【Autosar】学习总结-MCAL

2023-05-16

一、简介

MCAL:微控制器抽象层;位于BSW层中的最下层;

MCAL细分,可将驱动分为:微控制器驱动、存储器驱动、通信驱动、IO驱动:

二、MCAL的配置(EB-Tresos)

1.PORT

我理解的PORT:MCAL层中的IO驱动组中的pin脚总体配置:

Port就是芯片上的每个pin脚,可以配置成DIO ADC PWM ICU等单引脚的功能,也能配置成CAN的TX或者RX、SPI的MOSI等等其他功能的单个pin脚功能;

总之,PORT就是芯片上的具体的某个引脚。

配置如下:

PortPinId: 	逻辑上的Id值,从1递增
PinId:对应[芯片XX]芯片手册的pin引脚ID,根据实际使用选择对应的pin引脚
Mux: 选择PortPin用作哪个功能,最多八个,选择复用的功能需要查看TRM来选 择
InputSelect: 根据实际pin使用功能决定输入选择;比如Port用作IO Input 则选择SEL_NONE;比如用作CANFD1_Rx,则选择对应的CANFD1_Rx(参考 [芯片XX]_Procesor_TRM_Rev_00.06_For_xxx.pdf的IO Control/PINCTRL_SAFETY/Input Source Select)
PadSetting: 需要根据该Port用作的功能进行选择,如果是GPIO则选择PAD_SETTING_DEFAULT,如果是CAN则选择PAD_SETTING_CAN;有些pin比较特殊,建议沿用之前的配置。
OpenDrain: 是否启用开漏,选择是启用。
PortPinModeChangeable:是否启用在APP中更改PortPin的模式,一些特定场合会用到。
PortPinDirection: Port的方向,输入:PORT_PIN_IN, 输出: PORT_PIN_OUT
PortPinDirectionChangeable: 是否可以在程序运行过程中改变PortPin的方向(输入,输出)。
PortPinLevelValue:设置PortPin的初始化,只对Outout有效
PortPinInitialMode: 不需要配置

 

2.Dio

Dio一共分为五组,如下图所示:

Dio没什么好配置的,只需要按照对应的ChannelId 更改下Name就好了。

3.ADC 

[芯片XX]只有一个ADC内含8个通道,最大支持12位精度(8,10,12);

AdcPrescale: [公司]的[芯片XX]是填的199, BaseClock = 400MHz ,基于400MHz进行分频。 

AdcLogicalChannelId: 逻辑通道从0递增
AdcPhysicalChannelId: 物理通道和逻辑通道保持一致,否则数据读取不正确
AdcChannelResolution: 选择ADC的采样精度8/10/12
AdcSampleFrequency(Hz): 通道的采样频率,ADC一共八个通道,代码中配置每个通道采样两次(MCAL暂时不能配置),内部FIFO的Water Level = 64, 按照配置中的800Hz来算   (1/800hz*16)*64 = 5ms

 

AdcGroupConversionMode: 配置连续采样和单次采样,目前[芯片XX]只支持连续采样
AdcGroupTriggsrc: ADC_TRIGG_SRS_SW: 由软件API调用促发的组
ADC_TRIGG_SRC_HW: 由硬件触发的组
AdcNotification: [芯片XX]ADC采样必须使用中断模式,所以配置一个Notification进行数据处理。

4.CAN

4.1 CAN-General

VirtualCanEnable: 指定CAN消息是否由(SDPE)半驱动器包引擎路由。如果启用,所有的CAN驱动程序将由SDPE处理
CanDevErroDetect:指定是否在每个API中启用错误检测
CanIndec: 对于[芯片XX]系列CAN驱动,该参数应该始终是0
CanLPduReceiveCalloutFunction:当收到帧时调用用户回调函数
CanMainFunctionBusoffPeriod:指定调用Can_MainFunction_BusOff的周期
CanMainFunctionWakeupPeriod:指定调用Can_MainFunction_Wakeup的周期
CanMainFunctionModePeriod:指定调用Can_MainFunction_Mode的周期
CanMultiplexedTransmission: 是否支持多路传输,多路传输用于防止传输帧时的优先级反转
CanTimeoutDuration:指定阻塞功能的超时时间,例如模块的enable/disable, freeze/unfreeze在控制器的初始化 ,注意:目前不支持此配置
CanVersionInfoApi: 指定是否支持Can_GetVersionInfo函数
CanSupportTTCANRef:[芯片XX]系列不支持TTCAN,因此不使用此配置。

