无线传输距离计算公式

2023-05-16

转自一篇文档

无线传输距离计算

Pr(dBm) = Pt(dBm) - Ct(dB) + Gt(dB) - FL(dB) + Gr(dB) - Cr(dB)

Pr:接受端灵敏度
Pt: 发送端功率
Cr: 接收端接头和电缆损耗
Ct: 发送端接头和电缆损耗
Gr: 接受端天线增益
Gt: 发送端天线增益
FL: 自由空间损耗

FL(dB)=20 lg R (km) +20 lg f (GHz) + 92.44

R是两点之间的距离
f是频率=2.4

 

自由空间通信距离方程

自由空间通信距离方程


设发射功率为PT,发射天线增益为GT,工作频率为f . 接收功率为PR,接收天线增益为GR,收、发天线间距离为R,那么电波在无环境干扰时,传播途中的电波损耗 L0 有以下表达式:
L0 (dB) = 10 LgPT / PR = 32.45 + 20 Lg f ( MHz ) + 20 Lg R ( km ) - GT (dB) - GR (dB)
[举例] 设:PT = 10 W = 40dBmw GR = GT = 7 (dBi) f = 1910MHz
问:R = 500 m 时, PR =
解答: (1) L0 (dB) 的计算 L0 (dB) = 32.45 + 20 Lg 1910( MHz ) + 20 Lg 0.5 ( km ) - GR (dB) - GT (dB)= 32.45 + 65.62 - 6 - 7 - 7 = 78.07 (dB))
2PR 的计算
PR = PT / ( 10 7.807 ) = 10 ( W ) / ( 10 7.807 ) = 1 ( μW ) / ( 10 0.807 ) = 1 ( μW ) / 6.412 = 0.156 ( μW ) = 156 ( mμW ) # 顺便指出,1.9GHz电波在穿透一层砖墙时,大约损失 (10~15) dB

无线传输距离估算

传输距离估算 
无线网络系统的传输距离或覆盖范围受多种因素的影响,除了信号源的发射功率、天线的增益、接 收设备的灵敏度、频率、自由空间衰减、噪声干扰外,还有现场环境的影响,例如建筑物、树木和墙壁的遮挡,人体、气候等对电磁波的衰减,纯粹自由空间的传输环境在实际应用中是不存在的。
由于无线网络系统是一个实际应用的工程,必须在实施前进行设计和预算,必须事前对无线网络系统的传输距离或覆盖范围进行估算,进而对系统部署规模有一个估计,下面的表格就是对一个基站的覆盖能力进行估算的办法。
第一步:计算无线通信系统上下行总增益。
第二步:计算最大视距传输距离。计算公式为:
最大视距传输距离(m)10(系统总增益-40/30
第三步:估算现场实际覆盖距离。
例如: 

传输距离估算 
总增益(dBm) 最大距离(m) 实际距离(m) 
91 50  43 
100 100 80 
109 200 149 
121 500 342 
125 700 463 
130 1000  639 
139 2000  1194 
148 4000  2233 
153 6000  3220 
160 10000  5106 
169 20000  9548 
181 50000  21838 

通过上述三个步骤可以对每个基站所覆盖的范围有一个初步的估计,进一步估算出所要覆盖区域的基站数量和网络规模。

无线通信距离的计算

这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。

    通信距离与发射功率、接收灵敏度和工作频率有关

Los(dB)=32.44 +20lgD(km) +20lgF(MHz)

    式中Lfs为传输损耗,D为传输距离,频率的单位以MHz计算。

由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离D有关,当FD增大一倍时,﹝Lfs﹞将分别增加6dB.

