Keil 模拟器 STM32F103 上手指南

2023-05-16

一般嵌入式操作系统因为它的特殊性,往往和硬件平台密切相关连,具体的嵌入式操作系统往往只能在特定的硬件上运行。对于刚接触 RT-Thread 操作系统的读者并不容易马上就获得一个和 RT-Thread 操作系统相配套的硬件模块,但随着计算机技术的发展,我们可以采用软件方式来模拟一个能够运行 RT-Thread 操作系统的硬件模块,这就是 ARM 公司的 MDK-ARM 仿真模拟环境。

MDK-ARM(MDK-ARM Microcontroller Development Kit)软件是一套完整的集成开发环境(IDE),它出自 ARM 公司,包括了针对 ARM 芯片(ARM7,ARM9,Cortex-M 系列,Cortex-R 系列等)的高效 C/C++ 编译器;针对各类 ARM 设备、评估板的工程向导,工程管理;用于软件模拟运行硬件平台的模拟器;以及与市面上常见的如 ST-Link,JLink 等在线仿真器相连接以配合调试目标板的调试器。MDK-ARM 软件中的软件仿真模拟器,采用完全软件模拟方式解释执行 ARM 的机器指令,并实现外围的一些外设逻辑,从而构成一套完整的虚拟硬件环境,使得用户能够不借助真实的硬件平台就能够在电脑上执行相应的目标程序。

MDK-ARM 集成开发环境因为其完全的 STM32F103 软件仿真环境,也让我们有机会在不使用真实硬件环境的情况下直接在电脑上运行目标代码。这套软件仿真模拟器能够完整地虚拟出 ARM Cortex-M3 的各种运行模式、外设,如中断异常,时钟定时器,串口等,这几乎和真实的硬件环境完全一致。实践也证明,本文使用到的这份 RT-Thread 入门例程,在编译成二进制代码后,不仅能够在模拟器上软件模拟运行,也能够不需要修改地在真实硬件平台上正常运行。

下面我们将选择 MDK-ARM 集成开发环境作为目标硬件平台来观察 RT-Thread 操作系统是如何运行的。

准备工作

MDK 开发环境:需要安装 MDK-ARM 5.24 (正式版或评估版,5.14 版本及以上版本均可),这个版本也是当前比较新的版本,它能够提供相对比较完善的调试功能。安装方法可以参考 Keil MDK安装。

使用 STM32F103 软件仿真 ,还需要下载安装 STM32F103 pack 文件,如果在 MDK 中下载较慢,也可以点击此处下载,下载后双击安装即可。

初识 RT-Thread

作为一个操作系统,RT-Thread 的代码规模怎么样呢?在弄清楚这些之前,我们先要做的就是获得与本文相对应的 RT-Thread 的例子,这份例子可以从以下链接获得:

RT-Thread Simulator 例程

这个例子是一个压缩包文件,将它解压,我们这里解压到 D:/。解压完成后的目录结构如下图所示:

rtthread_simulator_v0.1.0 代码目录

各个目录所包含的文件类型的描述如下表所示:

目录名描述
applicationsRT-Thread 应用程序。
rt-threadRT-Thread 的源文件。
- componentsRT-Thread 的各个组件目录。
- includeRT-Thread 内核的头文件。
- libcpu各类芯片的移植代码,此处包含了 STM32 的移植文件。
- srcRT-Thread 内核的源文件。
- toolsRT-Thread 命令构建工具的脚本文件。
driversRT-Thread 的驱动,不同平台的底层驱动具体实现。
LibrariesST 的 STM32 固件库文件。
kernel-sample-0.1.0RT-Thread 的内核例程。

在目录下,有一个 project.uvprojx 文件,它是本文内容所引述的例程中的一个 MDK5 工程文件,双击 “project.uvprojx” 图标,打开此工程文件:

打开第一个 RT-Thread 工程

在工程主窗口的左侧 Project 栏里可以看到该工程的文件列表,这些文件被分别存放到如下几个组内,分别是:

目录组描述
Applications对应的目录为 rtthread_simulator_v0.1.0/applications,它用于存放用户应用代码。
Drivers对应的目录为 rtthread_simulator_v0.1.0/drivers,它用于存放 RT-Thread 底层的驱动代码。
STM32_HAL对应的目录为 rtthread_simulator_v0.1.0/Libraries/CMSIS/Device/ST/STM32F1xx,它用于存放 STM32 的固件库文件。
kernel-sample对应的目录为 rtthread_simulator_v0.1.0/kernel-sample-0.1.0,它用于存放 RT-Thread 的内核例程。
Kernel对应的目录为 rtthread_simulator_v0.1.0/src,它用于存放 RT-Thread 内核核心代码。
CORTEX-M3对应的目录为 rtthread_simulator_v0.1.0/rt-thread/libcpu,它用于存放 ARM Cortex-M3 移植代码。
DeviceDrivers对应的目录为 rtthread_simulator_v0.1.0/rt-thread/components/drivers,它用于存放 RT-Thread 驱动框架源码。
finsh对应的目录为 rtthread_simulator_v0.1.0/rt-thread/components/finsh,它用于存放 RT-Thread 命令行 finsh 命令行组件。

现在我们点击一下窗口上方工具栏中的按钮img,对该工程进行编译,如图所示:

编译工程

编译的结果显示在窗口下方的 “Build” 栏中,没什么意外的话,最后一行会显示“0 Error(s), * Warning(s).”,即无任何错误和警告。

注:由于工程中包含的内核例程代码较多,若使用的是 MDK 试用版本,则会有 16KB 限制,此时可以只保留某个目标例程的代码(例如内核例程只保留一个 thread_sample.c 参与编译),将其他不用的例程先从工程中移除,然后编译。

在编译完 RT-Thread/STM32 后,我们可以通过 MDK-ARM 的模拟器来仿真运行 RT-Thread。点击窗口右上方的按钮img或直接按 “Ctrl+F5” 进入仿真界面,再按 F5 开始运行,然后点击该图工具栏中的按钮或者选择菜单栏中的 “View→Serial Windows→UART#1”,打开串口 1 窗口,可以看到串口的输出只显示了 RT-Thread 的 LOGO,这是因为用户代码是空的,其模拟运行的结果如图所示:

模拟运行 RT-Thread

提示:我们可以通过输入Tab键或者 help + 回车 输出当前系统所支持的所有命令,如下图所示。

模拟运行 RT-Thread

系统启动代码

一般了解一份代码大多从启动部分开始,同样这里也采用这种方式,先寻找启动的源头。以 MDK-ARM 为例,MDK-ARM 的用户程序入口为 main() 函数,位于 main.c 文件中。系统启动后先从汇编代码 startup_stm32f103xe.s 开始运行,然后跳转到 C 代码,进行 RT-Thread 系统功能初始化,最后进入用户程序入口 main()。

下面我们来看看在 components.c 中定义的这段代码:

//components.c 中定义
/* re-define main function */
int $Sub$$main(void)
{
    rt_hw_interrupt_disable();
    rtthread_startup();
    return 0;
}复制错误复制成功

在这里 $Sub$$main 函数仅仅调用了 rtthread_startup() 函数。RT-Thread 支持多种平台和多种编译器,而 rtthread_startup() 函数是 RT-Thread 规定的统一入口点,所以 $Sub$$main 函数只需调用 rtthread_startup() 函数即可。例如采用 GNU GCC 编译器编译的 RT-Thread,就是直接从汇编启动代码部分跳转到 rtthread_startup() 函数中,并开始第一个 C 代码的执行的。在 components.c 的代码中找到 rtthread_startup() 函数,我们将可以看到 RT-Thread 的启动流程:

int rtthread_startup(void)
{
    rt_hw_interrupt_disable();

    /* board level initalization
     * NOTE: please initialize heap inside board initialization.
     */
    rt_hw_board_init();

    /* show RT-Thread version */
    rt_show_version();

    /* timer system initialization */
    rt_system_timer_init();

    /* scheduler system initialization */
    rt_system_scheduler_init();

#ifdef RT_USING_SIGNALS
    /* signal system initialization */
    rt_system_signal_init();
#endif

    /* create init_thread */
    rt_application_init();

    /* timer thread initialization */
    rt_system_timer_thread_init();

