代码是如何控制硬件的?

2023-05-16

已剪辑自: https://mp.weixin.qq.com/s/UDbxTfAMLAWE8LjUiqGUBQ

先说代码:

我们是用电脑的键盘来输入的指令,每一个指令都对应一个ASCII码,而这里的ASCII码就是有序的电压的高低(或电流的有无,下面只提电压的高低),即我们输入的是电压的高低,你所看到代码是这些电压的高低控制显示器所显示的图像,其实电脑也不知道它是什么,只知道这样显示。
结论:代码其实就是存储在存储器(内存、硬盘或者闪存等等)中有序的电压的高低。

**
**再说编译:
编译是一个有序的电压的高低向另一种有序的电压高低的一种转换过程,下面以52单片机为例,我们编译是从表示ASCII码的那种有序电压高低转换为52单片机能够识别的另一种规定好的有序电压高低,即表示HEX文件的电压高低。
结论:编译出的结果还是电脑中存储的有序电压高低。

**
****程序*烧录*到单片机:
接下俩就是烧录,理解了上面两点就很容易理解下面的内容,烧录就是电脑中的有序电压高低通过数据线传输到单片机中的ROM中。
接下来ROM就可以释放其中的电压来控制外围的电路。
总结:从代码的编辑到最后对电路的控制都是电压在起作用,只是为了方面我们而给我们展现的形式不一样而已,而其本质都是电压,这样也就不存在转换。
理解这句话:世界上没有软件,软件只是对硬件的一种反映,就像意识是对世界的一种反映是一样的!
相信这样就很容易理解了。

单片机中的0与1:
**只要你提到0/1,提到软件,这个问题就没法理解…因为软件【包括0/1】和硬件始终存在一道无法跨越的鸿沟;

**你说你在单片机中写0,请问你是如何写0的?在键盘上敲个0?实际还是电平【和我们理解的数字没关系】,那个0只是你在电脑显示器上电平的呈现形式,那个所谓的0【实质是电平】可以传输到单片机中的ROM中,电平控制电平没什么疑问吧,这样就输出低电平了…

翻开数字电路相关教材,最前面几页。

一般它都会告诉你,三极管/场效应管类似继电器(一种通过线圈产生磁场、然后用磁场控制物理开关的通断与否的设备);在它一个管脚上输入/切断电压信号,另一个管脚就会出现高/低电平。

PS:继电器是一种利用电磁铁控制的开关;当向电磁铁通电时就产生磁场,而这个磁场就会吸合或者分离开关,从而实现“以微弱电流控制另一条电路的通断”这个功能。
其中,平常触点接触使得被控制电路导通、给控制它的电磁铁通电后就使得开关断开的那种继电器,就等效于非门。三极管拿来当开关使用时,和这种继电器效果几乎一样。

以上,就是数字电路的基础。

指令

你敲入的任何东西,最终就是通过类似的东西/机制储存的;所谓“指令”,其实就是“某个命令码“(一般叫机器码),这个”命令码”会改变CPU内部一堆“开关”的状态,以激活不同的电路;然后数据(前面提到过,它也是用三极管/场效应管的导通与否“记忆”的)利用类似的机制,被送入这个被“指令”激活的电路——这些电路是工程师们利用最最基础的三极管控制原理,用一大堆三极管组合出来的:当数据(某种高低电平的组合)经过这些电路后,就会变成另外一组高低电平的组合:这个组合刚好和“指令”代表的功能所应该给出的结果一致。

这段话可能有点难以理解。那么,看下最简单的与门吧:数据有两个,分别通过两条不同的线路进入与门;输出只有一个,必须给它输入两个高电平,它才会输出高电平;否则就输出低电平(这一般简化表述为:只有输入两个1,它才输出1,否则输出0)。

——这就是所谓的“与”逻辑;一组这样的“与”逻辑就与计算机指令/高级语言里的“按位与”直接对应。
——而按位与这个指令,意思就是选择一组线路,把数据导通到这组“与”逻辑电路之上;然后这组与逻辑电路就会输出两组数据的按位与的结果。

——类似的,二进制加法,1+1=0(同时进位);1+0=1;0+1=1;0+0=0:这可以用一个异或电路来模拟(因为异或电路的规则就是1+1=0、1+0=1、0+1=1、0+0=0);但这样(同时进位)这个说明就会丢失了,所以需要同时用一个与门模拟高位进位(前面说过,与门就是只有两个1才会输出1,其它输出0;综合异或的说明:这是不是就和二进制加法的规则刚好一致了呢?)