------------------------- 

CanControllerActivation: Channel 配置信息必须勾选此处才会生效
CanControlledId: 需和DaVinci中的ControlledId保持一致,不一致时,实际通信过程中CAN通道以DaVinci中的配置为准,会导致通道开启错误,进而无法通信的问题。
CanControllerBaseAddress: 要和CanControllerInstance保持一致,BaseAddress参考TRM手册。
例如:CAN1 0xF0030000  	CAN 2 0xF0040000   CAN 3 0xF0050000   …
CanRxProcessing: INTERRUPT/POLLING
CanTxProcessing: INTERRUPT/POLLING
CanWakeupFunctionalityAPI: 没验证过该功能
CanWakeupProcessing: INTERRUPT/POLLING
CanWakeupSupport:没验证过该功能
CanIndividualRxMaskEnable: 勾选启用Rx filter mask功能
CanControllerDefaultBaudrate: 需要现在CanControllerBaudrateConfig配置波特率,然后才能选择
CanCpuClockRef: Clock时钟选择24M

 ------------------------------------

在 CanControllerBaudrateConfig 选项卡中配置CAN的波特率和采样点等。
CanControllerBaudRate:直接填写期望的波特率,在驱动中会自动进行分频计算
CanControllerBaudRateConfigID:ID从0开始递增
CanControllerPropSeg:广播同步段
CanControllerSeg1:同步缓冲段1
CanControllerSeg2:同步缓冲段2
CanControllerSyncJumpWidth: 同步跳转段。
Note:采样点值的确定需根据客户的输入来确定,采样点计算方法:
	(1+CanControllerPropSeg+CanControllerSeg1)/(1+CanControllerPropSeg+CanControllerSeg1+CanControllerSeg2) * 100% = 采样点
在计算采样点参数时要注意这四个参数的关系,具体请参考百度或者J1939定义,否则EB不能生成代码。

 ----------------------------------

CanMessageBufferRegionName: 选择CAN_MB_REGION_0/CAN_MB_REGION_1,每个region有256byte
CanMessageBufferRegionSize: 选择CAN_MB_8_BYTES_PAYLOAD/CAN_MB_16_BYTES_PAYLOAD/CAN_MB_32_BYTES_PAYLOAD/CAN_MB_64_BYTES_PAYLOAD,每个region大小512byte,选择CAN_MB_8_BYTES_PAYLOAD一共可以接收512/(8+8)=32帧报文。如果配置成CAN_MB_32_BYTES_PAYLOAD一共可以接收512/(32+8)= 12

  4.2 CAN-CanHardwareObject

在CanHardwareObject对CAN信号进行配置,该处配置需和DaVinci cfg的CanHardwareObject保持一致,否则协议栈处理会出现信号错位的问题。此处先讲解如何配置,然后再详细讲解如何和DaVinci cfg里的保持一致。

此处以一个Tx信号为例:
CanHandleType: BASIC/FULL
CanHwObjectCount: 配置成Tx并选择BASIC,配置决定该HTH可以使用几个MailBoxs,此处配置为32,第一个Region全部用作了发送
CanIdType: STANDARD/EXTENDED/MIXED
CanObjectId:需要和DaVinci CFG里面的保持一致
CanObjectType: TRANSMIT/RECEIVE
CanControllerRef: 该信号属于哪路Cantroller就选哪路
CanMessageBufferRegionRef: 选择使用哪一个BufferRegion,一定要注意每个Region最多配置32个8Byte的报文

 

对于发送来讲是不需要配置Filter的,以该信号为例CAN ID = 0x7DF, 则需在Filter处配置CanHwFilterCode = 0x7DF, CanHwFilterMask = 0x7ff ,滤波就是Code&Mask = ID&Code, 所以在Driver层会自动计算写入寄存器。
如果是RxBasic 则需要计算出来Code&Mask配置好即可