    /* idle thread initialization */
    rt_thread_idle_init();

    /* start scheduler */
    rt_system_scheduler_start();

    /* never reach here */
    return 0;
}复制错误复制成功

这部分启动代码,大致可以分为四个部分

  • 初始化与系统相关的硬件;
  • 初始化系统内核对象,例如定时器,调度器;
  • 初始化系统设备,这个主要是为 RT-Thread 的设备框架做的初始化;
  • 初始化各个应用线程,并启动调度器。

用户入口代码

上面的启动代码基本上可以说都是和 RT-Thread 系统相关的,那么用户如何加入自己的应用程序的初始化代码呢?RT-Thread 将 main 函数作为了用户代码入口,只需要在 main 函数里添加自己的代码即可。

int main(void)
{
  /* user app entry */
  return 0;
}复制错误复制成功

提示:
为了在进入 main 程序之前,完成系统功能初始化,可以使用 $sub$$$super$$ 函数标识符在进入主程序之前调用另外一个例程,这样可以让用户不用去管 main() 之前的系统初始化操作。详见ARM® Compiler v5.06 for µVision® armlink User Guide

跑马灯的例子

对于从事电子方面开发的技术工程师来说,跑马灯大概是最简单的例子,就类似于每种编程语言中程序员接触的第一个程序 Hello World 一样,所以这个例子就从跑马灯开始。让它定时地对 LED 进行更新(亮或灭)。

我们 UART#1 中输入 msh 命令:led 然后回车就可以运行起来了,如图所示:

模拟运行跑马灯

跑马灯例子

/*
 * 程序清单:跑马灯例程
 *
 * 跑马灯大概是最简单的例子,就类似于每种编程语言中程序员接触的第一个程序
 * Hello World 一样,所以这个例子就从跑马灯开始。创建一个线程,让它定时地对
 * LED 进行更新(亮或灭)
 */

int led(void)
{
    rt_uint8_t count;

    rt_pin_mode(LED_PIN, PIN_MODE_OUTPUT);

    for(count = 0 ; count < 10 ;count++)
    {
        rt_pin_write(LED_PIN, PIN_HIGH);
        rt_kprintf("led on, count : %d\r\n", count);
        rt_thread_mdelay(500);

        rt_pin_write(LED_PIN, PIN_LOW);
        rt_kprintf("led off\r\n");
        rt_thread_mdelay(500);
    }
    return 0;
}
MSH_CMD_EXPORT(led, RT-Thread first led sample);复制错误复制成功

其他例子

其他更多的内核示例可以从 kernel-sample-0.1.0 目录下找到。

更多内核示例

常见问题

  • 出现如下编译错误
rt-thread\src\kservice.c(823): error: #929: incorrect use of vaarg fieldwidth = aarg(args, int);
rt-thread\src\kservice.c(842): error: #929: incorrect use of vaarg precision = aarg(args, int);
………复制错误复制成功

原因:这类问题基本上都是因为安装了 ADS 导致,ADS 与 keil共存,va_start 所在的头文件指向了 ADS 的文件夹。

解决办法:

  • 删除 ADS 环境变量
  • 卸载 ADS 和 keil,重启电脑,重装keil

第三方 RTOS 兼容层

为方便之前有其他 RTOS 使用经验的用户快速上手 RT-Thread,以及将基于其他 RTOS 的 API 编写的应用层代码快速移植到 RT-Thread 上,RT-Thread 社区编写了第三方 RTOS 兼容层。目前支持以下第三方 RTOS 的 API 无感移植:

  • uCOS-II操作系统兼容层
  • uCOS-III操作系统兼容层

以上第三方 RTOS 兼容层均提供本章所述的STM32F103 Keil 软件模拟工程,以供入门者可以不依托开发板评估兼容层。


转载于:https://www.rt-thread.org/document/site/#/rt-thread-version/rt-thread-standard/tutorial/quick-start/stm32f103-simulator/stm32f103-simulator

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Keil 模拟器 STM32F103 上手指南 的相关文章