    下面的公式说明在自由空间下电波传播的损耗

    Los = 32.44 +20lg D(Km) +20lg F(MHz)

    Los 是传播损耗,单位为dB

    D是距离,单位是Km

    F是工作频率,单位是MHz

    下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:  

    1. 由发射功率 10dBm,接收灵敏度为-105dBm

      Los = 115dB

    2. LosF计算得出D =31公里.

    这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。

    假定大气、遮挡等造成的损耗为25dB,可以计算得出通信距离为: D =1.7公里  

 

Los = 32.44 +20lg D(Km) +20lg F(MHz)

F=433MHz

Los=接收灵敏度 LNA Gain Tx power 天线增益大气衰减

NRF905接收灵敏度 -100dBm

LNA Gain: 25dB

TX power 26dBm

天线增益2dB

大气衰减: 35dB(根据目前市场上的模块实际传输距离算出的)

 

Los=100 +25 +26 +2-35=32.44 +20lg D(Km) +20lg 433

D=45.34Km


实际测试结果: D=1.3Km

代入上面公式可算出实际大气的衰减量:

Los = 32.44 20lg 1.3 20lg 433

 

Los=接收灵敏度 LNA Gain Tx power 天线增益大气衰减

NRF905接收灵敏度 -100dBm

LNA Gain: 25dB
TX power 26dBm

天线增益2db

大气衰减: 35dB(根据目前市场上的模块实际传输距离算出的)

Los=100 +25 +26 +2-x=32.44 +20lg 1.3 +20lg 433

X=65.55dB

 

从而可以推算出如果D=20Km,至少需要输出Power多大:

 

Los=100 +25 +Tx +2-65.55=32.44 +20lg20 +20lg433

Tx=49.74dBm

 

若用三菱公司的RD06HVF1RD15HVF1作放大,最大输出约20W,转换成dBm后为10lg20000mW=43dBm;则可以传输的实际距离为:

 

Los=100 +25 +43 +2-65.55=32.44 +20lgD +20lg433

D=9.2Km

 

无线传输距离和发射功率以及频率的关系

 功率 灵敏度  dBm  dBmV   dBuV

dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值

dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值

dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值

换算关系:

PoutVout×Vout/R

dBmV=10log(R/0.001)+dBmR为负载阻抗

dBuV=60+dBmV

应用举例

无线通信距离的计算

       这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。

       通信距离与发射功率、接收灵敏度和工作频率有关。

       [Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)

       式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。

       由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当fd增大一倍时,[Lfs]将分别增加6dB.

       下面的公式说明在自由空间下电波传播的损耗

       Los = 32.44 + 20lg d(Km) + 20lg f(MHz)

Los=20Lg(4π/c)+20Lg(f(Hz))+20Lg(d(m))=20Lg(4π/3x10^8)+20Lg(f(MHz)x10^6)+20Lg(d(km)x10^3)=20Lg(4π/3)-160+20Lgf+120+20Lgd+60=32.45+20Lgf+20Lgd, d 单位为kmf 单位为MHz

       Los 是传播损耗,单位为dB,一般车内损耗为8-10dB,馈线损耗8dB

       d是距离,单位是Km

       f是工作频率,单位是MHz

例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB

       下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:

       1. 由发射功率+10dBm,接收灵敏度为-105dBm

       Los = 115dB

       2. Losf

       计算得出d =30公里

       这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。

       假定大气、遮挡等造成的损耗为25dB,可以计算得出通信距离为:

       d =1.7公里

       结论: 无线传输损耗每增加6dB, 传送距离减小一倍

在遥控钥匙门禁(RKE)系统中,可以用钥匙扣上的发射器从远端开锁,发射器将无线编码发送到汽车内的接收机。遥控钥匙门禁(RKE)系统通常工作在ISM频段,包括315MHz433.92MHz。随着远程启动和带校验的RKE的出现,设计者希望延长这些短程设备的有效收发距离。影响有效收发距离的关键因素是无线信号的路径损耗。该应用笔记描述了无线信号的地面反射对路径损耗的影响,给出了路径损耗的近似式,并给出了在空旷停车场内路径损耗的曲线。另外,本文还给出了多路径信号和阻塞影响的估算。

RKE系统中,汽车驾驶员利用钥匙扣上的发射器向车内接收机发送无线编码信号,打开车锁。接收机对接收到的信号进行解码,并控制执行装置打开车门。 RKE系统的一个重要指标是它的有效收发距离。该距离由链路预算决定,关键因素是钥匙扣上发射器的发射功率、接收器的灵敏度和路径损耗。本应用只讨论路径损耗,阐述了发射器与接收器的距离、发射信号频率以及发射器与接收器之间的相对高度对路径损耗的影响。