 

5.SPI

SpiMaxChannel: 与SpiChannel选项卡配置的Channel值保持一致
SpiMaxJob: 与SpiJob选项卡配置的Jobs值保持一致
SpiMaxSequence:与SpiSequence选项卡配置的Sequence值保持一致
SpiChannelBuffersAllowed: 0:1B ,  1:EB,   2 : IB&EB
SpiLevelDelivered: 0:1B ,  1: EB ,    2: IB&EB

 

SpiCsSelection: CS_VIA_PERIPHERAL_ENGINE/CS_VIA_GPIO选择SPI_SS或者GPIO作为CS, 选择CS_VIA_PERIPHERAL_ENGINE在SpiCsPin处选择Port的配置,选择CS_VIA_GPIO在SpiCsViaGpio处选择Dio的配置
SpiHwUnit: CSIB1-CSIB8对应SPI0-SPI7

 

6.MCU

 

McuClockReferencePointFrequency: 期望的Clock频率和McuClockDefaultClock保持一致
McuClockDefaultClock:选项有MCU_CLOCK_UART_80M/MCU_CLOCK_TIMER_HIGH_FREQUENCY_400M/MCU_CLOCK_TIMER_LOW_FREQUENCY_24M/MCU_CLOCK_12C_133_3M/MCU_CLOCK_CANFD_80M/MCU_CLOCK_PWM_400M/MCU_CLOCK_PWM_EXT

 

 我们使用了哪些外设模块就需要在此处Enable它,否则会导致该模块工作不正常或者初始化异常。

 如果勾选了外设,则该外设只能由SECURE Doamin访问和使用,SAFETY Domain失去该模块的使用权限。

配置Mcu_InitRamSection的大小和写入值。 (该截图里的值和[公司]的配置是一样的)。

7.Gpt

[芯片XX] SOC 处理器中GPT模块配置的时钟是可以给其他模块使用的,例如在现有的项目开发中,Gpt有用作Os Timer, System timer ,和电源芯片定时喂狗中断等。

对于ICU模块来说只能使用GPT的配置作为时钟源。

[芯片XX]一共有8个Timer, 每个Timer有6个Channel,这6个Channel共享一个Timer时钟源和分频,换句话说,在APP中同一个Timer中最后生效的时钟源和分频是被最后一个初始化的Channel决定的。

6个Channel分别是:GPT_HW_TIMER_G0/GPT_HW_TIMER_G1/GPT_HW_LOCAL_A/GPT_HW_LOCAL_B/GPT_HW_LOCAL_C/GPT_HW_LOCAL_D, A/B/C/D共享一个中断号,G0/1共享一个中断号。支持使用同一个Timer的不能Channel,即使中断号共享[芯片XX]会自动识别到底是哪一个Chnnale触发的中断,进而去调用你所配置的Notification.

Gpt基础配置,选择是否Enable某些功能和函数 

 

GptHwModule: [芯片XX]一共有8个Timer,每个Timer有6个Channel,这6个Channel 共享一个Timer时钟源和分频,换句话说,在APP中同一个Timer中最后生效的时钟源和分频是被最后一个初始化的Channel决定的,更详细的介绍请参考[芯片XX]官方文档。
GptHwModuleChannel: GPT_HW_TIMER_G0…GPT_HW_LOCAL_D
GptChannelMode: Channel模式GPT_CH_MODE_CONTINUOUS/GPT_CH_MODE_ONESHOT
    Note:只有Local A/B/C/D可以配置成One shot模式
GptChannelTickFrequency:配置期望的频率,和GptChannelClkSrcRef保持一致
GptChannelTickValueMax:配置该GPT channel 最大的Ticks值产生中断或者其他
GptChannelClkSrcRef: 选择GPT 的时钟源

 

GptClockReference: 选择GPT可以选择配置的时钟源,只能选择已经在MCU模块配置好的时钟。 

8.ICU

对于ICU模块来说只能使用GPT的配置作为时钟源

ICU基础配置,选择是否Enable某些功能和函数.