  • keil添加新文件.c.h

    文章目录 添加文件到组中1 双击组名称2 点击快捷键 添加头文件路径 h1 点击魔术棒快捷键2 头文件加 添加文件到组中 1 双击组名称 双击组名称 xff0c 打开弹窗 xff0c 然后选择相应的组中的新文件 xff0c 在点击ADD 2
  • STM32F103 GPIO内部电路图

    GPIO结构图 GPIO工作模式 输入模式 输入浮空 输入上拉 输入下拉 模拟输入 输出模式 开漏输出 开漏复用功能 推挽式输出 推挽式复用功能 输入浮空 输入上拉 输入下拉 模拟输入 开漏输出 开漏复用功能 推挽式输出 推挽式复用功能
  • STM32 Keil:warning: #223-D: function "LED_Init" declared implicitly

    include stm32f10x h include led h int main LED Init while 1 GPIO SetBits GPIOD GPIO Pin 6 运行时警告 warning 223 D function L
  • --- Error: User Command terminated, Exit-Code = 1解决办法

    使用keil MDK编译项目时 compiling编译通过 但是文件最后出现错误 Error User Command terminated Exit Code 1 经查阅资料 MDK需要fromelf exe文件生成 bin 那么在重新安
  • keil的错误: Error: Encountered an improper argument 的2019.6.22最新解决方法

    keil的错误 Error Encountered an improper argument 的解决方法 什么都不要改动 最正确的办法是重新破解
  • 入门stm32简单电灯实验

    看原理图找内置LED接线 stm32f103 我这边是接的 PE5 外设时钟使能寄存器的相关配置 因为LED1接的是PE5 所以GBIO端口E 查看中文手册获取GPIOE寄存器起始地址0x4001 1800 通过查看系统架构 可以发现GPI
  • 把keilC51中不使用的代码禁止分配空间,为程序瘦身!

    把target options中的device页中选上 Use LX51 然后在LX51 Misc页中的Misc Control中填入 REMOVEUNUSED 确认后重新编译即可自动去掉未调用的函数 如下图
  • STM32进入Standby模式并唤醒

    项目背景 设备具备电池 电源适配器两种供电方式 实现出厂 和电池一并密封装盒 时最低功耗 即进入待机模式 到用户开始使用时需要手动磁棒唤醒 开始复位运行 在检测到设备是交流供电时 设备全速运行 检测到是电池供电时 定时采集数据 采集完毕进入
  • keil编译错误:ERROR L250: CODE SIZE LIMIT IN RESTRICTED VERSION EXCEEDED

    出现这个错误 很多网上都说是没注册成功导致的 注册成功的话会在keil的菜单栏 help gt about 里看到如下的显示 我的keil里about显示注册成功了 但还是出现错误提示 ERROR L250 CODE SIZE LIMIT
  • 嵌入式平台memcpy实验总结

    1 概述 最近项目中性能比较吃紧 经过跟踪发现 memcpy操作的性能存在一定问题 于是 做了一些尝试去验证一些想法 记录一下 环境 MDK530 Cortex M0芯片 主频80MHz左右 2 优化手段 在优化之前 我们要先确定基本的性能
  • keil勾选Use MicroLIB 的作用

    MicroLib是一个针对用C编写的基于ARM的嵌入式应用程序的高度优化的库 与包含在ARM编译器工具链中的标准C库相比 MicroLib提供了许多嵌入式系统所需的代码大小的显著优势 下图对使用标准库和使用微库代码大小进行了对比 Micro
  • STM32配合火焰传感器的火灾报警

    实验材料 STM32F03 我这里用的是正点原子的战舰 火焰传感器 还有个蜂鸣器 我这个开发板自带 也是可外接的 火焰传感器介绍 工作原理 传感器模块在环境火焰光谱或者光源达不到设定阈值时 DO 口输出低电平 当外界环境火焰光谱或者光源超过
  • STM32F103 - 配置规则通道参数 - 05 - unfinished -unfinished-unfinished

    五 配置规则通道参数 设置指定ADC的规则组通道 一个序列 采样时间 常规通道配置 ADC RegularChannelConfig ADC1 ch 1 ADC SampleTime 239Cycles5 ADC1 ADC通道 采样时间为2
  • stm32f103 TIM2定时器4路PWM输出实验