然后更高一位就成了两根输入线上的数据相加、再加上进位数据……依此类推:这就是用开关做加法的思路。

更多位数的数字的加法,只不过是对应位的二进制加法再加上前一位的进位位罢了,没什么特别的——这样堆起来的一组开关,就叫加法器。

——add指令呢,就是选中上面做的那一堆用来做加法的开关们;然后给它们输入数据(不要忘了,两组高低电平而已),这些数据就驱动着构成加法器的那些开关们,噼里啪啦一阵乱响之后(嗯,如果是老掉牙的继电器计算机的话:还记得BUG的故事吗?),电路就稳定在某个状态了:此时,加法器的输出,恰恰就是输入数据的和(当然是这样了。前面讲过,我们是刻意用异或门和与门精心组合,让它们刚好和加法的效果一致)。

——其它种种指令,莫不大同小异(更复杂/高级的时钟、流水线啥的……暂时就无视吧)

你可以翻翻课本,讲过加法器的实现。

而加法器和另外一些逻辑电路加起来,就是所谓的ALU(算术逻辑单元,一下子就高大上了有木有)。(当然了,实际上没这么简单。比如至少还要加上时钟信号来打拍子协调开关们的动作、加上锁存器来暂存数据之类——前面提到过,给加法器输入数据,构成加法器的一堆开关需要噼里啪啦一阵才能进入稳定态,然后就可以读出答案:时钟信号就是用来协调这些开关,保证它们都能得到足以达到稳定态的时间用的)

简而言之,代码在计算机内部,本身就是一组特定的高低电平组合;而计算机是精心设计的、海量的、用高低电平控制通断的开关组;当给这个开关组输入不同的电平组合时,就会导致它内部出现复杂的开关动作,最终产生另外一组高低电平的组合作为输出;这些开关动作经过精心设计,使得它的行为是可解释、可预测的——解释/预测的规则,就是CPU的指令集。

——换言之,在机器内部,一切本来就是高低电平,不存在转换问题。
——反而是键盘/鼠标/mic的输入要经过机械过程到数字信号的转换;而视频、音频之类的输出,要经过数模转换再通过其它机制才能变成人可辨识的信息

图灵机原理——CPU的三板斧

图灵的贡献就是,他证明了,如果一台机器,可以接受一系列的输入、并按输入指示完成运算;那么,当这台机器可支持的操作满足“图灵完备”的要求时,它就可以模拟任何其它数学/逻辑运算!

这实在是太关键了。要知道,人类早就想利用机械装置代替一些脑力工作了。比如说,算盘,按照口诀机械的一阵摆弄,答案就出来了;还有老外的各种机械计算器,比如手摇计算机到炮兵用的弹道计算机、再到德军的机械加/解密机等等,这种尝试可以说是数不胜数。

但,再怎么的,这些东西也只能解决特定的问题。想做能解决全部问题的通用机?天哪,那得有多复杂。

而图灵,就在这时候,为人类指出了一条通向机械智能的可行道路……

——一台只会做加法的机器,只要能想办法让它实现“连续做指定次数加法”,那它就可以模拟一台乘法机(模拟二进制乘法会更容易一些)。而能够模拟任何数学/逻辑运算的机器,并不比加法机复杂太多。

换句话说,要搞出一台“无所不能”的计算机器,并不需要穷尽一切可能,而是只要支持程序输入、再支持少的令人发指的几条指令,就可以办到了。

比如说,CPU,它根本上其实只会三招:与、或、非。

与就是全为真,则输出真;或是只要一个为真,则输出真;非则是输入真它就输出假、输入假就输出真——所谓的真假,一般写作1、0,在计算机内部就是高低电平。

别看CPU只会这三板斧;可当它们巧妙的组合起来后(构造成计数器、指令寄存器等等等等再组合成CPU),就达到了图灵完备的要求,产生了质变——比如,前面提到过的加法器,就是“如何用这类基本逻辑模拟多位二进制数的加法”的一个实例。

更具体是怎么做的,这就不是三言两语能说清楚的了。还是仔细看看自己的数字电路这本书吧。

——数字电路研究的,就是如何用与或非这三板斧,来实现各种高级运算甚至CPU指令集这么复杂的事物(甚至是直接实现某些算法,如加密、视频编码等等)
——而CPU指令集呢,则形成了另外一个强大得多的图灵机(体现在能够支持更多比原始的与或非更”高阶“的操作上):这就是机器码(和汇编指令几乎一一对应)
——然后呢,诸如c/c++、java等高级语言,就是利用CPU指令集形成的、另一个更加强大的图灵机(编译器/解释器负责两种图灵机之间的翻译工作)。
——而程序员们研究的,就是如何用编程语言这样一个强大的图灵机,去实现office、photoshop、wow甚至人工智能这样复杂的事物。