地面反射中的路径损耗

在一个空旷的停车场环境中,几米以上距离的路径损耗与距离的4次方成正比,在自由空间传输中它与距离的平方成正比。实际上,对于增益为1的小天线而言,路径损耗与频率无关,可由一个简单的式表示:

其中,R是发射器和接收器之间的水平距离,h 1 是发射器的高度,h 2 是接收器的高度。这个简单的用于表示路径损耗的公式式是根据地面反射原理得出的。在靠近地面的任何位置,无线信号传输都会在发射器和接收器之间选择一条直接路径和一条地面反射路径,如图1所示。地面反射类似于镜面反射。对于常规地形,地面反射会使信号产生180 相移,而且比直接路径传输更远的距离。两条路径信号在接收端重新组合,如果不考虑路径长度的影响,这两路信号可以完全抵消。直接路径和地面反射路径的传输距离由式2和式3表示:

由于RR1R2 >> h1h2,上述表达式可近似为式4和式5

两者距离之差由式6表示:

地面反射是多径传输的一个简单例子:无线电波在传播过程中,遇到不同的表面反射,形成幅值和延迟均不同的多径信号到达接收机。若在自由空间只有一条传输路径,接收器收到的信号功率由式7表示:

其中,P R 是接收功率、P T 是发射功率、G T 是发射机天线增益、G R 是接收天线增益、 是波长。

在地面传输时,传输信号会选择两条路径:直接路径和地面反射路径。有许多种方法可以模拟这种传输,且大多数都可以作为学术论文的内容。我们采取这样一种合理且直观的方法来模拟第二种路径所产生的影响:假定一半的发射功率进入直接路径传输,而另一半进入地面反射路径。结果会有两路具有微小相位差异的电压信号在接收天线端相减(反射会产生180°的相位翻转)。式8是两路电压信号组合后的复数表达式:

实际上,在大多数地面平坦的条件下,两路电压信号V 1 V 2 的幅值相等。我们可以把V看成是一个电压,等于接收功率的1/2次方(这种情况下,是V/ ,如式9所示:

接收功率刚好是式8电压幅值的平方。

将式9中的V代入该式,整理并转化为三角函数,可得到精确的路径损耗式为:

如果我们将式6中 的近似表达式代入式11,并将近似为x,就可得到如下简化表达式:

对于具有宽角度覆盖范围的小天线来说,其天线增益近似为1。将式12表示为PR/PT的比值,并设置G T =G R =1, 所得到的近似表达式既为式1。图2和图3是天线增益为1时,在315MHz434MHz下路径损耗的曲线图。包括式7表示的自由空间路径损耗、式11给出的精确路径损耗和式12给出的近似路径损耗。由图可以看出:在距离非常近时,确切的路径损耗会随信号频率不同而发生变化。

从这两幅图我们可以发现,对于图1 所示的典型遥控钥匙信号传输路径,在距离10米远处的路径损耗近似等于自由空间的路径损耗。这是因为在300MHz400MHz,直接路径传输信号和通过地面反射的信号在距离上相差四分之一波长,产生90 176 的相位差。这意味着两路信号叠加后既不增强也不抵消。 而在大于10米处,路径损耗以 R -4 变化,这说明在中等或较远距离时,式1是计算路径损耗的一个非常有用、快捷的方法。实际上,在发射和接收高度相等且均为h时,路径损耗(单位:dB)可以简化为:

