秒杀系统的思考

2023-05-16

极限并发带来的思考

虽然现在大多数情况下都能订到票,但是放票瞬间即无票的场景,相信大家都深有体会。

尤其是春节期间,大家不仅使用 12306,还会考虑“智行”和其他的抢票软件,全国上下几亿人在这段时间都在抢票。

“12306 服务”承受着这个世界上任何秒杀系统都无法超越的 QPS,上百万的并发再正常不过了!

笔者专门研究了一下“12306”的服务端架构,学习到了其系统设计上很多亮点,在这里和大家分享一下并模拟一个例子:如何在 100 万人同时抢 1 万张火车票时,系统提供正常、稳定的服务。github代码地址

大型高并发系统架构

高并发的系统架构都会采用分布式集群部署,服务上层有着层层负载均衡,并提供各种容灾手段(双火机房、节点容错、服务器灾备等)保证系统的高可用,流量也会根据不同的负载能力和配置策略均衡到不同的服务器上。

下边是一个简单的示意图:

负载均衡简介

上图中描述了用户请求到服务器经历了三层的负载均衡,下边分别简单介绍一下这三种负载均衡。

① OSPF(开放式最短链路优先)是一个内部网关协议(Interior Gateway Protocol,简称 IGP)

OSPF 通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径树,OSPF 会自动计算路由接口上的 Cost 值,但也可以通过手工指定该接口的 Cost 值,手工指定的优先于自动计算的值。

OSPF 计算的 Cost,同样是和接口带宽成反比,带宽越高,Cost 值越小。到达目标相同 Cost 值的路径,可以执行负载均衡,最多 6 条链路同时执行负载均衡。

②LVS (Linux Virtual Server)

它是一种集群(Cluster)技术,采用 IP 负载均衡技术和基于内容请求分发技术。

调度器具有很好的吞吐率,将请求均衡地转移到不同的服务器上执行,且调度器自动屏蔽掉服务器的故障,从而将一组服务器构成一个高性能的、高可用的虚拟服务器。

③Nginx

想必大家都很熟悉了,是一款非常高性能的 HTTP 代理/反向代理服务器,服务开发中也经常使用它来做负载均衡。

Nginx 实现负载均衡的方式主要有三种:

  • 轮询

  • 加权轮询

  • IP Hash 轮询

下面我们就针对 Nginx 的加权轮询做专门的配置和测试。

Nginx 加权轮询的演示

Nginx 实现负载均衡通过 Upstream 模块实现,其中加权轮询的配置是可以给相关的服务加上一个权重值,配置的时候可能根据服务器的性能、负载能力设置相应的负载。

下面是一个加权轮询负载的配置,我将在本地的监听 3001-3004 端口,分别配置 1,2,3,4 的权重:

#配置负载均衡
    upstream load_rule {
       server 127.0.0.1:3001 weight=1;
       server 127.0.0.1:3002 weight=2;
       server 127.0.0.1:3003 weight=3;
       server 127.0.0.1:3004 weight=4;
    }
    ...
    server {
    listen       80;
    server_name  load_balance.com www.load_balance.com;
    location / {
       proxy_pass http://load_rule;
    }

我在本地 /etc/hosts 目录下配置了 www.load_balance.com 的虚拟域名地址。

接下来使用 Go 语言开启四个 HTTP 端口监听服务,下面是监听在 3001 端口的 Go 程序,其他几个只需要修改端口即可:

package main

import (
    "net/http"
    "os"
    "strings"
)

func main() {
    http.HandleFunc("/buy/ticket", handleReq)
    http.ListenAndServe(":3001", nil)
}

//处理请求函数,根据请求将响应结果信息写入日志
func handleReq(w http.ResponseWriter, r *http.Request) {
    failedMsg :=  "handle in port:"
    writeLog(failedMsg, "./stat.log")
}

//写入日志
func writeLog(msg string, logPath string) {
    fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
    defer fd.Close()
    content := strings.Join([]string{msg, "\r\n"}, "3001")
    buf := []byte(content)
    fd.Write(buf)
}

