MOS管特性和导通过程

2023-05-16

三极管是流控流器件,它不能驱动功率太大的器件,因为此时C极电流大,而CE压降为0.3V左右,在三极管上面消耗的功率就很大,还容易发热。所以压控压型的MOS管就诞生了。

特性

  • 一开始给GS端电容充电的过程中是有电流的,当MOS管完全导通后,栅极基本没有电流

  • MOS管各极之间都因工艺有一个等效电容,这里引入三个电容的概念:
    (1)输入电容Ciss = Cgd + Cgs
    (2)输出电容Coss = Cgd + Cds
    (3)密勒电容Crss = Cgd

  • 与三极管的CE端导通压降固定不同,MOS管的DS端等效为一个可变电阻Rdson,MOS关断时阻值无穷大,而导通时阻值无穷小,所以导通时即使ID很大,这个功耗也很小。

  • ID电流由负载决定

  • 高压MOS管等效为多个MOS管串联,低压MOS管等效为多个并联
    (1)高压MOS管的Rdson(相同功率的负载,电压大,电流小,等效电阻大,一般为几十毫欧),GS电容小(串联,所以导通快)。
    (2)低压MOS管则相反(Rdson为几毫欧)。

  • MOS管的DS间有一个体二极管,它与ID方向相反,它的压降是0.7V左右,随着电流增大,这个压降也会变大,如100A时,可能达到1V多的压降。体二极管的电流与ID是接近或相等的。它消耗的功率是很大的,这个损耗叫续流损耗。

  • 为了确保GS间的电容有放电回路,一般会在GS端并一个电阻,这样在MOS管关闭时无论前级电路怎么设计,都有放电回路。
    (1)这个电阻相当于下拉电阻,避免产生高阻态,且防止静电损坏MOS管
    (2)阻值:太小功耗大,太大不利于防止静电,一般选10K~100K。对于高压的MOS互补输出电路,可以根据实际情况选择更小,防止两个MOS同时导通。

导通过程和密勒电容

GS电容充电过程(栅极并联了一个电阻):

  1. GS电容内阻刚开始为0,几乎所有电流从电容走
  2. GS电容没充满,电流分别从电容和电阻走,由于电阻很大,电流还是主要从电容走
  3. GS电容充满了,电流不从电容走,只有很小的电流从电阻走

在这里插入图片描述
导通过程:
(1)t1时刻,电压达到MOS管的Vth,MOS管导通,ID开始有电流,电流很小,但接下来会逐步上升
(2)t2时刻,ID电流达到最大值,保持不变,但此时并没有完全导通。由于转移特性,栅极电压也不变,所以此时电流主要从密勒电容走(栅极->密勒电容->漏极->源极),而不从GS电容走。

  • MOSFET转移特性:栅极电压和漏极电流保持一个比例关系
  • 密勒电容的大小与漏极电压有关,越高越大,所以高压MOS管更怕密勒效应。

(3)t2~t3时刻,这段时间为密勒平台。栅极电压不变,漏极电流最大,MOS管处于放大状态,Rdson从无穷大开始变小,VDS变小。虽然Rdson在变小,但仍很大,所以此时功耗大发热大,所以我们希望这段时间很短
(4)t3时刻:MOS管饱和导通,密勒平台结束,固有的转移特性消失。Rdson变得很小,漏极电压变小,密勒电容大小变得很小,基本不存在。电流继续从GS电容流。VGS逐渐增大到栅极提供的电压大小。

减少密勒平台的时间

  • 增大IGS电流:减小栅极电阻
  • 提高栅极驱动电压:不能超过MOS管的极限值

减小密勒平台的时间也会出现一些问题

  • 高压管,一般负载电流小,即ID小,而VDS大,如果密勒平台变小,则导通时VDS要在更短的时间内从很高降到很低
  • 低压管,一般负载电流大,即ID大,如果密勒平台变小,则关断时ID要在更短的时间内从很大减小到0

这样电压或电流的快速变化会让在密勒平台本来不变的VGS发生振荡。
参考设计
在VGS电压确定的情况下:

  • 高压MOS栅极电阻取100~330Ω,密勒平台在200ns~1μs,一般300ns
  • 低压MOS栅极电阻取10~100Ω,常取33Ω、51Ω。密勒平台在90ns~300ns

