2*n-4)),

然后比较余数M[1]是否大于等于 (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4)。这种比较只须根据B[m-1]、B[m-2]、...、B[2*n-4]便可做出判断,其余低位不做比较。

若 M[1] >= (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 则假设有效,b[n-2] = 1;

余数 M[2] = M[1] - pow(pow(2,n-1)*b[n-1] + pow(2,n-2)*b[n-2], 2) = M[1] - (pow(2,2)+1)*pow(2,2*n-4);

若 M[1] < (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 则假设无效,b[n-2] = 0;余数 M[2] = M[1]。

(3) 同理,可以从高位到低位逐位求出M的平方根N的各位。

使用这种算法计算32位数的平方根时最多只须比较16次,而且每次比较时不必把M的各位逐一比较,尤其是开始时比较的位数很少,所以消耗的时间远低于牛顿迭代法。

2. 实现代码

这里给出实现32位无符号整数开方得到16位无符号整数的C语言代码。

 

 

 

 

 

 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

算法 的相关文章

  • 【Android抓包】Ubuntu mitmProxy配置

    Ubuntu 安装 mitmProxy 直接使用编译好的二进制包 参考 xff1a https cuiqingcai com 31053 html Linux E4 B8 8B E7 9A 84 E5 AE 89 E8 A3 85 直接下载
  • 【CSDN】查看自己的CSDN积分

    查看自己的CSDN积分 如何查看自己的CSDN博客积分 CSDN藏的比较深 xff0c 链接如下 xff1a https mp csdn net mp blog analysis article all CSDN博客积分与博客等级 参考 x
  • 【符号输入】打出撇号′

    打出撇号 撇号 xff08 apostrophe xff09 xff1a 搜狗输入法调成中文 xff0c 输入fen xff0c 第5个就是撇号
  • 【Android安全】xiaomi手机关闭adb安装应用时的确认提示

    xiaomi手机关闭adb安装应用时的确认提示 为了自动化测试 xff0c 需要关闭adb安装应用时的确认提示 需要分两步来关闭 xff1a 首先 xff0c 开发者选项 gt 启动MIUI优化 gt 关闭 xff08 第一步过后授权管理
  • 【python】报错UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte in position : illegal multibyte

    python读文件时报错 xff1a Traceback span class token punctuation span most recent call last span class token punctuation span F
  • STM32介绍

    目录 STM32 分类 STM8 和 STM32 分类 STM32 命名方法 STM32F103RCT6 寻找 IO 的功能 存储器映射 存储器 Block0 内部区域功能划分 存储器 Block1 内部区域功能划分 存储器 Block2
  • Putty串口打开无反应

    第一次使用putty的串口 xff0c 可能理所当然认为在Serial那里设置好参数 xff0c 然后点击Open就行了 但是显然不是 xff0c Putty的UI设计有问题 xff0c 不管你点击哪一个项 xff0c Open按钮始终都存
  • 【Android安全】r0capture使用

    r0capture使用 下载地址 xff1a https github com r0ysue r0capture 手机端启动frida server PC端安装frida client 命令 xff1a python r0capture s
  • MobaXterm或Xshell连接不上虚拟机ubuntu

    MobaXterm使用教程 xff1a MobaXterm官网下载 MobaXterm使用教程1 MobaXterm使用教程2 Xshell 使用教程 xff1a 恒源云远程登录Linux实例 包含下载地址和使用教程 Xshell使用教程
  • 591 标签验证器(模拟、栈匹配括号)

    1 问题描述 xff1a 给定一个表示代码片段的字符串 xff0c 你需要实现一个验证器来解析这段代码 xff0c 并返回它是否合法 合法的代码片段需要遵守以下的所有规则 xff1a 代码必须被合法的闭合标签包围 否则 xff0c 代码是无
  • 算法:最长公共子序列

    10 8算法实验报告 最长公共子序列 题目 输出两个字符串的最长公共子序列 要求1 不使用辅助数组 span class token comment 要求1 xff1a 不使用辅助数组 span span class token keywo
  • 呆呆和你谈谈入职CVTE一个月的感受

    呆呆和你谈谈入职CVTE一个月的感受 你盼世界 xff0c 我盼望你无bug Hello 大家好 xff01 我是霖呆呆 xff01 啊啊啊啊啊 至6 18日入职新公司CVTE已经一个多月了 xff0c 在 你盼世界 xff0c 我盼望你无
  • 编程就是调用API?如何成为造轮子的程序员