我将请求的端口日志信息写到了 ./stat.log 文件当中,然后使用 AB 压测工具做压测:

ab -n 1000 -c 100 http://www.load_balance.com/buy/ticket

统计日志中的结果,3001-3004 端口分别得到了 100、200、300、400 的请求量。

这和我在 Nginx 中配置的权重占比很好的吻合在了一起,并且负载后的流量非常的均匀、随机。

具体的实现大家可以参考 Nginx 的 Upsteam 模块实现源码:

https://www.kancloud.cn/digest/understandingnginx/202607

秒杀抢购系统选型

回到我们最初提到的问题中来:火车票秒杀系统如何在高并发情况下提供正常、稳定的服务呢?

从上面的介绍我们知道用户秒杀流量通过层层的负载均衡,均匀到了不同的服务器上,即使如此,集群中的单机所承受的 QPS 也是非常高的。

如何将单机性能优化到极致呢?

要解决这个问题,我们就要想明白一件事:

通常订票系统要处理生成订单、减扣库存、用户支付这三个基本的阶段。

我们系统要做的事情是要保证火车票订单不超卖、不少卖,每张售卖的车票都必须支付才有效,还要保证系统承受极高的并发。

这三个阶段的先后顺序该怎么分配才更加合理呢?我们来分析一下:

下单减库存

当用户并发请求到达服务端时,首先创建订单,然后扣除库存,等待用户支付。

这种顺序是我们一般人首先会想到的解决方案,这种情况下也能保证订单不会超卖,因为创建订单之后就会减库存,这是一个原子操作。

但是这样也会产生一些问题:

  • 在极限并发情况下,任何一个内存操作的细节都至关影响性能,尤其像创建订单这种逻辑,一般都需要存储到磁盘数据库的,对数据库的压力是可想而知的。

  • 如果用户存在恶意下单的情况,只下单不支付这样库存就会变少,会少卖很多订单,虽然服务端可以限制 IP 和用户的购买订单数量,这也不算是一个好方法。

支付减库存

如果等待用户支付了订单在减库存,第一感觉就是不会少卖。但是这是并发架构的大忌,因为在极限并发情况下,用户可能会创建很多订单。

当库存减为零的时候很多用户发现抢到的订单支付不了了,这也就是所谓的“超卖”。也不能避免并发操作数据库磁盘 IO。

预扣库存

从上边两种方案的考虑,我们可以得出结论:只要创建订单,就要频繁操作数据库 IO。

那么有没有一种不需要直接操作数据库 IO 的方案呢,这就是预扣库存。先扣除了库存,保证不超卖,然后异步生成用户订单,这样响应给用户的速度就会快很多;那么怎么保证不少卖呢?用户拿到了订单,不支付怎么办?

我们都知道现在订单都有有效期,比如说用户五分钟内不支付,订单就失效了,订单一旦失效,就会加入新的库存,这也是现在很多网上零售企业保证商品不少卖采用的方案。

订单的生成是异步的,一般都会放到 MQ、Kafka 这样的即时消费队列中处理,订单量比较少的情况下,生成订单非常快,用户几乎不用排队。

扣库存的艺术

从上面的分析可知,显然预扣库存的方案最合理。我们进一步分析扣库存的细节,这里还有很大的优化空间,库存存在哪里?怎样保证高并发下,正确的扣库存,还能快速的响应用户请求?

在单机低并发情况下,我们实现扣库存通常是这样的:

为了保证扣库存和生成订单的原子性,需要采用事务处理,然后取库存判断、减库存,最后提交事务,整个流程有很多 IO,对数据库的操作又是阻塞的。

这种方式根本不适合高并发的秒杀系统。接下来我们对单机扣库存的方案做优化:本地扣库存。

我们把一定的库存量分配到本地机器,直接在内存中减库存,然后按照之前的逻辑异步创建订单。

改进过之后的单机系统是这样的:

这样就避免了对数据库频繁的 IO 操作,只在内存中做运算,极大的提高了单机抗并发的能力。

但是百万的用户请求量单机是无论如何也抗不住的,虽然 Nginx 处理网络请求使用 Epoll 模型,c10k 的问题在业界早已得到了解决。

但是 Linux 系统下,一切资源皆文件,网络请求也是这样,大量的文件描述符会使操作系统瞬间失去响应。

上面我们提到了 Nginx 的加权均衡策略,我们不妨假设将 100W 的用户请求量平均均衡到 100 台服务器上,这样单机所承受的并发量就小了很多。

然后我们每台机器本地库存 100 张火车票,100 台服务器上的总库存还是 1 万,这样保证了库存订单不超卖,下面是我们描述的集群架构:

问题接踵而至,在高并发情况下,现在我们还无法保证系统的高可用,假如这 100 台服务器上有两三台机器因为扛不住并发的流量或者其他的原因宕机了。那么这些服务器上的订单就卖不出去了,这就造成了订单的少卖。

要解决这个问题,我们需要对总订单量做统一的管理,这就是接下来的容错方案。服务器不仅要在本地减库存,另外要远程统一减库存。

有了远程统一减库存的操作,我们就可以根据机器负载情况,为每台机器分配一些多余的“Buffer 库存”用来防止机器中有机器宕机的情况。

我们结合下面架构图具体分析一下:

我们采用 Redis 存储统一库存,因为 Redis 的性能非常高,号称单机 QPS 能抗 10W 的并发。

在本地减库存以后,如果本地有订单,我们再去请求 Redis 远程减库存,本地减库存和远程减库存都成功了,才返回给用户抢票成功的提示,这样也能有效的保证订单不会超卖。

当机器中有机器宕机时,因为每个机器上有预留的 Buffer 余票,所以宕机机器上的余票依然能够在其他机器上得到弥补,保证了不少卖。

Buffer 余票设置多少合适呢,理论上 Buffer 设置的越多,系统容忍宕机的机器数量就越多,但是 Buffer 设置的太大也会对 Redis 造成一定的影响。

虽然 Redis 内存数据库抗并发能力非常高,请求依然会走一次网络 IO,其实抢票过程中对 Redis 的请求次数是本地库存和 Buffer 库存的总量。

因为当本地库存不足时,系统直接返回用户“已售罄”的信息提示,就不会再走统一扣库存的逻辑。

这在一定程度上也避免了巨大的网络请求量把 Redis 压跨,所以 Buffer 值设置多少,需要架构师对系统的负载能力做认真的考量。

代码演示

Go 语言原生为并发设计,我采用 Go 语言给大家演示一下单机抢票的具体流程。

初始化工作

Go 包中的 Init 函数先于 Main 函数执行,在这个阶段主要做一些准备性工作。

我们系统需要做的准备工作有:初始化本地库存、初始化远程 Redis 存储统一库存的 Hash 键值、初始化 Redis 连接池。

另外还需要初始化一个大小为 1 的 Int 类型 Chan,目的是实现分布式锁的功能。

也可以直接使用读写锁或者使用 Redis 等其他的方式避免资源竞争,但使用 Channel 更加高效,这就是 Go 语言的哲学:不要通过共享内存来通信,而要通过通信来共享内存。

Redis 库使用的是 Redigo,下面是代码实现:

...
//localSpike包结构体定义
package localSpike

type LocalSpike struct {
    LocalInStock     int64
    LocalSalesVolume int64
}
...
//remoteSpike对hash结构的定义和redis连接池
package remoteSpike
//远程订单存储健值
type RemoteSpikeKeys struct {
    SpikeOrderHashKey string    //redis中秒杀订单hash结构key
    TotalInventoryKey string    //hash结构中总订单库存key
    QuantityOfOrderKey string   //hash结构中已有订单数量key
}

//初始化redis连接池
func NewPool() *redis.Pool {
    return &redis.Pool{
        MaxIdle:   10000,
        MaxActive: 12000, // max number of connections
        Dial: func() (redis.Conn, error) {
            c, err := redis.Dial("tcp", ":6379")
            if err != nil {
                panic(err.Error())
            }
            return c, err
        },
    }
}
...
func init() {
    localSpike = localSpike2.LocalSpike{
        LocalInStock:     150,
        LocalSalesVolume: 0,
    }
    remoteSpike = remoteSpike2.RemoteSpikeKeys{
        SpikeOrderHashKey:  "ticket_hash_key",
        TotalInventoryKey:  "ticket_total_nums",
        QuantityOfOrderKey: "ticket_sold_nums",
    }
    redisPool = remoteSpike2.NewPool()
    done = make(chan int, 1)
    done <- 1
}