由该式可知,当发射和接收高度均为1米时,1千米远处的路径损耗为123dB。 路径损耗计算的使用技巧

将发射功率一分为二,一半进入直接路径传输,一半进入地面反射路径传输的传播模型并不精确。这也是根据该模型建立的式12和式13表达式有时会出现2次方因子。但是,重要的是该应用笔记给出的表达式非常近似地估计了可以达到的最远距离。并描述了高度和距离对路径损耗的影响。自由空间损耗模型可用于传输距离在10米以内的情况,因为在相距10米以内时,地面反射会使信号传输发生巨大的变化。而在距离大于10米且无障碍的环境中,可以采用的规律近似估算。 任何散射体的存在都会影响任意距离处的路径损耗。任何障碍物(如停车场的其他汽车、灯柱、低矮的建筑物等)都会造成更多的反射路径,并使无线电波发生绕射,在混凝土建筑物中还会进一步削弱信号。这说明在实际情况中,以R 4 变化的损耗模型比自由空间的损耗模型更准确。实际使用时,考虑到不同表面造成的瞬时衰落,估计路径损耗较好的方法是从式1计算出的空旷停车场的路径损耗中减去20dB。如果钥匙扣发射器在一个建筑物内发送信号(比如一个远程启动装置),则要从式1计算出的路径损耗中减去30dB40dB。总之,要想得到最远收发距离,最可靠的方法就是进行实际测试。上述近似法只是一种参考,或者说是在测量开始之前进行的一个可靠检验

 

dBm, dBi, dBd, dB, dBc释义

dBm

dBm是一个考征功率绝对值的值,计算公式为:10lgP(功率值/1mw)。

[1] 如果发射功率P1mw,折算为dBm后为0dBm

[2] 对于40W的功率,按dBm单位进行折算后的值应为:

10lg40W/1mw)=10lg40000=10lg4+10lg10+10lg1000=46dBm

dBi dBd

dBidBd是考征增益的值(功率增益),两者都是一个相对值, 但参考基准不一样。dBi的参考基准为全方向性天线,dBd的参考基准为偶极子,所以两者略有不同。一般认为,表示同一个增益,用dBi表示出来比用dBd表示出来要大2.15

[3] 对于一面增益为16dBd的天线,其增益折算成单位为dBi时,则为18.15dBi(一般忽略小数位,为18dBi)。

[4] 0dBd=2.15dBi

[5] GSM900天线增益可以为13dBd15dBi),GSM1800天线增益可以为15dBd17dBi)

dB

dB是一个表征相对值的值,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面计算公式:10lg(甲功率/乙功率)

[6] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB

[7] 7/8 英寸GSM900馈线的100米传输损耗约为3.9dB

[8] 如果甲的功率为46dBm,乙的功率为40dBm,则可以说,甲比乙大6 dB

[9] 如果甲天线为12dBd,乙天线为14dBd,可以说甲比乙小2 dB

dBc

有时也会看到dBc,它也是一个表示功率相对值的单位,与dB的计算方法完全一样。一般来说,dBc 是相对于载波(Carrier)功率而言,在许多情况下,用来度量与载波功率的相对值,如用来度量干扰(同频干扰、互调干扰、交调干扰、带外干扰等)以及耦合、杂散等的相对量值。 在采用dBc的地方,原则上也可以使用dB替代。

经验算法:

有个简便公式:0dbm=0.001w 左边加10=右边乘10

所以0+10DBM=0.001*10W 10DBM=0.01W

故得20DBM=0.1W 30DBM=1W 40DBM=10W

还有左边加3=右边乘2,如40+3DBM=10*2W,即43DBM=20W,这些是经验公式,蛮好用的。

所以-50DBM=0DBM-10-10-10-10-10=1mw/10/10/10/10/10=0.00001mw

波特率

  波特率是每秒钟传送的信息位的数量。它是所传送代码的最短码元占有时间的倒数。例如一个代码的最短时间码元宽度为20毫秒,则其波特率就是每秒50波特。

20毫秒=0.02秒 波特率1/0.02=50波特

在信息传输通道中,携带数据信息的信号单元叫码元,每秒钟通过信道传输的码元数称为码元传输速率,简称波特率。波特率是传输通道频宽的指标。

每秒钟通过信道传输的信息量称为位传输速率,简称比特率。比特率表示有效数据的传输速率。

 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

无线传输距离计算公式 的相关文章

  • redis master和slave主备切换,可能导致数据丢失,如何解决?