    这里以TIM2为例 pwm c include pwm h uint16 t TIM2 CCR1 Val uint16 t TIM2 CCR2 Val uint16 t TIM2 CCR3 Val uint16 t TIM2 CCR4 Va
  • 关于Keil不识别系统头文件core_cm3.h的问题

    之前遇到一次这个问题 解决了 之后又遇到一次就忘了之前是怎么解决的了 所以记录一下 所有不识别系统头文件的问题都可以用这种方式解决 找到你工程目录下的头文件 我以core cm3 h为例 这个头文件在STM32 LIBRARY CMSIS
  • STM32F103移植FreeRTOS必须搞明白的系列知识---2(FreeRTOS任务优先级)

    STM32F103移植FreeRTOS必须搞明白的系列知识 1 Cortex CM3中断优先级 STM32F103移植FreeRTOS必须搞明白的系列知识 2 FreeRTOS任务优先级 STM32F103移植FreeRTOS必须搞明白的系
  • keil找不到device,怎么办?

    下载好的keil 准备调试程序 却发现这个问题 找不到我需要的芯片啊啊啊 头大 后面发现是缺少相应的pack 安装keil时 好像没有自动装上STM32系列芯片 所以得需要自己安装 百度一下 找一些资源 然后 把途中红色框住的 分别放在安装
  • 解决keil中 点击setting 程序中断问题

    自己写了一个LED常亮的程序 入门嘛 但是程序在下载后 点击 debug setting 在软件识别J link后 程序是成功的 但是LED不亮了 下面是解决方法 记住把2标记处的对勾去掉就可以了 这个功能是 在你连接完成时自动在Reset
  • Keil注释中的中文字体乱码解决方法

    1 刚刚安装好keil发现选中keil的注释部分会乱码 而且修改注释也会出现莫名的乱文 2 在edit configuration中 Editor Encoding改为Chinese GB2312即可 需要将乱码删掉 重新输入就不会出现乱码
  • 如何更改 FreeRTOS 中任务的最大可用堆大小?

    我通过以下方式在任务中创建元素列表 l dllist pvPortMalloc sizeof dllist dlllist 有 32 字节大 我的嵌入式系统有 60kB SRAM 所以我希望系统可以轻松处理我的 200 个元素列表 我发现在

随机推荐

  • 你和高手的差距,就在一念之间

    我一直做软件开发和技术管理工作 xff0c 虽然在做联合创始人期间也参与2B的市场销售运营等众多事情 xff0c 但2C的电商卖货这件事从未体验过 想起小学时学的小马过河的故事 xff0c 要想知道怎么做 xff0c 不能只听别人的说法 x
  • 如何看待2022届秋招嵌入式开发岗位薪资大涨?

    转载于无际 xff1a http t csdn cn ZSlSW 大家好 xff0c 我是无际 最近在网上看到了关于2022届嵌入式开发岗位薪资大涨的帖子 xff0c 比如说像海康 大华 汇顶 联发科等公司的招聘 普遍年薪达到25W xff
  • 电子工程师是怎样的成长之路?

    转载于无际 xff1a https blog csdn net weixin 43982452 article details 121535177 spm 61 1001 2014 3001 5502 10年前 xff0c 我就是通过智能小
  • 单片机怎么做定时器矩阵,彻底解决各种定时问题?

    转载于 xff1a https blog csdn net weixin 43982452 article details 120555258 spm 61 1001 2014 3001 5502 大家好 xff0c 我是无际 定时功能非常
  • 为什么我学51单片机很顺利,学STM32却一头雾水?

    转载于 xff1a https blog csdn net weixin 43982452 article details 120515134 spm 61 1001 2014 3001 5502 五年懂行 xff0c 十年称王 当初自学转
  • 物联网专业真的把人坑惨了?浅谈物联网的未来发展趋势和未来方向

    转载于 xff1a https blog csdn net weixin 43982452 article details 120200879 spm 61 1001 2014 3001 5502 大家好 xff0c 我是无际 从事10年单
  • STM32单片机跑RTOS会比裸机有优势吗?