    是 xff0c 编程就是调用各种API 什么是API xff0c 就是别人把较复杂的代码封装成一个个函数 xff0c 你不用管函数怎么实现的 xff0c 直接用就好 从这个角度讲 xff0c 使用所有库 xff0c 框架 xff0c 模板
  • 【电赛】2019电子设计竞赛 纸张计数显示装置(F题)

    点击 Github项目地址 设计下载 内含 xff1a 电赛论文 程序设计 机械结构设计 硬件电路设计 综合测评相关设计 交互显示设计 设计详细说明 2019年全国大学生电子设计竞赛 纸张计数显示装置 xff08 F题 xff09 本科组
  • 【ARM裸板】LCD硬件原理、时序及初始化

    文章目录 1 LCD与OLED的区别2 LCD原理2 1 颜色如何确定 xff1f 2 2 LCD如何 行扫描 xff1f 2 3 如何跳到下一行进行 行扫描 xff1f 2 4 如何进行下一个 场扫描 xff1f 3 LCD时序4 LCD
  • 【电赛】2019电赛纸张计数显示装置Github仓库说明

    Github项目地址 设计下载 内含 xff1a 电赛论文 程序设计 机械结构设计 硬件电路设计 综合测评相关设计 交互显示设计 设计详细说明 纸张计数显示装置Github仓库说明 x1f604 个人主页 x1f57a 电赛论文 x1f4d
  • 【Linux】mjpg-streamer 源码分析

    文章目录 1 总体流程2 主进程的源码分析2 1 参数接收与解析2 2 获取参数2 3 调用输入函数2 3 1 程序手动中断信号2 3 2 strchr 函数2 3 3 strndup 函数2 3 4 分离参数 3 输入通道源码分析3 1
  • STM32之TIM 舵机控制PWM

    目录 大概步骤 定时器介绍 输入通道 输入滤波器和边沿检测器 捕获通道 定时器初始化结构体详解 1 TIM TimeBaseInitTypeDef 定时器基本初始化结构体 TIM OCInitTypeDef 定时器比较输出初始化结构体 3
  • 【树莓派】树莓派采用MJPG-Streamer双摄推流至上位机,实测延时低至200ms[CSI摄像头+USB摄像头]

    树莓派采用MJPG Streamer双摄推流至上位机 实测延时低至200ms CSI摄像头 43 USB摄像头 总体流程1 硬件连接与软件及驱动配置1 xff09 检测是否存在USB摄像头设备2 xff09 安装 MJPG Streamer
  • 【DIY】基于OpenMV的STM32追球小车

    目录 xff1a 总体设计1 基础硬件DIY设计1 xff09 整体原理图2 xff09 PCB电路 2 OpenMV简单识别程序设计 与 STM32控制程序设计1 xff09 OpenMV简单识别程序设计 microPython 2 xf

随机推荐

  • 【电赛】2017年电赛A题——三相逆变电源EG8030测试

    目录 xff1a 一 相关简介二 专用逆变芯片E8030控制板三 驱动板四 实物测试 xff1a Github项目地址 设计下载 注 xff1a 本文仅用于学习交流分享 xff0c 若有不妥之处 xff0c 请指正 xff0c 感谢 关键词
  • 【STM32】STM32 OLED打点划线画圆 OLED电子罗盘 程序

    目录 xff1a 一 画点函数二 动态划线效果演示 xff1a 三 画圆函数效果演示 四 实心圆函数 注 xff1a 本文仅用于学习分享 用到的工具 xff1a STM32 MCU Keil 5 用到的库函数为 正点原子 STM32F4 库
  • 【STM32】OV2640摄像头学习笔记

    目录 xff1a 一 OV2640 Camera二 读取OV2640模块图像数据过程 xff1a 三 DCMI xff08 Digital camera interface xff09 接口四 SCCB协议1 起始信号2 停止信号 五 OV
  • 【笔记】MS5837-30BA压力传感器调试笔记

    文章目录 一 MS5837 30BA相关介绍1 技术参数2 典型应用电路3 PROM中的标定参数 二 MS5837 30BA数据解算1 解算流程图2 初始化读取标定参数并进行CRC校验 MS5837复位 MS5837 CRC4 bit 校验
  • 【通信协议】1-Wire 单总线

    文章目录 一 1 Wire相关介绍1 典型命令序列 xff1a 2 典型电路图 xff1a 二 1 Wire通信过程1 初始化2 写操作3 读操作 三 1 Wire程序 xff08 以DS18B20为例 xff09 DS18B20功能命令
  • linux 安裝mitmproxy

