图论之邻接矩阵

2023-05-16

路径规划系列文章目录

  1. 路径规划算法综述
  2. 图论基础介绍

目录

路径规划系列文章目录

一、图的存储方式介绍

二、邻接矩阵介绍

三、邻接矩阵实现

四、总结


一、图的存储方式介绍

         图的结构比较复杂,是非线性结构,任意两点都可能存在联系,相对来说存储方法较多。目前主要有:

  1. 邻接矩阵表示法
  2. 邻接表表示法
  3. 邻接多重表表示法
  4. 十字链表表示法

        无论上述哪种存储方式,我们都要存顶点的信息,在本系列文章中,我们介绍1,2两种表示法。

二、邻接矩阵介绍

        邻接矩阵就是利用二维矩阵表示图中各顶点之间的关系,对于有n个顶点的图来说,用n阶方阵来表示该图,其中矩阵元素A_{ij}表示从顶点v_{i}v_{j}之间的边,A_{ij}的大小表示边的权值。如果顶点v_{i}v_{j}没有边,则可以将A_{ij}设置为0或者\infty

        如下图所示,左边是一个无向图,右边是其对应的邻接矩阵,该图是无权图,因此有边的值都设置为1。

                           

        下面是有向图及其邻接矩阵

                                     

         从上面可见,无向图的邻接矩阵是关于主轴对称的,第i行或第j列就是顶点v_{i}的度(边数)。图中的边数为"1的个数"/2。对于有向图,由于其具有方向性,因此邻接矩阵一般是不对称的第i行1的个数是顶点v_{i}的出度第i列1的个数是其入度。图的边数等于矩阵中1的个数

对于带权图来说,只需要将1替换为边的权值即可,下面是带权图及其邻接矩阵。

                          

        其中,\infty表示没有边,可以是一个计算机能够接受的较大的值即可。

三、邻接矩阵实现

#include<iostream>
using namespace std;

#define INF 65535 //表示无穷大,其他合理的值也可
#define MaxVerNum  1000 //定义顶点最大数量

typedef int cellType; //定义邻接矩阵元素数据类型,即权值的数据类型

//定义图的类型分别为无向图,无向带权图,有向图,有向带权图 
typedef enum{
	UDG,UDN,DG,DN
}GraphKind; 


class GraphAdjMatrix
{
private: 
	int VerNum;//顶点数量 
	int ArcNum;//边数量 
	GraphKind gKind; //图类型 
	cellType** AdjMatrix;//邻接矩阵 
public:
	GraphAdjMatrix(); 
	void createGraph();//构建图	
	void GraphSet(int VerNum,int ArcNum,int kind);//图属性设置 
	int getVerNum() {return VerNum;}
	int getArcNum()	{return ArcNum;}
	GraphKind geyGraphKind() {return gKind;};
	void setMatrix(int i,int j,int w) ; //邻接矩阵设置 
	void printMatrix();//打印邻接矩阵 
};

GraphAdjMatrix::GraphAdjMatrix()//构造函数 
{
	AdjMatrix  = new cellType*[MaxVerNum];
	for(int i=0;i<MaxVerNum;i++)// 为邻接矩阵分配内存 
		AdjMatrix[i] = new cellType[MaxVerNum];
}

void GraphAdjMatrix::setMatrix(int i,int j,int w) 
{	
	AdjMatrix[i][j]=w; 
	if(gKind==UDG||gKind==UDN) //如果是无向图,则设置对称位置权重 
		AdjMatrix[j][i]=w;
};

void GraphAdjMatrix::createGraph()
{
	int vn,an,k;//分别代表顶点数量,边数量,以及图类型 
	cout<<"输入顶点数量,边数量,图类型用空格隔开"<<endl;
	cout<<"0-无向无权图 1-无向带权图 2-有向无权图 3-有向带权图"<<endl; 
	cin>>vn>>an>>k;
	VerNum = vn;
	ArcNum = an;
	gKind = (GraphKind)k;
	int i,j,w;
	
	//初始化邻接矩阵 
	for(int i=1;i<=vn;i++)
	{
		for(int j=1;j<=vn;j++)
		{
			AdjMatrix[i][j]=INF;
		}
	}
	/*无向图,无向带权图,有向图,有向带权图 */
	GraphKind gk;
	
	while(an--)
	{
		if (k == UDG || k == DG)//如果是无权图,则将边权重设为1 
		{
			cin>>i>>j;
			AdjMatrix[i][j]=1;
			if (k==UDG)//如果是无向图,对称位置设置权重 
				AdjMatrix[j][i]=1;
		}
		else
		{
			cin>>i>>j>>w;
			AdjMatrix[i][j]=w;
			if (k == UDN)//如果是无向图,对称位置设置权重 
				AdjMatrix[j][i]=w;
		}
	}
}

void GraphAdjMatrix::printMatrix()
{
	for(int i=1;i<=VerNum;i++)
	{
		for(int j=1;j<=VerNum;j++)
		{
			if (AdjMatrix[i][j]==INF)
				cout<<"*"<<"\t";
			else
				cout<<AdjMatrix[i][j]<<"\t";
		}
		cout<<endl;
	}
}

int main()
{
	GraphAdjMatrix cg;
	cg.createGraph();
	cg.printMatrix();
	return 0;
}