以上建议仅为参考,具体时间需要观察VGS波形振荡。

另外,对于高压场合,建议选择VGSTH高的MOS管;低压大电流也建议选择VGSTH高的MOS管。低压小电流可以小一点(消费类如玩具)。同时栅极的下拉电阻可以选小一些。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

MOS管特性和导通过程 的相关文章

  • C++和js交互方案对比

    c 43 43 和js交互方案对比 一 xff1a nodejs技术 nodejs技术是基于V8引擎的一套前后端交互技术 nan h为c 43 43 提供了与js交互的一系列V8 API 参考链接 缺点 xff1a 在Node js中 xf
  • C++实现HTTP服务

    一个多平台的系统基本架构 xff08 如下图 xff09 xff0c 数据库部分我们以后可以使用HDFS和MapReduce进行分布式存储 xff0c 之前大致介绍了js和c 43 43 交互的几种方式对比 xff0c 考虑到拓展性和访问效
  • gstreamer获取视频采集卡的数据

    gstreamer获取视频采集卡的视频数据 gstreamer可以用于采集硬件视频数据 xff0c 转码 xff0c 播放 xff0c 传输等 xff0c 但由于框架相对于FFmpeg较为小众 xff0c 所以资料较少 xff0c 整理一份
  • 使用c++来实现一个简单的数据库功能

    使用c 43 43 来实现一个简单的文件数据库功能 功能点1 xff1a 建表 1 创建和表同名的文件 2 在文件中存储表的信息 xff0c 包括attribute的name xff0c 数量 xff0c 类型 xff0c 是否唯一 3 添
  • 【性能优化】cpu时间抖动问题的解决修复

    问题描述 xff1a 边缘设备的cpu在低占有率时 xff0c 进程运行时间抖动较大 xff0c 在高占有率时 xff0c 运行时间抖动更稳定 低占有率运行情况图 xff1a 相同处理逻辑循环中 xff0c 两次处理的时间间隔 xff1a
  • pointRCNN 结果可视化

    由于pointRCNN源码的训练和inference很详细 xff0c 但是没有可视化的代码 xff0c 本文介绍其3d框结果的可视化方法 1 跑通pointRCNN https github com sshaoshuai PointRCN
  • C/C++学习笔记——C提高: 函数指针和递归函数

    函数指针 函数类型 通过什么来区分两个不同的函数 xff1f 一个函数在编译时被分配一个入口地址 xff0c 这个地址就称为函数的指针 xff0c 函数名代表函数的入口地址 函数三要素 xff1a 名称 参数 返回值 C语言中的函数有自己特
  • 算法基础22-最小生成树

    最小生成树 primkruskal prim 链接 acwing上一个关于prim很好的题解 prim 算法干的事情是 xff1a 给定一个无向图 xff0c 在图中选择若干条边把图的所有节点连起来 要求边长之和最小 在图论中 xff0c
  • C/C++学习笔记——C提高:预处理

    预处理的基本概念 C语言对源程序处理的四个步骤 xff1a 预处理 编译 汇编 链接 预处理是在程序源代码被编译之前 xff0c 由预处理器 xff08 Preprocessor xff09 对程序源代码进行的处理 这个过程并不对程序的源代
  • C/C++学习笔记——C提高:动态库的封装和使用

    库的基本概念 库是已经写好的 成熟的 可复用的代码 每个程序都需要依赖很多底层库 xff0c 不可能每个人的代码从零开始编写代码 xff0c 因此库的存在具有非常重要的意义 在我们的开发的应用中经常有一些公共代码是需要反复使用的 xff0c
  • FreeRTOS学习笔记——基础知识与移植(STM32F103)

    1 1 前后台系统 xff1a 早期嵌入式开发没有嵌入式操作系统的概念 xff0c 直接操作裸机 xff0c 在裸机上写程序 xff0c 比如用51单片机基本就没有操作系统的概念 通常把程序分为两部分 xff1a 前台系统和后台系统 简单的
  • STM32开源代码——MAX30100程序

    正点原子精英开发板 模块化封装 xff0c 入口函数简明 xff0c 易上手操作 展示main c代码 xff0c 完整代码请下载 xff08 数据打印到串口在MAX30100 PulseOximeter c xff09 点击下载代码 in
  • STM32开源代码——2.8寸TFTLCD屏虚拟键盘触摸程序