本地扣库存和统一扣库存

本地扣库存逻辑非常简单,用户请求过来,添加销量,然后对比销量是否大于本地库存,返回 Bool 值:

package localSpike
//本地扣库存,返回bool值
func (spike *LocalSpike) LocalDeductionStock() bool{
    spike.LocalSalesVolume = spike.LocalSalesVolume + 1
    return spike.LocalSalesVolume < spike.LocalInStock
}

注意这里对共享数据 LocalSalesVolume 的操作是要使用锁来实现的,但是因为本地扣库存和统一扣库存是一个原子性操作,所以在最上层使用 Channel 来实现,这块后边会讲。

统一扣库存操作 Redis,因为 Redis 是单线程的,而我们要实现从中取数据,写数据并计算一些列步骤,我们要配合 Lua 脚本打包命令,保证操作的原子性:

package remoteSpike
......
const LuaScript = `
        local ticket_key = KEYS[1]
        local ticket_total_key = ARGV[1]
        local ticket_sold_key = ARGV[2]
        local ticket_total_nums = tonumber(redis.call('HGET', ticket_key, ticket_total_key))
        local ticket_sold_nums = tonumber(redis.call('HGET', ticket_key, ticket_sold_key))
        -- 查看是否还有余票,增加订单数量,返回结果值
       if(ticket_total_nums >= ticket_sold_nums) then
            return redis.call('HINCRBY', ticket_key, ticket_sold_key, 1)
        end
        return 0
`
//远端统一扣库存
func (RemoteSpikeKeys *RemoteSpikeKeys) RemoteDeductionStock(conn redis.Conn) bool {
    lua := redis.NewScript(1, LuaScript)
    result, err := redis.Int(lua.Do(conn, RemoteSpikeKeys.SpikeOrderHashKey, RemoteSpikeKeys.TotalInventoryKey, RemoteSpikeKeys.QuantityOfOrderKey))
    if err != nil {
        return false
    }
    return result != 0
}

我们使用 Hash 结构存储总库存和总销量的信息,用户请求过来时,判断总销量是否大于库存,然后返回相关的 Bool 值。

在启动服务之前,我们需要初始化 Redis 的初始库存信息:

hmset ticket_hash_key "ticket_total_nums" 10000 "ticket_sold_nums" 0

响应用户信息

我们开启一个 HTTP 服务,监听在一个端口上:

package main
...
func main() {
    http.HandleFunc("/buy/ticket", handleReq)
    http.ListenAndServe(":3005", nil)
}

上面我们做完了所有的初始化工作,接下来 handleReq 的逻辑非常清晰,判断是否抢票成功,返回给用户信息就可以了。

package main
//处理请求函数,根据请求将响应结果信息写入日志
func handleReq(w http.ResponseWriter, r *http.Request) {
    redisConn := redisPool.Get()
    LogMsg := ""
    <-done
    //全局读写锁
    if localSpike.LocalDeductionStock() && remoteSpike.RemoteDeductionStock(redisConn) {
        util.RespJson(w, 1,  "抢票成功", nil)
        LogMsg = LogMsg + "result:1,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10)
    } else {
        util.RespJson(w, -1, "已售罄", nil)
        LogMsg = LogMsg + "result:0,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10)
    }
    done <- 1

    //将抢票状态写入到log中
    writeLog(LogMsg, "./stat.log")
}

func writeLog(msg string, logPath string) {
    fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
    defer fd.Close()
    content := strings.Join([]string{msg, "\r\n"}, "")
    buf := []byte(content)
    fd.Write(buf)
}

前边提到我们扣库存时要考虑竞态条件,我们这里是使用 Channel 避免并发的读写,保证了请求的高效顺序执行。我们将接口的返回信息写入到了 ./stat.log 文件方便做压测统计。