四、总结

        图的邻接矩阵表示的优点: 非常直观,并且容易实现,编写算法也较简便,因而应用较广; 根据矩阵元素Aij=1或0,便于判定两个顶点之间是否有边(弧)相连; 计算顶点的度数,或有向图的入度、出度方便; 计算图的边数算法简单等。

        图的邻接矩阵表示的缺点: 邻接矩阵事实上是一种顺序存储结构,具有顺序结构共有的缺点,比如:只能按最大空间需求申请内存空间、插入和删除顶点复杂等; 空间复杂度高,n个顶点的图,存储邻接矩阵需要n2个单元,如果一个图的顶点数较多,但边(弧)数较少的话--稀疏图,邻接矩阵一样需要n2个存储单元,就太浪费存储空间; 统计图的边数算法虽然简单,用双重循环统计“1”的个数即可,但其时间复杂度为O(n2)。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

图论之邻接矩阵 的相关文章

  • 安装Django,提示pip版本低,更新又失败

    最近想要看看Django xff0c 以前安装过python xff0c 现在想按照教程来学习 xff0c 结果发现在安装Django包 xff08 命令 xff1a pip install django xff09 时候出问题了 xff0
  • 【2018.04.19 ROS机器人操作系统】机器人控制:运动规划、路径规划及轨迹规划简介之一...

    参考资料及致谢 本文的绝大部分内容转载自以下几篇文章 xff0c 首先向原作者致谢 xff0c 希望自己能在这些前辈们的基础上能有所总结提升 1 运动规划 路径规划 轨迹规划的联系与区别 https blog csdn net wx5456
  • "symbol lookup error"问题解决

    http www linuxquestions org questions slackware 14 symbol lookup error usr lib libgtk x11 2 0 so 0 undefined symbol 4343
  • 如何自定义一个通信协议

    借鉴简单的OSI和TCP IP通信模型来讨论如何自定义一个适应自己的通信协议 文章目录 64 toc 1 前言2 经典的OSI七层模型2 1 TCP IP模型解析2 1 1 整体介绍2 2 2 数据链路层2 2 3 网络层2 2 4 传输层
  • 程序员每天工作多少个小时_程序员每天实际工作几个小时?

    程序员每天工作多少个小时 您如何看待 xff0c 程序员每天实际工作多长时间 xff1f 大多数人会说答案是8到9个小时 有人说他们每天工作12个小时或更长时间 尽管这是正确的 xff0c 但它并不是大多数程序员实际工作的数量 xff0c
  • 九轴姿态传感器的介绍和应用

    总体设计 姿态传感器是基于MEMS技术的高性能三维运动姿态测量系统 它包含三轴陀螺仪 三轴加速度计 xff0c 三轴电子罗盘等运动传感器 xff0c 通过内嵌的低功耗ARM处理器得到经过温度补偿的三维姿态与方位等数据 利用基于四元数的三维算
  • CAN总线简单介绍

    什么是CAN总线 xff1f Controller Area Network xff0c 简称CAN或者CAN bus 是一种功能丰富的串行总线标准 xff0c 最早的CAN控制芯片在奔驰车上应用并量产 xff0c 因为支持多主机 xff0
  • Ubuntu18.04 下realsense编译与安装

    相机型号 xff1a realsense SR300 系统环境 xff1a Ubuntu18 04 我这里是下载并编译源码的方式进行编译安装 具体编译安装可以参照https github com IntelRealSense libreal
  • Linux gvim 编辑器修改配色方案、字体、字号

    1 gvim相比于vim xff0c 目前知道gvim是可以单独窗口运行的 xff0c 像gedit一样 vim打开的文件貌似只能显示在终端内 但是二者安装的位置以及配置文件是很有联系的 xff0c 暂时的感觉是gvim是对vim的封装 x
  • 【路径规划】(3) RRT 算法求解最短路,附python完整代码