    正点原子精英开发板 模块化封装 xff0c 入口函数简明 xff0c 易上手操作 展示main c代码 xff0c 完整代码请下载 点击下载代码 include 34 sys h 34 include 34 delay h 34 inclu
  • STM32开源代码——光敏传感器

    正点原子精英开发板 模块化封装 xff0c 入口函数简明 xff0c 易上手操作 展示main c代码 xff0c 完整代码请下载 点击下载代码 include 34 led h 34 include 34 delay h 34 inclu
  • 个人项目——机智云开源APP基础修改教程(Android)

    之前写过一篇STM32接入机智云的教程 xff0c 最后说要有时间给大家写一篇修改机智云开源Demo APP的教程 xff0c 刚好楼主考完直流传动 xff0c 然后帮小学弟的一个32项目接入了机智云 xff0c 然后打算帮他修改一下Dem
  • FreeRTOS学习笔记——FreeRTOS任务创建和删除实验(静态方法)

    6 3 任务创建和删除实验 静态方法 6 3 1 实验程序设计 1 实验目的 上一小节我们讲了使用函数xTaskCreate 来创建任务 xff0c 本节在上一小节的基础上做简单的修改 xff0c 使用函数xTaskCreateStatic
  • FreeRTOS学习笔记——FreeRTOS 系统内核控制函数

    FreeRTOS 中有一些函数只供系统内核使用 xff0c 用户应用程序一般不允许使用 xff0c 这些API 函数就是系统内核控制函数 本章我们就来学习一下这些内核控制函数 xff0c 本章分为如下几部分 xff1a 10 1 内核控制函
  • FreeRTOS学习笔记——FreeRTOS 时间管理

    在使用FreeRTOS 的过程中我们通常会在一个任务函数中使用延时函数对这个任务延时 xff0c 当执行延时函数的时候就会进行任务切换 xff0c 并且此任务就会进入阻塞态 xff0c 直到延时完成 xff0c 任务重新进入就绪态 延时函数
  • 算法基础23-二分图

    二分图 二分图的判断二分图的最大匹配数 可以去看acwing题解 二分图的判断 span class token comment AcWing 860 染色法判定二分图 span span class token macro propert
  • Router 选择

    Connected Dominating Set Example of a Connected Dominating Set Router 必须形成一个 CDS xff08 Connected Dominating Set xff0c 连接

随机推荐

  • devtool: unset _PYTHON_SYSCONFIGDATA_NAME

    问题 在 Ubuntu 20 04 1 LTS 上进行编译Yocto时报错 xff0c 出现如下错误 xff1a bb data smart ExpansionError Failure expanding variable SRCPV e
  • VsCode 配置PySide6及测试

    目录 VSCode插件安装安装Python插件安装PySide6插件 PySide6安装PySide6配置VSCode创建UI文件 在这里插入图片描述 https img blog csdnimg cn cbf7cd76d7d84048ab
  • Ubuntu 14.04 Desktop的Raid1安装总结

    Ubuntu 14 04 Desktop的Raid1安装总结 安装基于Ubuntu14 04 Desktop的Raid1 由于采用UEFI GPT方式作为系统启动方式 xff0c 在安装过程中出现了很多异常情况 本文记录安装的过程 安装步骤
  • sem_wait sem_post信号量操作进本函数

    sem wait sem post 信号量的数据类型为结构sem t xff0c 它本质上是一个长整型的数 函数sem init xff08 xff09 用来初始化一个信号量 它的原型为 xff1a extern int sem init
  • 常见gcc编译警告整理(开始)

    1 warning no newline at end of file 在文件最后一行加上回车键 解释 xff1a 在 Rationale for the C99 standard 一文中 xff0c 有C99的相关信息 xff1a A b
  • 对于结构体变量赋值的误区

    以前在使用结构体时没有在结构体变量之间直接赋值 xff0c 今天同事在查看别人的代码时 xff0c 发现有两个结构体变量直接赋值的语句当时感觉这个语句不对 xff0c 认为在一个结构体里边 xff0c 既有一般的无符号整形与数组 xff0c
  • 线程同步(互斥锁与信号量的作用与区别)