这是一个层层模拟的过程。

————————————————————————————
总之,开关的通断是基础;而各种神奇的功能是如何用这么简单的东西组合出来的呢,那就必须理解“程序”原理(也就是图灵机原理)了。

如果说,计算机是一个人,那么,软件就是他掌握的知识。这个知识使得他不仅能掰着手指头数数(相当于硬件直接提供的基础功能),甚至还可以去洞悉宇宙的奥秘(相当于利用软件“模拟”出来的、无穷无尽的扩展功能)。

————————————————————————————————
具体一些,人是怎样开车的呢?

首先,他要知道车的控制原理(知识/软件);然后,基于这些知识,大脑向他的四肢肌肉发出神经冲动,驱使他完成转方向盘、挂挡、踩离合器/油门等种种动作,最终达到开车这个目的。

软件控制硬件的原理

前面说过,程序本身就是高低电平的组合;它通过在CPU上执行来模拟各种决策过程;同时,计算机就是一堆开关;那么,通过指令向某些地址写出数据(访问特定地址是通过各种寻址机制/指令完成的,归根结底也可以说是通过开关切换,改变了电路拓扑),就等于开启/关闭了对应地址上的某个开关;这个开关可以是类似CPU内部那样的一组三极管,也可以是通向另外一个继电器的信号线——这个信号就促使继电器闭合,于是电机导通……

就好象人开汽车一样,神经发出的微不足道的电脉冲经过肌肉放大,影响了涉及数百甚至数千马力的能量洪流的发动机/变速箱的运转,然后汽车就开走了。

计算机也一样:它通过向控制特定地址上的开关输出0/1(高低电平),就可以通过事先准备的物理设施驱动诸如航模电机、舵机等等机构,这就完成了航模控制。

完整的控制回路甚至可以是:

航模上的传感器采集飞行姿态、地形、位置等等数据(最终转换成高低电平构成的信号)----信号通过某些端口送到CPU-----CPU执行程序,程序读取传感器发来的信号,决定下一步的行动-----经过程序的智能判断后,通过控制特定地址上的开关(前面提过,向这个地址发一组高低电平构成的数据就行了),驱动诸如航模电机、舵机等等机构,完成航模控制。

这,就是所谓的“机器人”(当然,只是最简化的机器人原理而已)。

我们就用代码展示一下怎么会显示低电平

以51单片机举例

我把题主的意思先用51单片机C语言写出来,可以在keil中运行的

图片

好了,题主说在单片机控制里,写0就会输出低电平,是这样的。

题主说的输出低电平就是在其中的一个引脚上输出低电平

我想看不懂代码的人也能够看到代码第七行里,p1.0这个变量被赋予了0值

那么咱们深入的看一下给他赋0值单片机内部发生了什么变化

首先给大家展示一下单片机一个引脚内部到底是什么东东,如下图。

图片

左边的大家就不用看了,右边给大家解释一下,最右边的就是引脚了

虽然引脚是一个,但是大家可以看到

右边是有两个装置的,上边的装置是用来保持内部输出到引脚的电平不会被外部的信号所干扰。下边的装置会把从外部收集来的信号临时存储起来,这里存的不是0就是1。怎么判断?大于某一电压就是1,小于某一电压就是0。这两个装置互不干扰

第七行的代码就是将某一引脚输出低电平并用上边的保持元件将其维持到低电平。

那么,就有人想问了,为什么写成这样单片机就会认识呢?还会奇怪为什么单片机认识的语言和程序员认识的语言一样呢?

