k8s下POD之间的通信过程

2023-05-16

本文主要描述同一个node之内的pod之间的通信,以及不同node之间的pod之间的通信。

同一个node上的不同pod之间的通信:

假设上图的POD A要和POD B 通信: POD A 发送一个包,目的ip为POD B,当包路由后,按路由从POD A的veth0接口出去。这是查找veth0接口下的arp table,如果arp table中没有POD B的record,则进行arp地址解析,即发送arp request,请求reserve 10.1.20.3的mac地址,这个arp request包经docker0 bridge转发到POD B,从而完成地址解析。于是POD A的包填充POD B的mac地址,从veth0发出去。

veth0/veth1是veth对,即从其中一个接口的发包,就转化为另一个接口对该包的接收。所以,POD A从veth0发出的包,相当于docker0 bridge从veth1接口收到这个包。然后docker0 bridge查找转发表(key为dst mac),将包从veth0发送,POD B则在veth1接口接收这个来自POD A的包,通信完成。

不同node上的不同pod之间的通信:

假设上图的PODA 要和另外一个node上的POD X通信,POD X的POD IP为10.1.15.2/24.

POD A组包:

     src ip: 10.1.20.2         dst ip: 10.1.15.2

由于10.1.15.2和自己不在同一个网络10.1.20.0/24, 包需要经veth0发送到自己的网关10.1.20.1(docker0 bridge)。然后开始填充mac, 自然目的mac为docker0 bridge的mac。

当包通过veth对到达docker0 bridge。

Docker0 bridge收到这个包后,丢给内核网络协议栈处理,网络协议栈经过路由发现,这个包的目的地址不是本机,则forward。Forward时重新进行路由,即查找dst ip 为10.1.15.2的route entry。这个dst ip 为10.1.15.2的route entry的out device为flannel0,则将包发送给flannel0设备处理。

Flannel0是一个虚拟的vxlan设备,收到这个包后,构建这个包的mac层。

如果flannel0的arp table没有10.1.15.2对应的mac地址,则会触发一个kernel事件: L3 MISS。

用户空间有个进程flanneld收到这个L3 MISS事件后,从etcd中取得10.1.15.2的mac地址,以及其对应的node的ip地址(假设为192.168.12.100),然后将arp信息填充到flannel0设备下,使得flannel0设备能构建发向10.1.15.2的mac地址。然后flannel0设备构建eth/ip/udp/vxlan包来发送POD A要发送到10.1.15.2的包(eth packet):

      (下图为POD A 发向10.1.15.2的原始包)

Src mac: POD A ,   src ip: 10.1.20.2(POD A)

Dst mac: POD X,  ds tip: 10.1.15.2(POD X)

     (下图为POD A 发向10.1.15.2的vxlan包)

Src mac: POD A所在的node的eth0,  dst mac: POD X所在的node的eth0

Src ip: POD A所在的node的eth0 ip- 192.168.0.200,  ds tip: POD X所在node的eth0 ip – 192.168.12.100.

于是POD A发出的包就被整个封装在vxlan里面发送到对端node上。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

k8s下POD之间的通信过程 的相关文章

  • kubeadm一键搭建kubernetes环境

    kubeadm一键搭建kubernetes环境 安装docker 按官网教程执行https docs docker com v17 09 engine installation linux docker ce centos install
  • k8s部署gitlab最新版并初始化和登录

    前提条件是已经部署了k8s环境 采用k8s部署gitlab作为devops的测试环境 更加简洁和方便 1 准备工作 1 1 创建nfs共享目录 在nfs服务器创建共享目录 部署的gitlib使用共享目录来进行持久化 这样不管在哪个节点运行g
  • K8s基础10——数据卷、PV和PVC、StorageClass动态补给、StatefulSet控制器

    文章目录 一 数据卷类型 1 1 临时数据卷 节点挂载 1 2 节点数据卷 节点挂载 1 3 网络数据卷NFS 1 3 1 效果测试 1 4 持久数据卷 PVC PV 1 4 1 效果测试 1 4 2 测试结论 二 PV PVC生命周期 2
  • underlay和overlay? & 传统网络和数据中心网络 ?

    underlay和overlay 百度 Underlay 和 Overlay 是网络架构中两个常用的概念 用于描述不同层次或视角下的网络结构和通信方式 1 Underlay 底层网络 Underlay 是指基础网络层 即物理网络或基础网络架
  • Harbor镜像仓库搭建

    1 安装docker comprose docker comprose是docker容器批量管理工具 curl L https get daocloud io docker compose releases download 1 25 0
  • k8s安装遇到过的一些问题

    无法获取recomended yaml文件 root k8master1 wget https raw githubusercontent com kubernetes dashboard v2 7 0 aio deploy recomme
  • k8s系列——部署k8s集群