单机服务压测

开启服务,我们使用 AB 压测工具进行测试:

ab -n 10000 -c 100 http://127.0.0.1:3005/buy/ticket

下面是我本地低配 Mac 的压测信息:

This is ApacheBench, Version 2.3 <$revision: 1826891="">
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking 127.0.0.1 (be patient)
Completed 1000 requests
Completed 2000 requests
Completed 3000 requests
Completed 4000 requests
Completed 5000 requests
Completed 6000 requests
Completed 7000 requests
Completed 8000 requests
Completed 9000 requests
Completed 10000 requests
Finished 10000 requests


Server Software:
Server Hostname:        127.0.0.1
Server Port:            3005

Document Path:          /buy/ticket
Document Length:        29 bytes

Concurrency Level:      100
Time taken for tests:   2.339 seconds
Complete requests:      10000
Failed requests:        0
Total transferred:      1370000 bytes
HTML transferred:       290000 bytes
Requests per second:    4275.96 [#/sec] (mean)
Time per request:       23.387 [ms] (mean)
Time per request:       0.234 [ms] (mean, across all concurrent requests)
Transfer rate:          572.08 [Kbytes/sec] received

Connection Times (ms)
              min  mean[+/-sd] median   max
Connect:        0    8  14.7      6     223
Processing:     2   15  17.6     11     232
Waiting:        1   11  13.5      8     225
Total:          7   23  22.8     18     239

Percentage of the requests served within a certain time (ms)
  50%     18
  66%     24
  75%     26
  80%     28
  90%     33
  95%     39
  98%     45
  99%     54
 100%    239 (longest request)

根据指标显示,我单机每秒就能处理 4000+ 的请求,正常服务器都是多核配置,处理 1W+ 的请求根本没有问题。

而且查看日志发现整个服务过程中,请求都很正常,流量均匀,Redis 也很正常:

//stat.log
...
result:1,localSales:145
result:1,localSales:146
result:1,localSales:147
result:1,localSales:148
result:1,localSales:149
result:1,localSales:150
result:0,localSales:151
result:0,localSales:152
result:0,localSales:153
result:0,localSales:154
result:0,localSales:156
...

总结回顾

总体来说,秒杀系统是非常复杂的。我们这里只是简单介绍模拟了一下单机如何优化到高性能,集群如何避免单点故障,保证订单不超卖、不少卖的一些策略

完整的订单系统还有订单进度的查看,每台服务器上都有一个任务,定时的从总库存同步余票和库存信息展示给用户,还有用户在订单有效期内不支付,释放订单,补充到库存等等。

我们实现了高并发抢票的核心逻辑,可以说系统设计的非常的巧妙,巧妙的避开了对 DB 数据库 IO 的操作。

对 Redis 网络 IO 的高并发请求,几乎所有的计算都是在内存中完成的,而且有效的保证了不超卖、不少卖,还能够容忍部分机器的宕机。

我觉得其中有两点特别值得学习总结:

①负载均衡,分而治之

通过负载均衡,将不同的流量划分到不同的机器上,每台机器处理好自己的请求,将自己的性能发挥到极致。

这样系统的整体也就能承受极高的并发了,就像工作的一个团队,每个人都将自己的价值发挥到了极致,团队成长自然是很大的。

②合理的使用并发和异步

自 Epoll 网络架构模型解决了 c10k 问题以来,异步越来越被服务端开发人员所接受,能够用异步来做的工作,就用异步来做,在功能拆解上能达到意想不到的效果。

这点在 Nginx、Node.JS、Redis 上都能体现,他们处理网络请求使用的 Epoll 模型,用实践告诉了我们单线程依然可以发挥强大的威力。

服务器已经进入了多核时代,Go 语言这种天生为并发而生的语言,完美的发挥了服务器多核优势,很多可以并发处理的任务都可以使用并发来解决,比如 Go 处理 HTTP 请求时每个请求都会在一个 Goroutine 中执行。

总之,怎样合理的压榨 CPU,让其发挥出应有的价值,是我们一直需要探索学习的方向。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