这里就牵扯到了计算机组成原理了。我就简单的介绍一下:

首先,我写的这段代码会在一个软件里运行,这个软件会编译我的代码形成枯燥难懂但是70年代时会被人认为高大上的汇编语言,类似下图这样的(除绿色字部分,解释用的):

图片

这还不够,形成这样的语言会让计算机中的低等编译器认识,低等编译器会将代码翻译成如下图所示的东东,如下图。

图片

注意,这是16进制的数,具体怎么转化为二进制我就不详细展开了。为什么要编译成图3的语言再编译呢?说白了我感觉就是跟水厂一样,水厂把我制作的水放到一个通用的大水管里然后通到不同单片机的家里,单片机按照自己家的情况把水引到厨房等地。(就是这样吧 - -)

那么,我们就可以让单片机或者叫做计算机来执行这段代码了。

对不起,现在才进入到计算机组成原理(对不起计组老师)

现如今,大家所用到的计算机都是冯诺依曼型计算机。

什么是冯诺依曼型计算机?书上解释说:

采取存储程序的方式让控制器存储器中读取二进制并解释然后让运算器去计算数值。

我来再解释一下,首先让我们了解运算器是什么东东,如下图。

图片

最下面的就是运算器运算器能够进行加减乘除逻辑运算,控制器会从存储器中读取数据放到上图运算器上边的框框里,一个框框放一个数据。

怎么放?

看到左右的两条道道了吗?数据会在控制器的控制下被放到这些框框里,当然控制器会控制最下面的运算器做出各种运算然后放回到上边的框框里

那么数据是怎么回去的呢?

废话,当然是怎么来就怎么滚了,通过左右两条道道啊亲

让我们来解释一下最开始楼主说的输出低电平,上边的框框有一些是不能随便放数据的,这些框框用来引出引脚,即有些框框里的数据连接着引脚啊亲

讲到这里,我想我已经比较清楚的解释了0是怎么控制低电平的了。

如果哪些地方没讲明白,大家可以交流一下,我会再详细讲讲我理解的一些内容。

首先看一下“低电平”是怎么形成的。

图片

可以知道,引脚输出的电平来自右下方那一对互补输出级
所以当PMOS关断,NMOS导通,那么I/O口输出低电平

这个“控制信号”来自单片机的输出寄存器(output control)。
那么这个信号的根源是怎么来的呢?

以STM32控制器为例

STM32是ARM系列RISC的微处理器。

图片

我们看到I/O的部分链接在APB(peripheral bus 外围总线)上。
看来这个信号就是来自这个总线。
不难知道,所有数据的调度都来自STM32的核心–Cortex-M3.
我们就可以从微处理器如何执行指令的角度去看。

图片

图片

实际上,每一段程序都被保存在ROM里,这个ROM里保存的就是我们软件传达下来所赋予的“信息”,微处理器通过总线在ROM里提取所需要的指令,然后再一定的时钟调配下,最后执行指令的。
而指令的实质居然是

图片

没有错,mem[]里表述的是地址,而右边的二进制码“16‘hd000”就是本质的0和1的组合,是能够被机器识别的,故称机器码。
我这里注释的是他们分别代表的含义亦即汇编语言。
具体起来,这段"机器码"的不同位置的01排序代表不同的含义
当然,这个含义是约定俗成的,就是指令集嘛!

图片

这样我们知道了,其实在储存器里保存的01序列,我们通过机器识别即取指令,可以了解到不同含义,进而执行不同的操作。
那么这个储存器的01序列怎么来的呢?

图片

一般就储存原理来说,每一个ROM都是一个个小房间,而房间的排列组合就是信息,他们是有序的。是通过一定模式或者条件下“烧写进去”的。即使没有外部触发,依旧能保持原有电位。

EEPROM存储原理

EEPROM基本存储单元电路的工作原理如下图所示。与EPROM相似,它是在EPROM基本单元电路的浮空栅的上面再生成一个浮空栅,前者称为第一级浮空栅,后者称为第二级浮空栅。可给第二级浮空栅引出一个电极,使第二级浮空栅极接某一电压VG。若VG为正电压,第一浮空栅极与漏极之间产生隧道效应,使电子注入第一浮空栅极,即编程写入。若使VG为负电压,强使第一级浮空栅极的电子散失,即擦除。擦除后可重新写入。

隧道效应:量子力学则认为,即使粒子能量小于阈值能量,很多粒子冲向势垒,一部分粒子反弹,还会有一些粒子能过去,好象有一个隧道,称作“量子隧道(quantum tunneling)”。

图片

那这个有序的信息就是"0"和“1”的组合。

这个序列如何烧写进单片机,当然是有外围电路啦,具体就是通过一定的时序打开单片机的储存通路,然后把信息烧写进去。

如何烧写呢?
JTAG(Joint Test Action Group;联合测试工作组)是一种国际标准测试协议(IEEE 1149.1兼容),主要用于芯片内部测试。现在多数的高级器件都支持JTAG协议,如DSP、FPGA器件等。标准的JTAG接口是4线:TMS、TCK、TDI、TDO,分别为模式选择、时钟、数据输入和数据输出线。