 

IcuHardwareChannelRef: 配置Icu的时钟源,需要先在Gpt模块配置好之后才能选择。 

9.PWM

[芯片XX] 一共有8个PWM模块,每个pwm模块有四个子Channel,分别是A/B/C/D,四个子Channel共享同一个溢出值,所以子Channel的周期都一样的,占空比可以单独控制。更详细的可以参考官方文档。

PWM基础配置,选择是否Enable某些功能和函数

PwmIndex: 暂时用不到

 

 

PwmHwModule: PWM_MODULE1/PWM_MODULE2/…/PWM_MODULE8
PwmPeriodDefault:设置PWM默认周期,我们通常在这里配置为0,如果配置成其他值且默认占空比也有配置,则初始化之后会立即输出PWM波
PwmMcuClockReferencePoint:Pwm的时钟源选择,只能选择在Mcu模块中已存在的配置,目前只能选择400MHz
PwmModuleFrequency:不可修改
PwmHwModulePrescaler: Pwm的分频系数

 	400MHz/(PwmHwModulePrescaler+1) = 期望频率

 

 PwmSubChannelId: 子ChannelID 0/1/2/3

DutycycleDefault: 默认占空比,通常配置为0x0

Polarity: Pwm的极性,根据项目需求配置

IdleState: Pwm空闲状态,通常与Polarity相反。

三、项目实践

1.说明:

项目实践中,MCAL需要配置两个新增功能,pwm和icu输入捕获。

功能描述:增加LSS8_EN(E12) / DI_AC_Wake(J4)PWM通道

(1)配置一个pin脚,让其输出pwm波形

(2)配置一个pin脚,让其捕获一个pwm波形

2.查看PinMap的excel文档:

 如图excel-PinMap表格描述了单片机中的两个引脚功能:

第一个:CPIO_C10引脚,配置成MIUX6的功能PWM3_CH2,Output模式的引脚,要输出信号,【功能描述】里的内容可以配置引脚名称时用。

第二个:GPIO_H3引脚,输入信号,使用的功能是MUX3,即TIM7_CH1,做输入捕获的功能。

3.配置第一个功能:PWM输出

(1)配置PORT

找到GPIO_C10 ,配置名称为DO_LSS8_Driver (截图示例为新建一个port) 

 

 根据【PinMap】文档中介绍的pin脚功能:配置。

(2)配置DIO

 因为这个引脚十一输出的引脚 所以需要配置DIO (相当于GPIO 输出高电平或者低电平)

 根据【PinMap】文档 ,查看MUX_0 = GPIO.IO58  ,配置IO58。

(3)配置PWM

引脚输出高电平的波形配置成PWM波形(有占空比 周期等参数的波形)

先配置模块,该芯片有8个PWM模块,每个模块有4个channel.

新增一个pwm模块(即第三个pwm模块) ,命名为PWMChannel_3 ,配置相关参数。

 

 再配置子通道channel:

 如上,完成【PinMap】文档中的PWM3CH2的配置。

(4)配置MCU

添加PWM3的使能

 如上,完成对引脚GPIO_C10的配置。

4.配置第二个功能:ICU输入捕获

(1)配置PORT

如【PinMap】文档,找到GPIO_H3 ,配置如下:

 (2)配置DIO

 (3)配置GPT

需要用到时钟驱动(【PinMap文档中的MUX功能】) MUC3 = TIM7_CH1 

 【+】新增 ,配置如下:

 (4)配置ICU

 

配置完成,生成代码即可。生成的代码是MCAL动态配置文件。

 项目中,MCAL静态库和动态配置文件通常在不同路径下:

SDK包:     BSW\ShareUtiles\G9_SDK   :  		
工程件:   BSW\ShareUtiles\MicroSarStatic_G9  : BSW层除MCAL外的其他模块代码 : BsmW CanIF Dem等
DavinCi配置生成代码:Customer\Config\Source\MicroSarConfig : bsw层除mcal外的其他模块的PBCfg.c和LCfg.c  (例如 Ea_Cfg.c  OS_xxx_Cfg.c等等)