    信号量用在多线程多任务同步的 xff0c 一个线程完成了某一个动作就通过信号量告诉别的线程 xff0c 别的线程再进行某些动作 xff08 大家都在semtake的时候 xff0c 就阻塞在 哪里 xff09 而互斥锁是用在多线程多任务互斥
  • 误解程序运行(从单片机到开始)

    误解程序运行 从单片机到开始 关于程序的执行 xff0c 以前想的不多 xff0c 没有意识到一个程序在运行时 xff0c 从哪里读指令 xff0c 数据又写在哪里 最近在看CSAPP时这个念头经常在脑袋中晃荡 从单片机上知道 xff0c
  • Out-of-Bounds Memory References and Buffer Overflow

    callee pushl edp save edp on stack movl esp edp pushl ebx save ebx subl 20 esp popl ebx restore ebx popl edp restore
  • 嘉立创专业板stm32拓展板十分钟快速入门

    本文是为不想深入学PCB但是迫不得已需要用PCB的人或者想要做一个32的拓展版的童鞋们的快速入门并做出板子的博客 xff0c 因此 xff0c 本文内容不会深入讨论元件 xff0c 只会教授基础流程 xff0c 并且没有画芯片 本文内容 x
  • 电子信息工程四年学习之思

    毕业后 xff0c 回顾四年学习历程发现 xff0c 当时以为的明白 xff0c 到现在都是那时的不明白 或许是自己的经历 xff08 参加比赛比较多 xff09 导致了现在的反思 但是 xff0c 回顾那个时候的课程设置 xff0c 却都
  • 将要到来的三大技术革命与联系

    http www csdn net article 2013 02 14 2814128 2013大数据 http www csdn net article 2013 02 15 2814135 bigdata is coming 大数据
  • Keil的常见编译警告

    1 warning 767 D conversion from pointer to smaller integer 解释 xff1a 将指针转换为较小的整数 影响 xff1a 可能造成的影响 xff1a 容易引起数据截断 xff0c 造成
  • 《大数据时代》之后

    现在想想也不记得当时是怎么找到 大数据时代 这本书的 xff0c 好像是在查找数据库方面的书 xff0c 看到亚马逊推荐的书里有这本 xff0c 发现最近才出版的就买一本回来看看 然而这个过程中 xff0c 其实自己已经得到了大数据带来的影
  • 《代码大全》笔记

    最近将去年毕业时 xff0c 大神推荐的 代码大全 看完了 xff08 已经过去一年了 xff0c 要十分感谢推荐 xff0c 还有凤林兄的 深入理解计算机系统 xff09 零零碎碎的时间 xff0c 发现很多东西虽然在书中标记了 xff0
  • 《编程精粹》思之代码与产品

    之前眼中有代码无产品 xff0c 现在眼中有产品有代码 xff0c 什么时候能做到有产品无代码 xff1f 还需要努力 刚开始实习的时候 xff0c 总喜欢在程序中使用 p 43 1 61 而不是p 1 来给入参 xff0c 甚至于用来给定
  • 树莓派4B+Intel神经计算棒(Stick2)+YoloV5可行性考察报告

    1 神经棒只能作为协处理器 在执行脚本时 xff0c 通过在命令后面加上 d 设备名 就可以指定硬件设备来加速推理 例如 命令行指定神经棒运行 demo squeezenet download convert run span class
  • 在Vue中获取v-for的index值

    lt el submenu index 61 34 item id 43 39 39 34 v for 61 34 item index in menuList 34 key 61 34 item id 34 gt lt template
  • 死区时间的分析与设置

    出现死区的主要原因是因为MOS管的源极和栅极之间的结电容 现在在栅极加上一个门电路 当门电路输出的信号跳变的瞬间 xff0c 电流是非常大的 xff0c 会导致MOS管发热 xff0c 所以需要在门电路后面再串联一个电阻 xff0c 这个电
  • MOS管特性和导通过程

    三极管是流控流器件 xff0c 它不能驱动功率太大的器件 xff0c 因为此时C极电流大 xff0c 而CE压降为0 3V左右 xff0c 在三极管上面消耗的功率就很大 xff0c 还容易发热 所以压控压型的MOS管就诞生了 特性 一开始给