秒杀系统的思考 的相关文章

  • HAL库中断方式进行串口通信

    目录 一 通过CubeMX配置项目 二 在keil配置代码 三 烧录运行 四 输出 五 总结 六 参考链接 一 通过CubeMX配置项目 二 在keil配置代码 main函数中的while循环里面添加传输代码 if flag 61 61 1
  • 串口UART

    目录 串口概念 串口rs232 数据格式 注意事项 总体结构图 代码verilog 接收模块 结构图 波形图 编辑 代码 verilog 发送模块 结构图 波形图 代码 verilog 串口rs485 串口概念 串口是异步 串行通信接口 x
  • vs code 无法打开任何文件/新建文件报错this.configurationService.getValue(…) || []).filter is not a function

    vs code 无法打开任何文件 新建文件报错this configurationService getValue filter is not a function 主要起因是在一台mac 电脑上登录了vs code的同步帐号 xff0c
  • ESP32环境搭建遇到的问题记录

    关于安信可AiThinkerIDE V1 0自带的esp idf xff08 v3 3 咨询淘宝上的技术 xff09 xff0c 是可以在该IDE上导入运行的 xff1b 但是我使用了最新的esp idf v4 2 xff0c 在IDE上却
  • SVN trunk(主线) branch(分支) tag(标记) 用法详解和详细操作步骤

    一 xff1a 使用场景 xff1a 假如你的项目 xff08 这里指的是手机客户端项目 xff09 的某个版本 xff08 例如1 0版本 xff09 已经完成开发 测试并已经上线了 xff0c 接下来接到新的需求 xff0c 新需求的开
  • 有关HTTP 401验证的那些事儿

    前段时间突然遇到有一个需求 xff1a 要求能够抓取到NVR上连接的摄像头设备列表 因为要的比较急 xff0c 而且我还没啃透海康SDK的文档 xff0c 所以只好考虑另辟蹊径 xff0c 用一些别的方法来达到目标咯 我们登录到NVR的we
  • LCD段码屏 真值表转换

    以lcd段码屏驱动芯片TM1621D为例子 typedef union struct uint8 t a 1 uint8 t b 1 uint8 t c 1 uint8 t d 1 uint8 t e 1 uint8 t f 1 uint8
  • 段码屏走线转换为真值表

    54117PIN1234567891011SEG1ABCDEG PM2EFG2ABCD3EFG COL3ABCD4EFG4ABCD1B 2A COL 3A 4A1ADEG 2BF 3BF 4BF1C 2CG 3CG 4CGPM 2DE 3D
  • 硬件电路,AD-DC电路中元器件的作用

    热敏电阻 xff1a 功率型NTC热敏电阻多用于电源抑制浪涌 1 在AC220V输入端串联热敏电阻 xff0c 在电路电源接通瞬间 xff0c 电路中会产生比正常工作时高出许多倍的浪涌电流 xff0c 而NTC热敏电阻器的初始阻值较大 xf
  • CentOS 7内核更换教程

    CentOS 7支持安装锐速的内核 xff1a 3 10 0 327 el7 x86 64 使用下面命令下载及更换内核 rpm ivh http xz wn789 com CentOSkernel kernel 3 10 0 229 1 2
  • 关于STM32 CAN 滤波器设置的记录

    滤波模式有以下两种 xff1a 屏蔽位模式 标识符列表模式 过滤器的位宽 xff1a 16位过滤器 32位过滤器 下面记录一下我做过测试的代码 代码说明 xff1a 这是CAN2的滤波器 xff0c stm32f107的两组CAN滤波器是共
  • 定时器判断串口接收结束

    void USART1 IRQHandler void 串口1中断服务程序 u8 Res if USART GetITStatus USART1 USART IT RXNE 61 RESET 接收中断 Res 61 USART Receiv
  • gcc编译时对'xxxx'未定义的引用问题

    这个主要的原因是gcc编译的时候 xff0c 各个文件依赖顺序的问题 在gcc编译的时候 xff0c 如果文件a依赖于文件b xff0c 那么编译的时候必须把a放前面 xff0c b放后面 例如 在main c中使用了temp xff0c
  • 【编译人生】跨平台程序设计BOOST库以及编译方案的选择

    boost库很方便 xff0c 不用说 xff0c 下面是编译方法 xff0c 以WINDOWS平台为例 1 在 boost解压缩文件路径下 xff08 可能不同版本的路径位置build有所不同 xff09 cd d tools build
  • CAN总线的标准帧和扩展帧