    1 两种数据丢失的情况 2 解决异步复制和脑裂导致的数据丢失 1 两种数据丢失的情况 主备切换的过程 xff0c 可能会导致数据丢失 xff08 1 xff09 异步复制导致的数据丢失 因为master gt slave的复制是异步的 xf
  • C:基于可以自动扩展缓冲区的stringbuffer,实现内存格式化输出(bufprintf)

    最近做一个C语言的嵌入式项目 xff0c 需要分段向指定内存调用vsnprintf输出不定长度的格式化输出 xff0c 因为是分段输出 xff0c 而且长度不定 xff0c 所以一开始就不能分配固定长度内存 xff0c 每次输出都要从输出到
  • Gitblit服务器搭建及Git使用

    使用Gitblit搭建属于公司或自己的Git服务器 xff0c 方便公司或自己程序代码及文档版本管理 环境 xff1a 1 Win10 64位操作系统 2 Git 2 24 1 2 64 bit xff08 git工具 xff09 3 To
  • C语言中int到float的强制类型转换

    最近在看一本名为的书 由于我所看过的计算机理论方面的书较少 xff0c 加上自己大学期间一直也不用功 xff0c 所以对于计算机的工作原理以及程序的工作方式我始终只知甚少 xff0c 印象也十分模糊 不过 xff0c 应该说我碰到了一本好书
  • 非常实用的一键开关机电路

    按键电路在我们的电路设计中非常常见 xff0c 其中有一种比较特殊 xff0c 就是一键开关机电路 xff0c 顾名思义 xff0c 就是只用一个按键实现开机关机以及其他功能 xff0c 其实大家都接触过 xff0c 我们手机中的开机键就是
  • 一个很精妙的高精度电压基准电路

    先上图 xff0c 图里面的431也可以是别的基准源 xff08 比如LT1004之类的 xff09 甚至可以是一个简单的稳压二极管 需要说明的时 xff0c 此电路并非本人原创 xff0c 也不知道作者是谁 xff0c 偶然看到后 xff
  • AD拼板技巧

    随着整个电子产业的不断发展 xff0c 电子行业的很多产品都已经有完善的上下游配套企业 从一个成熟产品的方案设计 xff0c 外观设计 xff0c 加工制造 xff0c 装配测试 xff0c 包装 xff0c 批发商渠道等等 xff0c 这
  • 单片机RS485通信接口、控制线、原理图及程序实例

    RS232 标准是诞生于 RS485 之前的 xff0c 但是 RS232 有几处不足的地方 xff1a 接口的信号电平值较高 xff0c 达到十几 V xff0c 使用不当容易损坏接口芯片 xff0c 电平标准也与TTL 电平不兼容 传输
  • AD圆形铺铜技巧

    1 在铺铜时按shift 43 空格是可以画圆弧 xff0c 但那只能画一个很小的圆 xff0c 可以用 34 34 34 34 xff08 逗号 xff0c 句号键 xff09 来调整圆的半径 选择铺铜命令 gt 设置参数 gt 进入铺铜
  • 解决STM32 I2C接口死锁在BUSY状态的方法讨论

    解决STM32 I2C接口死锁在BUSY状态的方法讨论 关于STM32的I2C接口死锁在BUSY状态无法恢复的现象 xff0c 网上已有很多讨论 xff0c 看早几年比较老的贴子 xff0c 有人提到复位MCU也无法恢复 只有断电才行的状况
  • 解决AD不能导入CAD文件

    相信好的小伙伴在导入Auto CAD文件时出现下面图片所示的文件后缀 xff0c 且只有这一种 xff1a 那怎么解决呢 xff1f xff1f xff1f 这是因为你没有安装插入的插件而已 xff0c 实际上这是由于新的安装机制导致 xf
  • do{...}while(0)的用法,超详解

    转载原文地址 xff1a http blog csdn net majianfei1023 article details 45246865 零 导引 第一次见到 do while 0 是在学习libevent的时候 xff0c 看到里面有
  • 以太坊的Ethash算法

    Ethash认真的阅读 xff0c 理解 xff0c 计算和调试了一番 xff0c 顺便自己翻译了一下 xff0c 共同学习 此规范是修订版23 Ethash 是 Ethereum 1 0 的计划的PoW算法 这是最新版本的Dagger H
  • MinGW下载

