Linux下调试段错误的方法[Segmentation Fault]--GDB

2023-05-16

原文

1、段错误是什么?

段错误是指访问的内存超出了系统给这个程序所设定的内存空间,例如访问了不存在的内存地址、访问了系统保护的内存地址、访问了只读的内存地址等等情况。


A segmentation fault (often shortened to segfault) is a particular error condition that can occur during the operation of computer software. In short, a segmentation fault occurs when a program attempts to access a memory location that it is not allowed to access, or attempts to access a memory location in a way that is not allowed (e.g., attempts to write to a read-only location, or to overwrite part of the operating system). Systems based on processors like the Motorola 68000 tend to refer to these events as Address or Bus errors.

Segmentation is one approach to memory management and protection in the operating system. It has been superseded by paging for most purposes, but much of the terminology of segmentation is still used, "segmentation fault" being an example. Some operating systems still have segmentation at some logical level although paging is used as the main memory management policy.

On Unix-like operating systems, a process that accesses invalid memory receives the SIGSEGV signal. On Microsoft Windows, a process that accesses invalid memory receives the STATUS_ACCESS_VIOLATION exception.  

2、段错误产生的原因:

2.1 访问不存在的内存地址

#include<stdio.h>
#include<stdlib.h>
void main()
{
        int *ptr = NULL;
        *ptr = 0;
}

2.2 访问系统保护的内存地址

#include<stdio.h>
#include<stdlib.h>
void main()
{
        int *ptr = (int *)0;
        *ptr = 100;
}

2.3 访问只读的内存地址

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
void main()
{
        char *ptr = "test";
        strcpy(ptr, "TEST");
}

2.4 栈溢出

#include<stdio.h>
#include<stdlib.h>
void main()
{
        main();
}

3. 段错误信息的获取

3.1 dmesg

dmesg可以在应用程序crash掉时,显示内核中保存的相关信息。如下所示,通过dmesg命令可以查看发生段错误的程序名称、引起段错误发生的内存地址、指令指针地址、堆栈指针地址、错误代码、错误原因等。以程序2.3为例:

panfeng@ubuntu:~/segfault$ dmesg
[ 2329.479037] segfault3[2700]: segfault at 80484e0 ip 00d2906a sp bfbbec3c error 7 in libc-2.10.1.so[cb4000+13e000]  

3.2 -g

使用gcc编译程序的源码时,加上-g参数,这样可以使得生成的二进制文件中加入可以用于gdb调试的有用信息。以程序2.3为例:

panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c  

3.3 nm

使用nm命令列出二进制文件中的符号表,包括符号地址、符号类型、符号名等,这样可以帮助定位在哪里发生了段错误。以程序2.3为例:
panfeng@ubuntu:~/segfault$ nm segfault3
08049f20 d _DYNAMIC
08049ff4 d _GLOBAL_OFFSET_TABLE_
080484dc R _IO_stdin_used
         w _Jv_RegisterClasses
08049f10 d __CTOR_END__
08049f0c d __CTOR_LIST__
08049f18 D __DTOR_END__
08049f14 d __DTOR_LIST__
080484ec r __FRAME_END__
08049f1c d __JCR_END__
08049f1c d __JCR_LIST__
0804a014 A __bss_start
0804a00c D __data_start
t __do_global_ctors_aux
t __do_global_dtors_aux
0804a010 D __dso_handle
         w __gmon_start__
0804848a T __i686.get_pc_thunk.bx
08049f0c d __init_array_end
08049f0c d __init_array_start
T __libc_csu_fini
T __libc_csu_init
         U __libc_start_main@@GLIBC_2.0
0804a014 A _edata
0804a01c A _end
080484bc T _fini
080484d8 R _fp_hw
080482bc T _init
T _start
0804a014 b completed.6990
0804a00c W data_start
0804a018 b dtor_idx.6992
080483c0 t frame_dummy
080483e4 T main
         U memcpy@@GLIBC_2.0

3.4 ldd

使用ldd命令查看二进制程序的共享链接库依赖,包括库的名称、起始地址,这样可以确定段错误到底是发生在了自己的程序中还是依赖的共享库中。以程序2.3为例:

panfeng@ubuntu:~/segfault$ ldd ./segfault3
    linux-gate.so.1 =>  (0x00e08000)
    libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0x00675000)
    /lib/ld-linux.so.2 (0x00482000)  