    1 环境准备 1 1 安装操作系统 此处选用centos 7 操作系统进行安装操作 1 2 关闭防火墙 systemctl stop firewalld systemctl disable firewalld 1 3 关闭selinux s
  • k8s v1.16设置Job ttlSecondsAfterFinished不生效

    目录 Completed的job默认不会清理 配置自动清理job ttl机制自动清理完成的job ttl controller 开启 TTLAfterFinished kube apiserver开启TTLAfterFinished kub
  • K8s-yaml的使用及命令

    YAML配置文件管理对象 对象管理 创建deployment资源 kubectl create f nginx deployment yaml 查看deployment kubectl get deploy 查看ReplicaSet kub
  • k8s英伟达GPU插件(nvidia-device-plugin)

    安装方法 Installation Guide NVIDIA Cloud Native Technologies documentation 1 本地节点添加 NVIDIA 驱动程序 要求 NVIDIA drivers 384 81 先确保
  • 十八. Kubernetes Ingress

    目录 一 Ingress 基础解释 二 ingressController 安装 六 ingress 使用示例 pathType 详细 annotations 基于k8s注解为 nginx 添加功能示例 路径重写 Session Affin
  • calico分配网络使k8s节点指定固定网段

    文章目录 calico分配网络使k8s节点指定固定网段 1 配置calicoctl 1 1 下载calicoctl 1 2 配置calicoctl 1 3 测试calicoctl 2 配置ippool 3 添加ippool 4 创建pod测
  • docker下mysql镜像初始化

    目录 1 介绍 2 部署及验证 2 1 场景复现 2 2 创建dockerfile 2 3 初始化脚本 2 4 构建镜像并查看 2 5 创建容器并验证 2 6 完成 1 介绍 原理 当Mysql容器首次启动时 会在 docker entry
  • Deployment Controller 典型使用场景

    1 重新调度 Rescheduling 不管想运行 1 个副本还是 1000 个副本 副本控制器都能确保指定数量的副本存在于集群中 即使发生节点故障或 Pod 副本被终止运行等意外状况 2 弹性伸缩 Scaling 手动或者通过自动扩容代理
  • 初学容器:Docker

    1 环境初始化 1 1 安装git vim curl等常用工具 sudo apt update sudo apt install y git vim curl jq 1 2 ubuntu是不支持远程连接的 需要安装ssh服务 sudo ap
  • k8s中Endpoint是什么

    在Kubernetes K8s 中 Endpoint是一种资源对象 用于表示一个Service所依赖的真实后端节点的Pod信息 它存储了一组IP地址和端口号的列表 这些IP地址和端口号对应着提供相同服务的Pod实例 主要作用 Endpoin
  • kube-flannel.yml

    flannel作为k8s的集群中常用的网络组件 其yml文件的获取 建议去github中获取 具体的获取方式如下 apiVersion policy v1beta1 kind PodSecurityPolicy metadata name
  • kubeadm配置虚拟机k8s集群

    环境 centos7 vm pro windows terminal termius 虚拟机 硬件配置 2核2G 实验用 具体可根据电脑调整 配置3台 master01 node01 node02 通过克隆虚拟机直接复制 配置通一项以后建议
  • k8s Failed to create pod sandbox错误处理

    错误信息 Failed to create pod sandbox rpc error code Unknown desc failed to get sandbox image k8s gcr io pause 3 2 failed to
  • k8备份与恢复-Velero

    简介 Velero 是一款可以安全的备份 恢复和迁移 Kubernetes 集群资源和持久卷等资源的备份恢复软件 Velero 实现的 kubernetes 资源备份能力 可以轻松实现 Kubernetes 集群的数据备份和恢复 复制 ku

随机推荐

  • STM32F407通过FSMC连接W5100S进行TCP网络通信

    STM32F407通过FSMC连接W5100S进行TCP网络通信 一 W5100S硬件 1 HS NM5100SA模块 模块厂家 xff1a 成都浩然电子http www hschip com HS NM5100SA以太网络控制器接口模块是
  • 【ROS2 入门】ROS2 创建工作空间

    大家好 xff0c 我是虎哥 xff0c 从今天开始 xff0c 我将花一段时间 xff0c 开始将自己从ROS1切换到ROS2 xff0c 在上几篇中 xff0c 我们一起了解ROS 2中很多基础概念 xff0c 从今天开始我们逐步就开始
  • STM32F407通过SPI连接W5100S进行TCP网络通信

    STM32F407通过SPI连接W5100S进行网络通信 一 W5100S硬件 1 HS NM5100SA模块 模块厂家 xff1a 成都浩然电子http www hschip com HS NM5100SA以太网络控制器接口模块是将W51
  • STM32F407 内部自带FLASH 模拟 EEPROM

    STM32F407 内部自带FLASH 模拟 EEPROM 一 STM32F407自带FLASH STM32F4 本身没有自带 EEPROM xff0c 但是 STM32F4 具有 IAP xff08 在应用编程 xff09 功能 xff0
  • 国标GB/T 18384.1 绝缘检测算法 推导公式