    大家好 xff0c 今天和各位分享一下机器人路径规划中的 RRT 算法 xff0c 感兴趣的点个关注 xff0c 文末有 python 代码 xff0c 那我们开始吧 1 算法介绍 RRT 算法是由学者 S M LaValle 提出来的路径
  • 【自动化测试】【安卓android】python 发送adb命令方法

    command 命令列表 xff0c 可以传入任意命令 xff0c 类型为list cmdMode可以选择发送命令方式为直接发送adb 命令还是先进入shell def sendAdbcmd command deviceID 61 34 3
  • 选择恐惧症的福音!教你认清MVC,MVP和MVVM

    相信大家对MVC xff0c MVP和MVVM都不陌生 xff0c 作为三个最耳熟能详的Android框架 xff0c 它们的应用可以是非常广泛的 xff0c 但是对于一些新手来说 xff0c 可能对于区分它们三个都有困难 xff0c 更别
  • FreeRtos嵌入式操作系统学习1--操作系统原理初探

    这里由于是第一篇文章 xff0c 不讲复杂的数据机构 xff0c 也不进行代码分析 xff0c 只讲嵌入式操作系统原理 先看下面一个简单的程序 xff1a void task1 while 1 Led1 1 xff08 1 xff09 de
  • 初学四旋翼之定高

    本项目使用US 100超声波模块测高 xff0c 与飞控的通讯方式为UART 硬件连接应注意 xff1a 通常飞控的发送管脚连超声波的接收管脚 xff0c 飞控的接收管脚连超声波的发送管脚 xff08 即tx rx xff1b rx tx
  • 初学四旋翼之光流定点

    本项目使用px4flow模块测速 xff0c 与飞控的通讯方式为I2C 安装时因注意光流模块与飞控的方向 xff08 一 xff09 为什么使用光流模块 xff1f 在悬停时 xff0c 若采用开环控制 xff0c 由于一些不可控的外界因素
  • 初学JetsonTX2之部署YOLO

    本人准备使用 YOLO进行人脸检测 xff0c 硬件设备为 Jetson TX2 查阅 YOLO 官网 xff0c 要部署 YOLO xff0c 首先要安装 CUDA CUDNN OPENCV xff0c 然后部署 Darknet xff0
  • C语言,超过10位数的字符串转整型函数

    include lt stdio h gt static long str2int const char str long temp 61 0 const char p 61 str if str 61 61 NULL return 0 i
  • C语言去掉MAC地址中的冒号

    include lt stdio h gt include lt string h gt void strdel char s char del x char p char q for p 61 s q 61 s p 61 39 0 39
  • Jetson Xavier NX 套件将系统装到SSD

    目录 第一步 xff1a 虚拟机 第二步 xff1a 装SDK Manager 第三步 xff1a 将系统装到eMMC 第四步 xff1a 将系统装到SSD内 xff0c 我以新买的500G硬盘为例 第五步 xff1a 装各种库 解决问题时
  • MySQL使用.ibd文件恢复或者迁移数据库

    使用86的Alice数据库的 ibd文件备份 恢复到76数据库 xff0c 该数据库版本为8 0 17 1 创建一个表确认与原始表结构一致 将86数据库的表结构导出 xff0c 在76上执行 xff08 注 xff1a 在5 5 26版本需

随机推荐

  • 学习ARM反汇编工具objdump和一个简单实例

    学习ARM反汇编工具objdump和一个简单实例 参考朱有鹏ARM裸机编程 1 反汇编的原理 amp 为什么需要反汇编 arm linux objdump D led elf gt led elf dis objdump是gcc工具链中的反
  • 从零开始学习UCOSII操作系统1--UCOSII的基础知识

    从零开始学习UCOSII操作系统1 UCOSII的基础知识 前言 xff1a 首先比较主流的操作系统有UCOSII FREERTOS LINUX等 xff0c UCOSII的资料相对比其余的两个操作系统的资料是多很多的 更重要的原因是自己本
  • 从零开始学习UCOSII操作系统2--UCOSII的内核实现

    从零开始学习UCOSII操作系统2 UCOSII的内核实现 参考书籍 xff1a 嵌入式实时操作系统 COS II原理及应用 嵌入式实时操作系统uCOS II 邵贝贝 第二版 1 任务的结构 任务控制块 首先这个任务控制块是非常的大的 xf
  • 从零开始学习UCOSII操作系统4--任务管理

    从零开始学习UCOSII操作系统4 任务管理 1 重讲任务 1 任务可以是一个无限的循环 xff0c 也可以在一次执行完毕后被删除 这里需要注意的是 xff0c 任务的代码并不是真正的删除了 xff0c 而是UCOSII不再理会该任务代码
  • 从零开始学习UCOSII操作系统7--信号量

    从零开始学习UCOSII操作系统7 信号量 参考博客 xff1a 64 http blog csdn net gatiemehttps blog csdn net gatieme article details 21071379 前言 xf
  • 从零开始学习UCOSII操作系统15--总结篇