4. 段错误的调试方法

4.1 使用printf输出信息

这个是看似最简单但往往很多情况下十分有效的调试方式,也许可以说是程序员用的最多的调试方式。简单来说,就是在程序的重要代码附近加上像printf这类输出信息,这样可以跟踪并打印出段错误在代码中可能出现的位置。为了方便使用这种方法,可以使用条件编译指令#ifdef DEBUG和#endif把printf函数包起来。这样在程序编译时,如果加上-DDEBUG参数就能查看调试信息;否则不加该参数就不会显示调试信息。

4.2 使用gcc和gdb

4.2.1 调试步骤

1、为了能够使用gdb调试程序,在编译阶段加上-g参数,以程序2.3为例:

panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c  
2、使用gdb命令调试程序:


panfeng@ubuntu:~/segfault$ gdb ./segfault3 
GNU gdb (GDB) 7.0-ubuntu
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "i486-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/panfeng/segfault/segfault3...done.
(gdb)   
3、进入gdb后,运行程序:


(gdb) run
Starting program: /home/panfeng/segfault/segfault3 

Program received signal SIGSEGV, Segmentation fault.
0x001a306a in memcpy () from /lib/tls/i686/cmov/libc.so.6
(gdb)   
从输出看出,程序2.3收到SIGSEGV信号,触发段错误,并提示地址0x001a306a、调用memcpy报的错,位于/lib/tls/i686/cmov/libc.so.6库中

4、完成调试后,输入quit命令退出gdb:


(gdb) quit
A debugging session is active.

    Inferior 1 [process 3207] will be killed.

Quit anyway? (y or n) y  

4.2.2 适用场景

1、仅当能确定程序一定会发生段错误的情况下使用。

2、当程序的源码可以获得的情况下,使用-g参数编译程序。

3、一般用于测试阶段,生产环境下gdb会有副作用:使程序运行减慢,运行不够稳定,等等。

4、即使在测试阶段,如果程序过于复杂,gdb也不能处理。

4.3 使用core文件和gdb

在4.2节中提到段错误会触发SIGSEGV信号,通过man 7 signal,可以看到SIGSEGV默认的handler会打印段错误出错信息,并产生core文件,由此我们可以借助于程序异常退出时生成的core文件中的调试信息,使用gdb工具来调试程序中的段错误。

4.3.1 调试步骤

1、在一些Linux版本下,默认是不产生core文件的,首先可以查看一下系统core文件的大小限制:


panfeng@ubuntu:~/segfault$ ulimit -c
0  

2、可以看到默认设置情况下,本机Linux环境下发生段错误时不会自动生成core文件,下面设置下core文件的大小限制(单位为KB):


panfeng@ubuntu:~/segfault$ ulimit -c 1024
panfeng@ubuntu:~/segfault$ ulimit -c
1024  

3、运行程序2.3,发生段错误生成core文件:


panfeng@ubuntu:~/segfault$ ./segfault3
段错误 (core dumped)  

4、加载core文件,使用gdb工具进行调试:


panfeng@ubuntu:~/segfault$ gdb ./segfault3 ./core 
GNU gdb (GDB) 7.0-ubuntu
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "i486-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/panfeng/segfault/segfault3...done.

warning: Can't read pathname for load map: 输入/输出错误.
Reading symbols from /lib/tls/i686/cmov/libc.so.6...(no debugging symbols found)...done.
Loaded symbols for /lib/tls/i686/cmov/libc.so.6
Reading symbols from /lib/ld-linux.so.2...(no debugging symbols found)...done.
Loaded symbols for /lib/ld-linux.so.2
Core was generated by `./segfault3'.
Program terminated with signal 11, Segmentation fault.
#0  0x0018506a in memcpy () from /lib/tls/i686/cmov/libc.6  

从输出看出,同4.2.1中一样的段错误信息。

5、完成调试后,输入quit命令退出gdb:


(gdb) quit  

4.3.2 适用场景

1、适合于在实际生成环境下调试程序的段错误(即在不用重新发生段错误的情况下重现段错误)。

2、当程序很复杂,core文件相当大时,该方法不可用。

4.4 使用objdump

4.4.1 调试步骤

1、使用dmesg命令,找到最近发生的段错误输出信息:


panfeng@ubuntu:~/segfault$ dmesg
... ...
[17257.502808] segfault3[3320]: segfault at 80484e0 ip 0018506a sp bfc1cd6c error 7 in libc-2.10.1.so[110000+13e000]  