图片

然后那些高高低低的01信息就这样在时序里被输出、被接收。

接下来我们说软件。

我们写的软件都是高级语言,离机器很远,但是很容易被人的逻辑所理解,聪明的我们由一些翻译官完成更繁杂的工作:
这些翻译官就是编译器,比如KEIL,就是把C语言翻译成汇编语言,再通过汇编器,把汇编语言变成机器码,然后把机器码烧写进单片机的ROM,单片机上电之后,运行程序,读取指令也就是那些信息,然后执行,控制IO口的寄存器,最后使IO口接地,哈哈,低电平就这样完成了。

我们写的软件经过这几个步骤 高级语言–>汇编语言—>机器语言。机器语言是二进制的,每一种指令操作都有对应的二进制编码,比如我们执行 ADD R1,R2 指令, ADD有一个唯一的二进制编码假设为编码1 ,R1 R2是CPU寄存器地址也有唯一的编码设为编码2 编码3.这些编码的具体格式和数值是根据指令格式和具体cpu架构确定的。比如arm的指令字长就固定为32位,特定的位代表着条件码操作码等。arm的指令可参考《arm 体系结构与编程》杜春雷编
我们的程序就是以这种二进制编码格式存储在cpu的存储器里。
有了这几个唯一编码之后呢?cpu就开始译码操作,进行一些数字电路的组合运算,假设编码1是 0x10(只是假设,实际各个指令集编号不同),当译码电路发现指令的操作码是0x10时就知道是进行加法运算,此时会输出一个有效信号选通加法器;同时也对编码2和编码3进行译码,选通对应的寄存器(哪一个是源寄存器哪一个是目标寄存器是由指令集格式规定的),然后就将寄存器输出的数据通过CPU内部的数据线送入加法器进行加法运算,运算的结果送入目标寄存器。这就运行了一个加法运算。

直接回答题主的问题,当你在程序中对IO管脚的寄存器写0时,单片机将通过类似上述的步骤对指令进行译码,然后将0这个数据写入到IO管脚寄存器中。寄存器的数值如何送到对应的IO管脚?一般是通过D 触发器(如图):

图片

在单片机内部IO寄存器的数据口连接到D触发器的D管脚(实际上还有其他电路,用来增大驱动能力等),D管脚下面有小三角的管脚是时钟信号管脚,当时钟信号上升沿来临时,D触发器D端口的数据将输出到Q端口,Q端口是连接着外部的管脚的。所以只要IO寄存器不改变,Q管脚将一直保持着高电平或者低电平,即你程序表现出来的写0就使管脚输出低电平。

总结一下:

你的程序编写完后通过编译器将变成一堆二进制的机器编码----->单片机对这些编码进行译码,知道你要对哪一个寄存器进行什么样的操作----->对应的寄存器被写入正确的值,如果是IO管脚的话将根据时钟将寄存器的值输出到外部IO管脚。所以实际上单片机也就是一堆数字电路的组合,只不过我们人为的规定什么样的编码要进行什么样的操作而已。

cpu内部就是一堆门电路,门电路导通和闭合对应着输出为1或者0;
那怎么让它导通呢?用电压让它导通,你可以认为这个电压是一个能量,用能量驱动这个道理很通俗了吧;

那你可能又要说了,那电压导通那它输出是一个具体的电压啊它也不是1呀,这个就是数电和模电之间的联系和区别了:我们之所以制造数字电路,是要通过数字电路得到一种逻辑实现,而模电才是想得到一个电压输出,这就是模电和数电的天壤之别。那什么又是逻辑实现?简单的说其实也就是数学实现,所谓编程就是把我们的需求变成数学问题,用编程语言编辑出来,给到cpu,让它计算并驱动终端,最终把我们的逻辑显示出来。

至于数模之间的联系,它们之间的联系就是器件都是靠电压驱动,那你又要问了,那么电压为什么可以驱动半导体器件?well,这个你要去看电磁场+半导体物理,可能还得看一点量子力学,我也都没看呢Orz;

说到这总结一下:我们制造数字电路,就是想得到一个能让我们自由表达逻辑,并能让我们眼睁睁看见我们的逻辑实现了的一个工具,至于这个工具是数字电路,还是量子路,还是光路,只要你低功耗性能好,是啥都无所谓,最好是真空才好呢,对人类来说,空气都智能了才好呢。