    国标GB T 18384 1 绝缘检测算法 推导公式 国标中关于绝缘检测算法只有结果 xff0c 没有推导公式 xff0c 如下 xff1a 根据电流回路相等原则 xff0c 推导出公式1 xff1a V1 V1 为正常情况下电池正负极电压
  • LTC6820和isoSPI使用笔记

    一 LTC6820使用笔记 1 MSTR主控 受控 MSTR 引脚 11 引脚 12 xff1a 串行接口主 从选择器输入 位于隔离式接口的主控器侧 xff08 SPI主机 xff09 xff0c 引脚接 VDD 位于隔离式接口的受控器侧
  • ESP8266学习笔记1--硬件

    1 ESP12F模块 原理图 自制开发板 原理图
  • ESP8266学习笔记2--Arduino环境搭建

    1 安装Arduino IDE https www arduino cn thread 5838 1 1 html 2 安装esp8266扩展 https www arduino cn thread 76029 1 1 html 安装成功后
  • ESP8266学习笔记3-闪存文件系统

    3 3 1 闪存文件SPIFFS基本操作 程序来源 xff1a 太极创客http www taichi maker com homepage esp8266 nodemcu iot iot c spiffs spiffs operation
  • 同一寄存器不同位域赋值的两种方法

    当一个寄存器有不同位域时 xff0c 我们需要给不同位域赋值 如何赋值方便呢 xff1f 下面有两种方法 xff0c 总结一下 个人觉得位域写法更简洁 整体寄存器法 typedef struct StrNa uint32 t reg1 re
  • mavlink解析

    之前看了mavlink协议 xff0c 网上关于mavlink的资料不多 本系列共三篇 xff0c 这是第一篇 本文大概总结了下对mavlink协议的理解 以下如不说明都是说mavlink v1 0版本 首先附上mavlink的各个消息的简
  • Tomcat部署及优化

    目录 1 Tomcat概述 1 Tomcat的概念 2 Tomcat的核心组件 3 Java Servlet 的概念 4 JSP的概念 5 Tomcat中最顶层的容器 server 6 四个子容器的作用 7 Tomcat请求过程 2 Tom
  • STC89C52系列单片机内部资源——串口通信

    计算机通信是将计算机技术和通信技术的相结合 xff0c 完成计算机与外部设备或计算机与计算机之间的信息交换 可以分为两大类 xff1a 并行通信与串行通信 并行通信通常是将数据字节的各位用多条数据线同时进行传送 并行通信控制简单 传输速度快
  • 用TCP/UDP 网络调试助手(PC版)无法获取网页信息

    以前的网页均是http开头的 xff0c 是没有加密的 xff0c 以前用GET就能获取网页的信息 xff0c 但是现在的基本是https开头的 xff0c 是加密的 xff0c 所以现在用以前的方法 xff0c 只能返回301错误 现在想
  • Ubuntu 20.04安装Ros Noetic及Ubuntu 18.04安装ROS Melodic(两版本详细填坑)

    Ubuntu 20 04安装Ros Noetic及18 04安装ROS Melodic 表1 1 ROS的历史版本 1 设置安装源2 添加秘钥3 更新列表4 开始安装5 配置ROS环境变量6 安装rosinstall6 1 初始化核心组件r
  • linux 根文件系统,根设备,sys_open, sys_read, sys_write, sys_mount, sys_mknod

    笔者语 xff1a 1 内容涉及比较多 xff0c 自己也没有分章节 xff0c 因为觉得这些内容关联性很强 xff0c 自己也懒的去弄了 2 本文涉及以下内容 xff1a 2 1 内核启动过程中 xff0c 第一个文件系统为rootfs
  • uboot的配置(make xxx_config)和编译(make)工程解读

    uboot编译三步走 make xxx configmakemake install 第一步make xxx config 这一步是产生板子的配置文件 我们假设是配置ast2500evb板子 xff0c 那么这里的配置命令就是 make a
  • uboot启动之第一次运行C函数到uboot重定位

    接上一篇博文 uboot启动流程之上电启动到第一次准备好C语言运行环境 xff0c 本文从board init f 开始 board init f定义在uboot common board f c中 CONFIG SYS GENERIC B
  • pci总线扫描及pci网卡驱动

    本文讲述的基于intel 总线架构的硬件架构为例来说明linux是如何扫描总线上的PCI设备 CPU通过前端总线FS连接到北桥芯片North Bridge Chip 又称host Bridge 北桥芯片本身也是PCI总线0上的PCI设备 北
  • k8s下POD之间的通信过程

    本文主要描述同一个node之内的pod之间的通信 xff0c 以及不同node之间的pod之间的通信 同一个 node 上的不同 pod 之间的通信 xff1a 假设上图的POD A要和POD B 通信 POD A 发送一个包 xff0c