其中,对我们接下来的调试过程有用的是发生段错误的地址:80484e0和指令指针地址:0018506a。

2、使用objdump生成二进制的相关信息,重定向到文件中:


panfeng@ubuntu:~/segfault$ objdump -d ./segfault3 > segfault3Dump  

其中,生成的segfault3Dump文件中包含了二进制文件的segfault3的汇编代码。

3、在segfault3Dump文件中查找发生段错误的地址:


panfeng@ubuntu:~/segfault$ grep -n -A 10 -B 10 "80484e0" ./segfault3Dump 
121- 80483df:    ff d0                    call   *%eax
122- 80483e1:    c9                       leave  
123- 80483e2:    c3                       ret    
124- 80483e3:    90                       nop
125-
126-080483e4 <main>:
127- 80483e4:    55                       push   %ebp
128- 80483e5:    89 e5                    mov    %esp,%ebp
129- 80483e7:    83 e4 f0                 and    $0xfffffff0,%esp
130- 80483ea:    83 ec 20                 sub    $0x20,%esp
131: 80483ed:    c7 44 24 1c e0 84 04     movl   $0x80484e0,0x1c(%esp)
132- 80483f4:    08 
133- 80483f5:    b8 e5 84 04 08           mov    $0x80484e5,%eax
134- 80483fa:    c7 44 24 08 05 00 00     movl   $0x5,0x8(%esp)
135- 8048401:    00 
136- 8048402:    89 44 24 04              mov    %eax,0x4(%esp)
137- 8048406:    8b 44 24 1c              mov    0x1c(%esp),%eax
138- 804840a:    89 04 24                 mov    %eax,(%esp)
139- 804840d:    e8 0a ff ff ff           call   804831c <memcpy@plt>
140- 8048412:    c9                       leave  
141- 8048413:    c3                       ret      

通过对以上汇编代码分析,得知段错误发生main函数,对应的汇编指令是movl $0x80484e0,0x1c(%esp),接下来打开程序的源码,找到汇编指令对应的源码,也就定位到段错误了。

4.4.2 适用场景

1、不需要-g参数编译,不需要借助于core文件,但需要有一定的汇编语言基础。

2、如果使用了gcc编译优化参数(-O1,-O2,-O3)的话,生成的汇编指令将会被优化,使得调试过程有些难度。

4.5 使用catchsegv

catchsegv命令专门用来扑获段错误,它通过动态加载器(ld-linux.so)的预加载机制(PRELOAD)把一个事先写好的库(/lib/libSegFault.so)加载上,用于捕捉断错误的出错信息。


panfeng@ubuntu:~/segfault$ catchsegv ./segfault3
Segmentation fault (core dumped)
*** Segmentation fault
Register dump:

 EAX: 00000000   EBX: 00fb3ff4   ECX: 00000002   EDX: 00000000
 ESI: 080484e5   EDI: 080484e0   EBP: bfb7ad38   ESP: bfb7ad0c

 EIP: 00ee806a   EFLAGS: 00010203

 CS: 0073   DS: 007b   ES: 007b   FS: 0000   GS: 0033   SS: 007b

 Trap: 0000000e   Error: 00000007   OldMask: 00000000
 ESP/signal: bfb7ad0c   CR2: 080484e0

Backtrace:
/lib/libSegFault.so[0x3b606f]
??:0(??)[0xc76400]
/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xe6)[0xe89b56]
/build/buildd/eglibc-2.10.1/csu/../sysdeps/i386/elf/start.S:122(_start)[0x8048351]

Memory map:

00258000-00273000 r-xp 00000000 08:01 157 /lib/ld-2.10.1.so
00273000-00274000 r--p 0001a000 08:01 157 /lib/ld-2.10.1.so
00274000-00275000 rw-p 0001b000 08:01 157 /lib/ld-2.10.1.so
003b4000-003b7000 r-xp 00000000 08:01 13105 /lib/libSegFault.so
003b7000-003b8000 r--p 00002000 08:01 13105 /lib/libSegFault.so
003b8000-003b9000 rw-p 00003000 08:01 13105 /lib/libSegFault.so
00c76000-00c77000 r-xp 00000000 00:00 0 [vdso]
00e0d000-00e29000 r-xp 00000000 08:01 4817 /lib/libgcc_s.so.1
00e29000-00e2a000 r--p 0001b000 08:01 4817 /lib/libgcc_s.so.1
00e2a000-00e2b000 rw-p 0001c000 08:01 4817 /lib/libgcc_s.so.1
00e73000-00fb1000 r-xp 00000000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb1000-00fb2000 ---p 0013e000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb2000-00fb4000 r--p 0013e000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb4000-00fb5000 rw-p 00140000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb5000-00fb8000 rw-p 00000000 00:00 0
08048000-08049000 r-xp 00000000 08:01 303895 /home/panfeng/segfault/segfault3
08049000-0804a000 r--p 00000000 08:01 303895 /home/panfeng/segfault/segfault3
0804a000-0804b000 rw-p 00001000 08:01 303895 /home/panfeng/segfault/segfault3
09432000-09457000 rw-p 00000000 00:00 0 [heap]
b78cf000-b78d1000 rw-p 00000000 00:00 0
b78df000-b78e1000 rw-p 00000000 00:00 0
bfb67000-bfb7c000 rw-p 00000000 00:00 0 [stack]  

5. 一些注意事项

1、出现段错误时,首先应该想到段错误的定义,从它出发考虑引发错误的原因。

2、在使用指针时,定义了指针后记得初始化指针,在使用的时候记得判断是否为NULL。

3、在使用数组时,注意数组是否被初始化,数组下标是否越界,数组元素是否存在等。

4、在访问变量时,注意变量所占地址空间是否已经被程序释放掉。

5、在处理变量时,注意变量的格式控制是否合理等。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Linux下调试段错误的方法[Segmentation Fault]--GDB 的相关文章

随机推荐

  • 五轴机械臂实现视觉抓取--realsense深度相机和五自由度机械臂

    前言 xff1a 要实现视觉抓取 xff0c 首先需要实现机械臂的驱动 xff0c 深度相机的目标识别 xff0c 能够反馈位置 1 实现机械臂在ROS层的控制 2 基于深度相机目标物体的空间坐标反馈 xff0c 需要知道摄像头中物体的像素
  • solvepnp三维位姿估算

    一 前言 关于PNP问题就是指通过世界中的N个特征点与图像成像中的N个像点 xff0c 计算出其投影关系 xff0c 从而获得相机或物体位姿的问题 opencv提供的solvepnp函数就是用来解决pnp问题 利用该函数可以实现测算相机 物
  • emwin自定义颜色

    颜色管理中已经帮助我们定义了这些颜色 xff0c 但是我们通常会使用自定义的颜色 xff0c 怎么怎么设置值呢 xff1f 通常情况下使用的是BGR颜色 就是蓝色和红色是相反的 GUI SetBkColor 0x00FFaa80 自定义调色
  • STemwin 实现滑动切换主页 滑动翻页 滑动解锁功能

    STM32上实现类似iPhone的解锁和滑屏功能 xff0c emwin这个库官方的文档中控件没有一样的 xff0c 但是有一个上下滑动的 xff0c 基本上能够完成大致上的功能 xff0c 但是如果想使用emwin实现类似的效果的话 xf
  • freeRTOS中断简介

    目录 参考材料 中断简介 中断管理简介 优先级分组定义 正点原子freertos手册 优先级设置 用于中断屏蔽的特殊寄存器 primask暂时屏蔽中断寄存器 xff08 RT THREAD使用 xff09 faultmask寄存器 base
  • 【01】初识ThreadX

    目录 简介 微内核 资料链接 入门索引 简介 ThreadX是一个成熟的商用硬实时嵌入式操作系统 xff0c 被广泛应用于消费电子 航空航天 通信 工业控制与医疗等应用领域中 xff0c 至今已服务超过62亿设备 它以轻量级的规模 xff0
  • [解决方案] VNC Viewer 连接灰屏问题 (能够连接上,但全是灰点,没有任何菜单、按钮,鼠标变为x)

    解决方案 VNC Viewer 连接灰屏问题 xff08 能够连接上 xff0c 但全是灰点 xff0c 没有任何菜单 按钮 xff0c 鼠标变为x xff09 情况1情况2情况3 情况1 登陆VNCviewer可能会发现服务器的mate桌
  • VNC Viewer 10061, connection refused