MCAL静态库:  BSW\ShareUtiles\MCALStatic_G9    :adc.h adc.c  ...MCAL层的驱动文件
MCAL动态配置文件: Customer\Config\Source\McalConfig  : Adc_PBCfg.c  Port_Cfg.c  Pwm_Cfg.c等Mcal驱动的配置后生成的代码 :EB-Tresos配置生成的代码

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

【Autosar】学习总结-MCAL 的相关文章

  • src目录和项目路径的联系

    code src目录里面的东西会被eclipse编译 xff0c 编译完了就放到了 bin目录下 xff0c 而bin目录就是我们项目的classPath code
  • 逆向加固分析

    34 libsecexe so 34 34 梆梆加固免费版 34 34 libsecmain so 34 34 梆梆加固免费版 34 34 libSecShell so 34 34 梆梆加固免费版 34 34 secData0 jar 34
  • android之visibility的三个属性

    android visibility 61 34 34 其有三个属性 xff1a visible显示 xff1b invisible显示黑背景条 xff0c 在这种情况下它会占据空间 xff1b gone不显示 在类中 xff0c 可以设置
  • android中的Application类

    在2011年做的一个iptv项目中就接触了这个Application类 xff0c 虽用起来简单 xff0c 但还是有些需要注意的地方 空闲之余 xff0c 总结如下 xff1a android 系统为每个程序运行时创建一个Applicat
  • android混淆

    首先要说的话 xff1a 本文是对好几个博文的摘录再加上我自己的理解 xff0c 以尊重原创为原则 xff0c 下面贴出相关博文的链接 Android有效地减少方法数 http blog csdn net lihenair article
  • ROS通信

    1 话题通信 话题通信是ROS中使用频率最高的一种通信模式 xff0c 话题通信是基于发布订阅模式的 xff0c 也即 一个节点发布消息 xff0c 另一个节点订阅该消息 用于不断更新的 少逻辑处理的数据传输场景 ROS Master 管理
  • 解决C&C++头文件互相包含问题

    案例说明 xff1a test1中需要调用test2中的go test2 xff0c test2中需要调用test1中的go test1 main cpp span class token macro property span class
  • C++类库开发详解

    前言 xff1a 这是一篇总结性的文章 xff0c 需要有一点C 43 43 和dll基本知识的基础 xff0c 在网上查阅了很多资料感觉没有一篇详细 具体 全面的dll开发介绍 xff0c 我这是根据最近项目和网上资料整理出来的 xff0
  • ROS下建立工作空间以及编译一个包

    在ROS层面上编写软件 xff0c 需要有相关的工作空间 xff08 workspace xff09 生成工作控件并不复杂 xff0c 首先 xff0c 我们打开一个控制台 xff08 Ctrl 43 Alt 43 T xff09 xff0
  • python socket小结

    Python socket 简单编程小结 首先创建服务器端的socket socket server import socket 定义变量 HOST 61 34 localhost 34 PORT 61 是数字类型 xff0c 不是字符串类
  • STM32 IO口模拟I2C+驱动MPU6050

    一年前写的博客 xff0c 没有把驱动代码分享出来是我疏忽了 xff0c 可以到网盘下载驱动代码 链接 xff1a https pan baidu com s 1SDVQfyoOoycCY 6eSXamlQ 密码 xff1a ipj7 之后
  • git常用操作(branch tag)

    git日常总结 1 初次在本地下载分支代码操作2 初次下载远程代码3 创建分支3 1 创建本地分支3 2创建远程分支 4 删除分支4 1 删除本地分支4 2删除远程分支 5 删除文件5 1 删除本地文件5 2 删除远程文件 6 删除提交6
  • openwrt出现md5sum mismatch错误

    原文地址 xff1a http catinmay com openwrt E5 87 BA E7 8E B0md5sum mismatch E9 94 99 E8 AF AF 刚刚帮人搞路由器一运行安装命令就会出现此错误 xff0c 错误提
  • python——系统交互subprocess

    目录 一 os与commands模块 1 os system 函数实例 2 os popen 函数实例 3 commands getstatusoutput 函数实例 二 subprocess模块 1 subprocess模块中的常用函数
  • strcat 你真的懂吗?