接下来就要说说cpu架构+指令集。

我们常常听说,一种cpu架构对应着一种指令集,那这是为什么呢?
我们说所谓数字系统,其实很简单,你给我输入,我就给你输出;你想要什么样的输出,那你就要分析分析你要给到我什么样的输入我才能输出你想要看到的输出,编程也就是这个过程;可是问题来了,你随随便便给我什么输入我都hold住吗?很明显是hold不住的,这个例子,我就不举了。。。。

给这段下个结论就是:所谓指令集,其实就是给cpu这个数字系统一套驱动编码

说到这其实大的框架就差不多了,剩下的比较重要的部分就是布尔代数和数学之间的联系,数学和实际需求之间的联系,然后就是显示这一部分,慢慢来吧

从高级语言网下到晶体管开关都有直接的映射关系,于是代码就这样控制硬件了。
详细说一下,高级语言可以通过编译器转换成汇编语言。汇编语言就是硬件的指令,可以直接转换成0101010101。而这些010101就是电路中的低电平和高电平。这些电平控制开关的打开关断,于是各种组合就产生了复杂的逻辑电路。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

代码是如何控制硬件的? 的相关文章

  • 为啥AI难落地?

    总在说AI落地难 xff0c 那为啥难落地 xff1f 以最典型的智慧城市业务来说 xff0c 就是接入网络摄像头 xff0c 然后识别里面的人 xff0c 判断是不是抽烟 打架 闯红灯 不带安全帽等 首先是连接网络摄像机 xff0c GB
  • 搞技术,如何写好技术文档?

    已剪辑自 https mp weixin qq com s OtSwtMyeifoc7ED35a vEA 嵌入式方案设计文档 xff0c 到底应该怎么写 xff1f 你是不是从来没有想过这个问题 xff1f 很多技术人自己非常轻视技术文档的
  • 用125行C语言编写一个简单的16位虚拟机

    已剪辑自 https mp weixin qq com s ikrpGtssoKpumHXhrQdh8Q 博文地址 xff1a 改博文用图文代码的方式详细描述了实现的具体过程 xff0c 包含每一条指令的含义 系统虚拟机 xff0c 可完全
  • RT-Thread操作系统的FreeRTOS兼容层

    已剪辑自 https mp weixin qq com s 2BjJyieMr97NQhO76DQ3hw Github地址 https github com RT Thread packages FreeRTOS Wrapper 本项目是2
  • 嵌入式开发既要代码小,又想速度快,该如何优化?

    已剪辑自 https mp weixin qq com s HaoPN0upS8OEheXpSHWBFA 素材来源 xff1a 网络素材 整理 xff1a 技术让梦想更伟大 李肖遥 对程序进行优化 xff0c 通常是指优化程序代码或程序执行
  • 小白学C语言编程(for语句无限制循环)

    问题 xff1a 怎么样无限制输出一个比1大的数 xff1f span class token macro property span class token directive keyword include span span clas
  • 嵌入式开发打印,我放弃了printf

    已剪辑自 https mp weixin qq com s GGZ38dUITlS6w9hnMbzsvg 对于printf xff0c 相信不用我过多介绍 xff0c 大家在初学C语言时用得最多的信息输出接口函数应该就是printf了 对于
  • 自动驾仿真测试平台干货内容梳理

    已剪辑自 https mp weixin qq com s Ftv2rgiGW6FGVQgMz4A9PQ 1 自动驾驶仿真平台的关键构成 自动驾驶仿真平台需支持车辆动力学仿真 环境感知传感器仿真 交通场景仿真等 xff1b 车辆动力学仿真
  • 自动驾驶域控制器开发和量产的挑战

    已剪辑自 https mp weixin qq com s Sh4ONJxrmvDbfWlcDnXYtQ 过去十多年的汽车智能化和信息化发展产生了一个显著结果就是ECU芯片使用量越来越多 从传统的引擎控制系统 安全气囊 防抱死系统 电动助力
  • STM32属于哈佛结构还是冯诺依曼结构?

    现代的CPU基本上归为冯诺伊曼结构 xff08 也称普林斯顿结构 xff09 和哈佛结构 我们常见的X86架构是冯 诺依曼结构 xff0c 而ARM架构是哈佛结构 一个广泛用于桌面端 xff08 台式 笔记本 服务器 工作站等 xff09
  • 2022年度复盘和2023年目标:在焦虑中探索,在体验中成长,在开放中升华

    文章目录 2022年度复盘工作 xff1a 焦虑 xff0c 认知 xff0c 提升个人工作 xff1a 工作态度需要提升团队工作 xff1a 尊重 真诚 准确清晰完善感悟 个人成长硬能力 xff1a 学习 博客软能力 xff1a 知乎 B
  • 技术部门Leader是不是一定要技术大牛担任?