    CAN总线的标准帧和扩展帧主要决定帧ID的长度 xff0c 标准帧的帧ID长度是11位 xff0c 帧ID的范围是000 7FF 扩展帧的帧ID长度是29位 xff0c 帧ID的范围是0000 0000 1FFF FFFF CANopen帧
  • CAN扩展帧详解

    寻址方式
  • linux 发送get/post请求

    目录 get post 43 json get curl location request GET 39 http xxxx param1 61 2027xxxx 39 url参数中涉及特殊字符的参数部分 需要转义 例如 curl 34 h
  • ROS -PCL程序包建立和CMakelist.txt修改

    一 创建工作空间 wtj 64 wtj echo ROS PACKAGE PATH wtj 64 wtj mkdir p dev catkin ws src wtj 64 wtj cd dev catkin ws src wtj 64 wt
  • jetson nano 供电模式的切换或自定义供电模式

    前言 xff1a jetson nano 开发板在预设的10W MAXN 模式下需要用5v4A的DC供电 用5v2A的DC或者micro usb供电建议使用5W模式 供电不足会导致掉电关机 以下是学习jetson nano时 xff0c 对
  • 自动驾驶之——CAN总线简介

    自动驾驶技术之 无人驾驶中的CAN总线 CAN 是Controller AreaNetwork 的缩写 xff0c 中文名为控制器局域网络 xff0c 是ISO国际标准化的串行通信协议 xff0c 是一种用于实时应用的串行通讯协议总线 xf

随机推荐

  • CMake中find_package()查找指定版本的库,以Qt库多版本共存为例

    Qt安装了多个版本时 xff0c CMake中写的find package 到底找到的是哪个库 xff1f 例如 xff0c 我电脑安装了两个版本的Qt xff0c 一个是5 12 3另一个是5 14 2 此时我的CMake如何指定使用哪个
  • 游戏中常用的寻路算法(6):地图表示

    在本系列文档大部分内容中 xff0c 我都假设A 用于某种网格上 xff0c 其中的 节点 是一个个网格的位置 xff0c 边 是从某个网格位置出发的各个方向 然而 xff0c A 可用于任意图形 xff0c 不仅仅是网格 xff0c 有很
  • Redis 官方可视化工具

    RedisInsight 是一个直观高效的 Redis GUI 管理工具 xff0c 它可以对 Redis 的内存 连接数 命中率以及正常运行时间进行监控 xff0c 并且可以在界面上使用 CLI 和连接的 Redis 进行交互 xff08
  • 一个注解搞定接口返回数据脱敏

    下午惬意时光 xff0c 突然产品小姐姐走到我面前 xff0c 打断我短暂的摸鱼time xff0c 企图与我进行深入交流 xff0c 还好我早有防备没有闪 xff0c 打开瑞star的点单页面 xff0c 暗示没有一杯coffee解决不了
  • 系统架构性能问题诊断及优化思路

    01 系统性能问题分析流程 我们首先来分析下如果一个业务系统上线前没有性能问题 xff0c 而在上线后出现了比较严重的性能问题 xff0c 那么实际上潜在的场景主要来自于以下几个方面 业务出现大并发的访问 xff0c 导致出现性能瓶颈 上线
  • 在Redis分布式锁上,栽的8个跟头

    在分布式系统中 xff0c 由于 redis 分布式锁相对于更简单和高效 xff0c 成为了分布式锁的首先 xff0c 被我们用到了很多实际业务场景当中 但不是说用了 redis 分布式锁 xff0c 就可以高枕无忧了 xff0c 如果没有
  • 牢记16个有用的 SpringBoot 扩展接口