    1 安装mitmproxy sudo apt install python3 pip amp amp sudo pip3 install U pip amp amp sudo pip3 install mitmproxy 接下来需要安装证书
  • C++ 多态性的一些个人总结

    关于继承 xff1a public继承 xff0c 和其它两种继承方式 xff0c 子类对象可以访问基类的Public成员 xff0c 保护成员和私有成员只能在子类中访问 xff0c 而不能由子类对象进行访问 关于虚函数 xff08 每个虚
  • ubuntu用Dockerfile配置ros+cuda+torch镜像及rviz可视化

    dockerfile配置ros 43 cuda 43 torch镜像及rviz可视化 Dockerfile创建容器 Dockerfile 因工作环境 xff0c 需要有深度学习的那一套环境 xff0c 还要用到一些可视化的东西 xff0c
  • 简单理解TCP/IP协议栈

    协议定义的是一系列的通信标准 xff0c 通信双方需要共同按照这一标准进行正常的数据收发 xff1b 信的双方需要共同按照这一个标准进行正常的数据收发 xff1b xff08 两人 xff0c 说共同的语言 xff0c 不然不能交流 xff
  • ubuntu查看系统版本和linux内核版本

    lsb release a No LSB modules are available Distributor ID Ubuntu Description Ubuntu span class token number 18 04 span 5
  • 电路设计——教你如何阅读数据手册

    我们为什么要看数据手册 xff0c 数据手册又有什么作用呢 xff1f 我们能够从中得到哪些东西呢 xff1f 哪些是我们所需要的呢 xff1f 下面我们以AD847芯片为例来说一说我们在工作中以及设计中需要注意哪些方面 下面是芯片的数据手
  • ORB-SLAM3笔记(编译、踩坑、论文、看代码)

    目前基于orb slam想做的方向 提升动态建图精度 xff08 东西Map就是上不去 KITTI有几个groundtruth官网下架了找不到而且 红外相机退化环境下的点线融合 数据集https sites google com view
  • 【树莓派】Ubuntu-mate安装及ROS安装

    树莓派使用之Ubuntu mate 烧录镜像至SD卡下载镜像烧录SD卡 将SD插入树莓派实物GIF安装流程 树莓派开机sudo reboot换源下载SSH首先得下载net tools下载openssh 电脑远程操作下载 Xshell设置远程
  • 【SLAM】ORB_SLAM3 初步调试运行详细记录

    前言 相关解析及参考 xff1a 超详细解读ORB SLAM3单目初始化 xff08 下篇 xff09 ORB SLAM3和之前版本有什么不同 xff1f 小白学视觉的技术博客 51CTO博客 orbslam3 官方源码地址 xff1a h
  • 如何实现一个简单的Ubuntu远程虚拟桌面

    文章目录 前言一 什么是noVNC xff1f 二 如何部署1 安装VNC服务端1 1 安装tigervnc standalone server1 2 安装tigervnc standalone server1 3 安装xserver xo
  • 软件开发经验总结 读源代码的艺术

    读取源代码是每一个开发人员成长的必经之路 xff0c 一份优秀的源代码 xff0c 是作者多年开发技术的心血结晶 xff0c 研究一份优秀的源代码 xff0c 总是能够让你的技术得到一定程度的提升 然后 xff0c 读别人的源代码并不是拿着
  • vsCode用户设置vue.js、保存格式化代码

    34 window zoomLevel 34 0 34 workbench iconTheme 34 34 vscode icons 34 34 editor wordWrap 34 34 on 34 vscode默认启用了根据文件类型自动
  • PX4姿态控制算法分析

    PX4姿态控制流程图 图片来源 Px4的姿态控制分为角度环 外环 和角速度环 内环 xff0c 角度环使用P控制 xff0c 角速度环使用PID控制 xff0c 由于偏航通道响应较慢 多旋翼飞行器的俯仰和滚转运动由旋翼的升力力矩产生 xff
  • 滤波器的设计(一)

    滤波器的设计 引言 对实际的控制系统而言 xff0c 采集到的原始信号往往是有噪声的 xff0c 而噪声往往会对系统的稳定性能产生隐患 xff1b 或为了提取有用的控制信号 xff0c 滤除不必要的频域成分 xff0c 数字滤波技术必不可少
  • 算法

    算法 xff08 Algorithm xff09 xff1a 计算机解题的基本思想方法和步骤 算法的描述 xff1a 是对要解决一个问题或要完成一项任务所采取的方法和步骤的描述 xff0c 包括需要什么数据 xff08 输入什么数据 输出什