    转载于无际 xff1a https blog csdn net weixin 43982452 article details 115139030 spm 61 1001 2014 3001 5502 在工作中总是能碰到通过秀技术来满足虚荣
  • 如何快速学会别人的代码和思维

    转载于 xff1a https blog csdn net weixin 43982452 article details 120700863 spm 61 1001 2014 3001 5502 大家好 xff0c 我是无际 也有很多天没
  • 单片机和嵌入式哪个好?单片机会被嵌入式取代吗?

    转载于 xff1a https blog csdn net weixin 43982452 article details 120062206 spm 61 1001 2014 3001 5502 很多初学者都搞不清楚单片机和嵌入式的区别
  • 怎么看懂别人写的单片机项目代码?

    转载于 xff1a https blog csdn net weixin 43982452 article details 120049443 spm 61 1001 2014 3001 5502 记得刚开始接触代码的时候 xff0c 总觉
  • 嵌入式单片机产品开发设计框架

    转载于 xff1a https blog csdn net weixin 43982452 article details 119616145 spm 61 1001 2014 3001 5502 老板突然要给你一个新的需求 xff0c 要
  • 8大话题,解惑企业数字化

    从IT到DT xff0c 从信息化到数字化 xff0c 这个观念已经毋庸置疑 xff0c 但是 xff0c 这条路却缺少参照 xff0c 暗夜前行 xff0c 全靠摸索 关于数字化 xff0c 肯定不是上马一些OA工具 购买一些营销工具就行
  • ARINC 429总线学习资料?

    Hello xff0c 我是小熊coder xff0c 方向是嵌入式AI xff0c 后端开发 我的主页 xff1a Home xff0c 欢迎互相关注 xff0c 互相学习 最近在网上寻找关于ARINC 429总线的资料时 xff0c 发
  • 周期任务框架在裸机、RTOS上的实现

    周期任务框架在裸机 RTOS上的实现 一 任务的类型 运行的程序 xff0c 有响应指令的触发式程序 xff0c 也有一直运行的守护程序 xff0c 周期程序 贴别是在单片机 嵌入式领域 xff0c 大部分程序都是周期性的执行 xff0c
  • CAN通讯实验

    前面我们讲解了CAN总线的一些基础知识 xff0c 文章链接 xff1a 一口气从零读懂CAN总线以及应用 了解完之后 xff0c 我们也需要来用一用CAN总线 这篇文章就是主要讲解在STM32中怎么使用CAN总线
  • 航空机载总线网络概述

    1 机载总线网络概述 现代战斗机的航空电子系统是航空电子技术经历了半个多世纪的漫长演变和不断进步的结果 航空电子系统结构的每次变化 xff0c 其核心的机载总线网络技术也不断跨上新台阶 xff0c 而且每次变革都能使飞机性能得到大幅提升 现
  • 【C/C++开源库】单片机/嵌入式中的C语言日志库

    日志系统在系统开发和调整过程中的重要性 xff0c 大家应该都清楚 xff0c 特别是项目出问题之后 xff0c 却没有日志可以帮忙定位问题 xff0c 就非常令人痛苦 因为我们不可能一直通过调试器去单步调试程序 xff0c 所以设备的运行
  • 稚晖君软件硬件开发环境总结

    0 引言 这两天在bilibili上发现一个宝藏up主 xff0c 稚晖君 啧啧啧 xff0c 很厉害 虽然年龄不大 xff0c 但是真全栈 xff0c 从产品到机械到电路到软件 xff0c 这就是那种真的聪明 xff0c 一学就会的高智商
  • 一文弄清51、STM32、Linux点灯的区别

    嵌入式初学者入门的第一个 项目 就是LED点灯 xff0c 那么 xff0c 本文带你看看51 STM32 Linux点灯有什么区别 xff1f 51点灯 51点灯 xff0c 是很多单片机初学者的首选 xff0c 难度也是相对比较低的 准
  • Keil 模拟器 STM32F103 上手指南

    一般嵌入式操作系统因为它的特殊性 xff0c 往往和硬件平台密切相关连 xff0c 具体的嵌入式操作系统往往只能在特定的硬件上运行 对于刚接触 RT Thread 操作系统的读者并不容易马上就获得一个和 RT Thread 操作系统相配套的