    在Windows系统下用VNC Viewer去连接Linux系统的VNC Server xff0c 双方都可ping通 xff0c 但是VNC Viewer连接不上 xff0c 显示connection refused 10061 xff0
  • 现代C++语言(C++11/14/17)特性总结和使用建议(一)

    C 43 43 语言在历史上经过了很多次的演进 最早的时候 xff0c C 43 43 语言没有模板 STL 异常等特性 xff0c 之后加入这些特性形成大多数人所熟悉的C 43 43 98 03标准 在此之后 xff0c C 43 43
  • 现代C++语言(C++11/14/17)特性总结和使用建议(二)

    override和final成员函数 以前C 43 43 中虚函数没有一个强制的机制来标识虚函数会在派生类里被改写 vitual关键字是可选的 xff0c 这使得阅读代码变得很费劲 因为可能需要追溯到继承体系的源头才能确定某个方法是否是虚函
  • 高通芯片方案的Wi-Fi6路由器汇总和推荐

    2017年 xff0c 高通宣布推出端到端的802 11ax产品组合 xff0c 其中包括用于网络基础设施的IPQ 8074 SoC 用于客户端设备的QCA 6290解决方案 xff0c 这让高通公司成为第一家宣布支持802 11ax的端到
  • (十)嵌入式:使用TCP协议实现图传

    这段时间做了通信相关的项目 xff0c 需要用到无线图传 xff0c 因此想到了用TCP协议实现 废话不多说 xff0c 直接上代码 xff1a 服务器端 xff1a include lt stdlib h gt include lt st
  • PnP 单目相机位姿估计(一):初识PnP问题

    简介理解更多 IDE xff1a visual studio 2013 使用库 xff1a Eigen opencv2 4 9 文档版本 xff1a 1 1 简介 PnP问题是求解3D 2D点对运动的方法 他描述了当知道n个三维空间点坐标及
  • 多传感器融合中的时间同步2-论文阅读

    文章目录 前言主要内容pps对于INS时间戳校准作用原理 测试结果参考文献 前言 阅读硕士论文 GPS INS组合导航系统研究及实现 xff0c 该论文第5章为时间同步系统设计 xff0c 为GPS INS系统设计的时间同步系统部分内容非常
  • PSINS源码阅读—STIM300/GNSS组合导航

    文章目录 前言代码解读主要框架代码阅读主要脚本sinsgps函数 结果测试 前言 严老师最近在PSINS网站上上传了一组STIM300 GNSS跑车数据 xff0c 并且有光纤惯导数据作为真值参考 xff0c 网站是一组STIM300 GN
  • mpu6500-gnss组合导航代码分析

    文章目录 前言代码分析调参P矩阵陀螺仪偏置P矩阵加速度计偏置P矩阵 前言 导航数据为如下链接 xff0c 数据集使用了低成本Mems器件MPU6500和GNSS做组合导航 代码运行需要严老师psins210406组合导航函数库的支持 xff
  • Java中数组元素的删除

    这是一个LeetCode的简单题 xff0c 在二刷做过的题时突然感觉这个题真的是非常的不错 xff0c 虽然是个简单题 xff0c 没有什么技巧 xff0c 但是写代码的过程中有很多要注意的点 xff0c 感觉还是很考验基本功 xff0c
  • 【视觉里程计】对极几何,三角测量,PnP,ICP原理

    老早就想写些东西 xff0c 但是介于个人懒惰 xff0c 一直没开这个头 xff0c 前几天才发现自己以前学的东西很容易忘记 xff0c 于是决定还是将学习做个总结 xff0c 以便后续回头查看 xff0c 温故而知新嘛 此文章为对相关知
  • Java泛型--泛型应用--泛型接口、泛型方法、泛型数组、泛型嵌套

    1 泛型接口 1 1泛型接口的基本概念 1 2泛型接口实现的两种方式 定义子类 xff1a 在子类的定义上也声明泛型类型 interface Info lt T gt 在接口上定义泛型 public T getVar 定义抽象方法 xff0
  • Linux下调试段错误的方法[Segmentation Fault]--GDB

    原文 1 段错误是什么 xff1f 段错误是指访问的内存超出了系统给这个程序所设定的内存空间 xff0c 例如访问了不存在的内存地址 访问了系统保护的内存地址 访问了只读的内存地址等等情况 A segmentation fault ofte