    现在在腾讯做技术Leader xff0c 之前在阿里 xff0c 绿厂也带过技术团队 xff0c 每家的情况有共同点也有区别 现在总结下来 xff0c 除去特别通用的技术 责任心 沟通 主动性这些 xff0c 作为Leader很关键的个人素
  • 一个人该怎样找到自己真正热爱和擅长的事,并以此规划自己的人生?

    文章目录 一个人该怎样找到自己真正热爱和擅长的事 xff0c 并以此规划自己的人生 xff1f 一 有关擅长的4个错误认知 二 做好这3步 xff0c 拥有擅长之事 1 生成兴趣清单 2 缩小选择范围 3 练练看 三 写在最后 下面这张图
  • 一个适用于单片机的开源网络协议栈

    已剪辑自 https mp weixin qq com s Vpi4E9T5BUo cdCE692V A 移植及使用说明 协议栈支持主流的ARM Cortex系列MCU xff0c 支持Keil MDK IAR等常见IDE 移植的核心工作就
  • 嵌入式软件分层隔离的典范

    已剪辑自 https mp weixin qq com s T7EJEAuXo1CCJa5vPAPVvg 引言 xff1a 嵌入式软件开发分层 模块化是理想状态 xff0c 实际开发中因各种限制而有所取舍 xff0c 但这不妨碍学习参考优秀
  • 软件定时器库

    前后台系统和多任务操作系统 xff0c 在简单功能上差别不大 xff0c 唯一不顺手的就是前后台系统没有合适的软件定时器 封装一层软件定时器接口 xff0c 对后续功能开发事半功倍 定义结构体数组 xff0c 其基础成员如下 xff1a s
  • 解决Raspberry系统ssh默认关闭的问题

    问题描述 xff1a 最近 xff0c 自己动手给树莓派3B安装了一个最新的系统 xff0c 本想通过SSH远程登录系统的时候 xff0c 发现登录不了 xff0c 具体表现为能ping通 xff0c 但是Xshell就是连不上 xff0c
  • mbedtls 库基础及其应用

    文章目录 1 引言1 1 为什么要加密1 2 SSL TLS协议的历史 2 SSL TLS演化2 1 明文时代2 2 对称加密时代2 3 非对称加密时代2 4 公证时代2 5 TLS协议时代2 6 TLS的应用 3 mbedtls3 1 软

随机推荐

  • 动态内存管理及防御性编程

    概述 xff1a C语言的优势是可以直接访问内存地址 xff0c 也就是指针操作 xff0c 但其缺陷也是因为直接内存访问 如何通过防御性编程提前发现问题 xff0c 尽可能减少内存异常产生的后果 xff0c 就是本文的重点 1 内存划分
  • 基于RTOS的软件开发理论

    文章目录 1 RTOS的特点2 任务设计2 1 任务的特性2 2 任务划分的方法2 2 1 设备依赖性任务2 2 2 关键任务2 2 3 紧迫任务2 2 4 数据处理任务2 2 5 触发条件相同的任务2 2 6 运行周期相同的任务2 2 7
  • 面向对象类之间主要的几种关系

    已剪辑自 https mp weixin qq com s ClBuraVUIPhnWceI7m78Xg 嵌入式开发虽然平时C语言用的比较多 xff0c 但面向对象的思维应该是每一位嵌入式软件工程师必备的知识 之前给大家分享过用C语言实现面
  • 世界上最健康的程序员作息表!

    文章目录 7 307 30 8 008 00 8 308 30 9 009 3010 3011 0013 0014 30 15 3016 0017 00 19 0019 3021 4523 0023 30时间 健康的小常识 已剪辑自 htt
  • 30岁了,冒死说几句大实话!