    从零开始学习UCOSII操作系统15 总结篇 前言 xff1a 在大学的时候 xff0c 我们班级上面都有很多人觉得学习UCOSII 包括UCOSIII 是没什么厉害的 xff0c 因为很多人都喜欢去学习Linux操作系统 xff0c 但是
  • 手把手教你搭建TFTP服务器

    手把手教你搭建TFTP服务器 前言 xff0c 东西来自于网络 xff0c 但是根据自己的理解写了一下建议 xff0c 记录下来 xff0c 让下次不要在网络上面浪费时间搜索 1 保证自己的虚拟机能够上网 测试方法 xff1a 里面一般都有
  • 从零开始写一个单向不循环链表

    从零开始写一个单向不循环链表 总结 xff1a 郝斌数据结构与算法课程 数据结构概述 xff1a 定义 xff1a 我们如何把现实中大量的而复杂的问题以特定的数据类型和特定的存储结构保存到主存储器 xff08 内存 xff09 中 xff0
  • STM32-CAN通信协议

    STM32 CAN通讯协议 CAN协议简述 CAN Controller Area Network xff08 控制器局域网 xff09 xff0c 由Bosch开发的一种面向汽车的通信协议 这是目前应用最广泛的通信协议 xff0c 更是尤
  • FreeRTOS-任务运行时间统计

    FreeRTOS 任务运行时间统计 引入 上一章节中我们讲述了任务信息获取 xff0c 我们已经能够获取绝大部分任务信息了 xff0c 但是任务还有一个很重要的信息 xff0c 那就是运行时间 如果我们知道了每个任务的运行时间和占比我们就可
  • 【Linux】解决Nvidia Jetson Xavier NX开发套件开机启动时间过长问题

    环境 硬件 xff1a Jetson Xavier NX 套件 系统 xff1a Ubuntu 20 04 解决 0 现象 在使用Nvidia 的Jetson Xavier NX套件 xff0c 开发产品 xff0c 准备发布时 xff0c
  • FreeRTOS-信号量

    FreeRTOS 信号量 信号量其实就是队列的一种应用 xff0c 信号量的各种操作都是在队列的基础上建立起来的 那么既然是在队列的基础上建立的 xff0c 信号量一定具有和队列相同的属性 因此信号量也是为任务和任务 任务和中断之间通信做准
  • FreeRTOS-空闲任务及钩子函数

    FreeRTOS 空闲任务及钩子函数 FreeRTOS中空闲任务是开启任务调度器自动创建的一个任务 xff0c 这样可以保证系统中有任务可以运行 xff0c 这个任务优先级是最低的 xff0c 如果有其他任务处于就绪态 xff0c 那么空闲
  • FreeRTOS-内存管理-完结篇

    FreeRTOS 内存管理 无论是创建任务 队列 信号量还是其他的东西 xff0c 都需要为其分配一定空间 xff0c 前面我们都是运用动态内存申请的方法来申请空间 xff0c 并且我们所使用的的动态内存申请函数都是FreeRTOS自己提供
  • OpenCV环境搭建

    OpenCV环境搭建 VS2017安装 具体安装过程参考下面链接 xff1a https mp weixin qq com s NrrHFAXm57QblOf5CPUVmw 组件可以参考以下选项 xff1a OpenCV安装 如果还没有安装
  • W2-图像增强

    线性变换 imag span class token operator 61 span span class token function imread span span class token punctuation span span
  • 半天光速入门Python(上)

    文章目录 写在前面一 Python环境Python解释器与编辑器WinDows用户Linux用户 二 基础概念 运算符与表达式常量数类型字符串变量与标识符对象逻辑行与物理行缩进运算符注释方法与C语言区别 三 三种程序结构ifforwhile
  • 路径规划算法综述

    路径规划算法综述 路径规划算法综述 文章目录 路径规划算法综述路径规划算法主要问题一 主要问题及现有解决方案1 环境建模问题2 收敛速度和局部最优解 二 路径规划算法分类及简介2 1传统算法2 1 1全局路径规划算法2 1 1 1 A 算法
  • 图论基础介绍

    路径规划系列文章目录 路径规划算法综述 文章目录 路径规划系列文章目录图论基础介绍一 图的基本概念1 1 图的定义1 2 图的分类1 2 1 无向图1 2 2 有向图1 2 3 带权图 二 图的相关术语2 1 邻接 adjacent 2 2
  • 图论之邻接矩阵

    路径规划系列文章目录 路径规划算法综述图论基础介绍 目录 路径规划系列文章目录 一 图的存储方式介绍 二 邻接矩阵介绍 三 邻接矩阵实现 四 总结 一 图的存储方式介绍 图的结构比较复杂 xff0c 是非线性结构 xff0c 任意两点都可能