    http blog chinaunix net uid 26914516 id 4215338 html 声明 xff1a 使用GCC编译 strcat xff08 连接两字符串 xff09 函数定义 xff1a char strcat c
  • HTTP超全详解

    HTTP协议简介 超文本传输协议 xff08 英文 xff1a HyperText Transfer Protocol xff0c 缩写 xff1a HTTP xff09 是一种用于分布式 协作式和超媒体信息系统的应用层协议 HTTP是一个
  • 【Linux】三次握手和四次挥手详解

    三次握手和四次挥手 TCP 协议提供的是 xff1a 面向连接 可靠的 字节流服务 使用 TCP 协议通信的双发必须先建立连接 xff0c 然后才能开始数据的读写 双方都必须为该连接分配必要的内核资源 xff0c 以管理连接的状态和连接上数
  • Sion 450行的c++ HttpClient

    Sion Sion是一个轻量级的c 43 43 http客户端 xff0c 仅单头文件450行 xff0c 自带std string的扩展Sion is a lightweight C 43 43 HTTP Client with only
  • bluerov软件调试教程(一 )

    bluerov是目前最流行的一款消费级ROV xff0c 其架构简单 xff0c 可操作性强 xff0c 比同类型的ROV体验感要高很多 xff0c 本系列教程将从bluerov的软件调试 xff0c 硬件调试 xff0c 装舱等三个方面去
  • 安装完成Ubuntu20.04之后要做的事:基础配置、界面美化、异常处理与常用软件的安装

    文章目录 一 换源1 1 通过软件更新1 2 通过修改源文件 二 安裝显卡驱动2 1 解决显卡驱动安装的错误 三 设置新建文件模板四 卸载系统软件五 安裝中文输入法5 1 安装5 2 解决键盘短暂失灵和延迟的问题 六 双系统时间同步七 修改

随机推荐

  • 【C++】Windows客户端与Ubuntu服务器基于socket的简易网络编程

    C 43 43 Windows客户端与Ubuntu服务器基于socket的简易网络编程 服务器端 本人使用的clion远程连接的ubuntu服务器来运行以下代码 xff0c 理论上也可以直接放在服务器上 创建项目后 xff0c 先运行以下代
  • Python中pyusb的开发及使用

    Python中pyusb的开发及使用 因为项目的需求 xff0c 需要将FPGA端的图像像素数据经过USB2 0协议传输到PC端 xff0c 因此需要使用python的pyusb库来进行数据的发送和接收 以下纪录在使用pyusb库的方法和所
  • NVIDIA Jetson Xavier NX 实现官方Jeston-inference深度学习样例

    一 jetson inference相关项目组件的下载 首先附上官方提供的jetson inference项目文件的Github仓库地址 xff0c 大家可以自行前往下载 jetson inference下载地址 xff1a https g
  • CMake 混编c和c++代码

    准备工作 wsl 或者 有linux 系统 购买阿里云或者其他云服务器 xff09 cmake gcc git 等一些必要的软件安装 环境 windows 下 的 wsl wsl 安装下载 例子 拿 Unix网络编程 举例 作者对原生接口进
  • Ros中使用find_object_2d快速实现物体的检测识别

    运行环境 xff1a Ubuntu16 04 ros kinetic版本 准备工作 xff1a 需要r提前安装的webcam的驱动 xff0c 这里推荐使用两种usb cam和uvc camera xff08 1 xff09 usb cam
  • ubuntu16.04多版本Python任意切换(亲测有效)

    UBUNTU16 04的系统安装ROS之后 xff0c 自带的是Python2 7 12的版本 然后实际使用中 xff0c 可能用到其他工具需要装Python3 5以上的版本 安装完之后 xff0c 可能经常在编译某些工程的时候出现一些代码
  • ROS中级教程学习笔记1-手动创建ROS package

    之前在基础教程中 xff0c 我们使用的是catkin create pkg自动创建ros包 xff0c 实际上就是一个package xml文件和CMakeLists txt文件加文件夹 xff0c 所以手动创建看看能不能呢和自动创建有一
  • 串口分类