    已剪辑自 https mp weixin qq com s j0yzonrhPPcemDRF6QBVkw 是的 xff0c 我 30 岁了 xff0c 还是周岁 就在这上个周末 xff0c 我度过了自己 30 岁的生日 都说三十而立 xff
  • QT使用QAxObject读取Excel教程-全网最全

    文章目录 一 背景二 介绍基本操作方法获取对象调用动态方法设置和获取属性更多相关 三 使用要求添加模块与excel com连接的方法Excel基本操作 四 具体使用说明五 项目实战实战项目1实战项目2实战项目3实战项目4实战项目5 封装好的
  • 超越内卷-认知差、信息差、时间差

    已剪辑自 https mp weixin qq com s 9pzMQJJnp9ZbkTCVe ao7w 内卷的话题曾经聊过 xff0c 当大家的努力都上不了层次 xff0c 只是原水平重复竞争 xff0c 那么内卷就开始了 最近对这个问题
  • 数十种嵌入式 C 语言代码优化的经验和方法

    文章目录 简介声明哪里需要使用这些方法 xff1f 整形数除法和取余数合并除法和取余数通过2的幂次进行除法和取余数取模的一种替代方法使用数组下标全局变量使用别名变量的生命周期分割变量类型局部变量指针指针链条件执行布尔表达式和范围检查布尔表达
  • 汽车电子国际标准现状与趋势

    已剪辑自 https mp weixin qq com s vLgnrFPtDPglwde1TZUHSQ 在汽车电子系统发展的早期 xff0c 汽车电子基础软件是没有统一标准的 xff0c 各个 OEM Tier1 Tier2 等厂商针对不
  • Linux多线程服务器编程(陈硕)学习总结

    这本书确实是学习多核时代采用现代C 43 43 编写多线程程序的好书 xff0c 下面是学习总结 xff1a 第一章 线程安全的对象生命期管理 对象的创建很简单 xff0c 但是不要在构造期间泄漏this指针 xff0c 比如不要在构造函数
  • 详解 Modbus 通信协议(清晰易懂)

    文章目录 已剪辑自 https mp weixin qq com s dvo1l1GgJ2DtIHnPK5E1tA 本文总结关于 Modbus 相关的知识 xff0c 浅显易懂 xff0c 旨在对 Modbus 有一个很直观的了解 如有错误
  • RTOS应用中的几种调度策略

    从前后台架构的软件开发过渡到使用实时操作系统 RTOS 可能是一项困难的工作 但使用RTOS有许多优势 xff0c 例如简化应用集成 xff0c 支持任务抢占调度 xff0c 当开发人员使用复杂的32位微控制器 xff0c 且可以获取足够的
  • 几款非常棒的使用文本来进行图形化注释的工具

    https mp weixin qq com s NX8feH UPE7oegM7U9W4GA 说明 xff1a 1 程序代码里面非常好的注释方式 2 相关网站 xff1a xff08 1 xff09 https metacpan org
  • 解决Excel打开UTF-8编码CSV文件乱码的问题

    最近在用QT读写CSV文件 xff0c 发现将数据写入到CSV文件中 xff0c 使用记事本打开文件是正常的 xff0c 使用Excel打开 xff0c 中文是乱码的 xff0c 下面把原因和解决方法记录一下 问题产生的原因 为什么exce
  • Windows下查看端口占用情况

    编程的时候经常发现我们需要使用的端口被别的程序占用 xff0c 这个时候需要清楚查看是哪个程序占用了端口 xff0c 用且清除了这个进程 xff01 1 开始 gt 运行 gt cmd xff0c 或者是window 43 R组合键 xff
  • 【C进阶】同事用void把我给秀翻了!

    2 简单认识一下void 今天跟大家介绍的知识是C语言中的void关键字的用法 xff0c void在大部分小伙伴的程序中都只是用于函数无参数传入 xff0c 或者无类型返回 然而我们平时所定义的变量都会有具体的类型 xff0c int x
  • 如何降低代码圈复杂度

    已剪辑自 https mp weixin qq com s biz 61 MzI2MTE4Nzk5MA 3D 3D amp mid 61 2247483685 amp idx 61 1 amp sn 61 26072d6a41ed9abef
  • 嵌入式开发:周期调度和代码执行时间理解

    已剪辑自 https mp weixin qq com s gaT7D1IgkBxxEOj DNaLPw 汽车嵌入开发中 xff0c 我们常常听到这样的名词 xff1a 1ms Task 5ms Task 10ms Task 试问 xff1
  • C语言中,实现函数宏的三种方式

    已剪辑自 https blog csdn net qq 35692077 article details 102994959 1 函数宏介绍 函数宏 xff0c 即包含多条语句的宏定义 xff0c 其通常为某一被频繁调用的功能的语句封装 x
  • 代码是如何控制硬件的?

    已剪辑自 https mp weixin qq com s UDbxTfAMLAWE8LjUiqGUBQ 先说代码 xff1a 我们是用电脑的键盘来输入的指令 xff0c 每一个指令都对应一个ASCII码 xff0c 而这里的ASCII码就