    1 背景 Spring的核心思想就是容器 xff0c 当容器refresh的时候 xff0c 外部看上去风平浪静 xff0c 其实内部则是一片惊涛骇浪 xff0c 汪洋一片 Springboot更是封装了Spring xff0c 遵循约定大
  • ZYNQ研究----(3)7100 裸跑LWIP协议栈

    硬件环境 xff1a 创龙TLZ7XH EVM开发板 软件环境 xff1a VIVADO 2017 4 1 调用ZYNQ核 查开发板原理图 xff0c MIO16 27为以太网接口52 53为MDIO接口 xff0c 配置如下 使能串口1
  • SQL优化 20 连击

    一 查询SQL尽量不要使用select xff0c 而是具体字段 1 反例 SELECT FROM user 2 正例 SELECT id username tel FROM user 3 理由 节省资源 减少网络开销 可能用到覆盖索引 x
  • 对外 API 接口,请把握这3 条原则,16 个小点

    对外API接口设计 安全性 1 创建appid appkey和appsecret 2 Token xff1a 令牌 xff08 过期失效 xff09 3 Post请求 4 客户端IP白名单 xff08 可选 xff09 5 单个接口针对IP
  • 40 个 SpringBoot 常用注解:让生产力爆表!

    64 RequestMapping 64 RequestMapping注解的主要用途是将Web请求与请求处理类中的方法进行映射 Spring MVC和Spring WebFlux都通过RquestMappingHandlerMapping和
  • 分页 + 模糊查询 有坑!

    前言 不知道你有没有使用过Mysql的like语句 xff0c 进行模糊查询 xff1f 不知道你有没有将查询结果 xff0c 进行分页处理 xff1f 模糊查询 xff0c 加上分页处理 xff0c 会有意想不到的坑 xff0c 不信我们
  • Spring Boot + Netty + WebSocket 实现消息推送

    关于Netty Netty 是一个利用 Java 的高级网络的能力 xff0c 隐藏其背后的复杂性而提供一个易于使用的 API 的客户端 服务器框架 Maven依赖 lt dependencies gt lt https mvnreposi
  • isEmpty 和 isBlank 的用法区别

    也许你两个都不知道 也许你除了isEmpty isNotEmpty isNotBlank isBlank外 并不知道还有isAnyEmpty isNoneEmpty isAnyBlank isNoneBlank的存在 come on 让我们
  • 300万数据导入导出优化方案,从80s优化到8s

    前景 在项目开发中往往需要使用到数据的导入和导出 xff0c 导入就是从Excel中导入到DB中 而导出就是从DB中查询数据然后使用POI写到Excel上 写本文的背景是因为在工作中遇到了大数据的导入和导出 xff0c 问题既然来了逃跑不如
  • 快速定位 SpringBoot 接口超时问题的神器

    背景 公司有个渠道系统 xff0c 专门对接三方渠道使用 xff0c 没有什么业务逻辑 xff0c 主要是转换报文和参数校验之类的工作 xff0c 起着一个承上启下的作用 最近在优化接口的响应时间 xff0c 优化了代码之后 xff0c 但
  • 常用开源监控系统分析推荐

    摘要 xff1a 在互联网信息爆炸式快速发展的今天 xff0c 各类复杂多样的平台系统相继涌出 如何选择最佳的监控产品以更好地维护这些平台和系统是每个 IT 人员都需面临的难题 本文将从开源监控产品的起源和发展 xff0c 详细解析各个时代
  • 一个非常实用的分布式 JVM 监控工具

    介绍 该项目为了方便开发者更快监控多个远程主机jvm xff0c 如果你的项目是Spring boot那么很方便集成 xff0c jar包引入即可 xff0c 不是Spring boot也不用气馁 xff0c 你可以快速自行初始化一个Spi
  • 【Java】HttpRequest 获得请求的url进行判断

    一 span class token class name HttpRequest span 获得请求的url进行判断 request span class token punctuation span span class token f
  • 秒杀系统的思考

    极限并发带来的思考 虽然现在大多数情况下都能订到票 xff0c 但是放票瞬间即无票的场景 xff0c 相信大家都深有体会 尤其是春节期间 xff0c 大家不仅使用 12306 xff0c 还会考虑 智行 和其他的抢票软件 xff0c 全国上