    串口一般来说就是UART xff0c 它实际只定义了数据链路层的规范 xff0c 也就是起始位 数据位 停止位 但是在不同的物理层又分为 xff1a TTL串口 RS232串口 RS485串口等 TTL串口 xff1a 它是MCU芯片之间进
  • ROS通信机制(二) —— 服务(service)与srv文件

    文章目录 简述特点相关常用命令通信模型核心元素通信过程代码示例 xff08 服务端和客户端 xff09 服务端 xff08 server cpp xff09 客户端 xff08 client cpp xff09 配置 CMakeLists
  • 学习日志之stm32——固件库编程规范

    对stm32固件库驱动的一点理解 stm32f4固件库主要有三个抽象层 xff1a gt 用C语言定义的寄存器地址与所有bits xff0c bit fields和寄存器的映射 所有后面这些都可以寻址 gt 所有的片上外设可用功能的程序接口
  • vs2010 webapi开发http请求以及website中如何实现http请求

    一 vs2010 webapi开发 第一步 xff1a 创建 第二步 xff1a 离线安装NuGet 1 复制链接到浏览器打开 xff1a http visualstudiogallery msdn microsoft com 27077b
  • 字节和bit的大小端简介

    C语言的位域虽然很多人强烈建议不要使用 xff0c 但现有系统里还广泛存在位域的使用 xff0c 所以还是很有必要理清楚的 对big endian和little endian的区别 xff0c 很多人认为是对多字节数据类型而言 其实 xff
  • C++ 数字与char*的转换

    目录 1 数字转char 1 1 sprintf1 2 itoa1 3 ltoa ultoa 2 char 转数字2 1 atoi2 2 atol2 3 atof2 4 strtol2 5 strtoul2 6 strtod 1 数字转ch
  • 【C语言】printf输出16进制: %x %02x %#x

    x即按十六进制输出 xff0c 英文字母小写 xff0c 右对齐 02X有以下变化 xff1a 英文字母变大写 xff0c 如果输出字符不足两位的 xff0c 输出两位宽度 xff0c 右对齐 xff0c 空的一位补0 超过两位的 xff0
  • 【c语言】结构体初始化4中方法

    今天在6轴传感器的驱动代码源文件中看到结构体没见过的写法 xff1a typedef struct uint8 t xlda 1 uint8 t gda 1 uint8 t tda 1 uint8 t not used 01 5 lsm6d
  • 【debug】stm32 指针奇数地址问题导致HardFault

    很久很久没有记录过debug了 xff0c 今天有空就正好记录一下 嵌入式开发 xff0c stm32F407的MCU的开发板 遇到如下问题 xff1a 变量的地址竟然为奇数 xff01 xff01 xff01 导致程序运行到写入该地址的数
  • 【Autosar】学习总结-BSW层

    一 简介 AUTOSAR AUTomotive Open Systems ARchitecture xff0c 汽车开放系统架构 1 优势 xff1a 有利于提高软件复用度 xff0c 尤其是跨平台的复用度 xff1b 便于软件的交换与更新
  • 【PWM】从stm32到pwm到OLED屏幕调光到晚上不要玩手机

    一 前言 最近做项目 xff0c 配置了单片机中PWM波形输出 xff0c 配置单片机中的一个引脚输出PWM波 xff0c 示波器查看这个波形 xff0c 做了实践操作 xff0c 有一些感想 xff0c 将一些了解过的知识和常识结合 xf
  • 算法提高 高精度加法

    1051 算法提高 高精度加法 时间限制 1 Sec 内存限制 256 MB 提交 5 解决 2 提交 状态 讨论版 题目描述 在C C 43 43 语言中 xff0c 整型所能表示的范围一般为 231到231 xff08 大约21亿 xf
  • 【Autosar】学习总结-MCAL

    一 简介 MCAL xff1a 微控制器抽象层 xff1b 位于BSW层中的最下层 xff1b MCAL细分 xff0c 可将驱动分为 xff1a 微控制器驱动 存储器驱动 通信驱动 IO驱动 xff1a 二 MCAL的配置 xff08 E