    下载地址 https www mingw w64 org downloads 选择windows版本 点击MingW W64 builds进入页面 https www mingw w64 org downloads mingw builds
  • 关于c语言中printf的几个问题

    问题在执行下列代码时发现的 int main int a 61 1 float b 61 1 0 float c 61 a 10 printf 34 d 34 int b printf 34 d 34 b 问题一 为什么不一样啊 用 d输出
  • 北斗定位与GPS定位的区别

    欢迎来到东用小知识课堂 xff0c 每天学习一分钟 xff0c 让你紧跟时代 xff0c 扩充自己 xff0c 成为大佬不是梦 xff01 1 覆盖范围 xff1a 北斗定位系统是覆盖中国本土的区域导航系统 覆盖范围东经约70 一140 x
  • 污水处理远程监控系统解决方案

    一 行业背景 随着我国科技和经济的发展 xff0c 近年来工厂数量日益增多 xff0c 而生产所带来的工业垃圾及污水就是一个重要的环境污染问题 xff0c 部分工厂甚至会在监管部门的监控死角下偷偷进行污水排放 xff0c 对周围水质造成严重
  • 5G工业路由器安全性怎么样?工业路由器的特点

    路由器 xff0c 本身就是一个具有相当大潜力的网络通信设备 xff0c 即使再是网络小白的用户 xff0c 可能也知道路由器是家中用于发布无线网络的设备 xff0c 如果深入了解的话 xff0c 其作用和发展会让人大为感慨 相信很多用户也
  • 路由器有防火墙?工业路由器的那些安全防护

    想要网络安全光是电脑装了杀毒软件可不行 xff0c 如果一个企业或者大型工厂一旦因为网络防护疏忽 xff0c 那么丢失数据信息所造成的损失是无法估量的 xff0c 所以企业及工厂网络通信及数据传输所使用的路由器一般都是工业级的 xff0c

随机推荐

  • Cat.1和Cat.4有哪些区别

    Cat 1的全称为LTE UE Category 1 xff0c 它是4G LTE网络的一个类 xff0c 也可以理解为低配的4G终端 xff0c 属于广域网 xff0c 蜂窝联网 xff0c 上行峰值为5Mbit s xff0c 下行峰值
  • RS485接口连接设备数量总共有多少?

    RS485总线可以连接256个设备 xff0c 但测试后发现这个数字有比较大的差异 有一种说法认为专门开发串行嵌入式的RS485总线只能连接32个节点 xff0c 这由自身的驱动能力决定的 有人说网上的各种485总线产品可以支持128个 x
  • 预防山体滑坡,泥石流监测智能预警系统

    一 行业背景 我国是一个山区面积较大的国家 xff0c 山地 丘陵约占国土总面积的2 3 xff0c 在众多的山区中 xff0c 都具备泥石流形成的基本条件 xff0c 这也让我国成为受泥石流灾害影响最大的国家 在我国境内 xff0c 泥石
  • 如何扩大无线网络信号强度?

    欢迎来到东用小知识课堂 xff0c 每天学习一分钟 xff0c 让你紧跟时代 xff0c 扩充自己 xff0c 成为大佬不是梦 xff01 无线网络通信设备存在一个问题 xff0c 那就是他的信号发射都是直线型 xff0c 因此一旦家中或者
  • OpenWrt 添加cpu温度显示监控

    opkg update opkg install lm sensors lm sensors detect 然后修改一下 usr lib lua luci view admin status index htm 增加一个温度的显示 lt C
  • RS485接线方式小科普

    欢迎来到东用知识小课堂 xff01 RS 485采用平衡发送和差分接收方式实现通信 xff1a 发送端将串行口的ttl电平信号转换成差分信号a xff0c b两路输出 xff0c 经过线缆传输之后在接收端将差分信号还原成ttl电平信号 RS
  • 传输数据稳如老狗,还支持多种接口,这款DTU让智能化更简单

    如果你的项目正在向着智慧化转变或发展 xff0c 那么你一定会深刻意识到数据传输的稳定性对于整个系统的稳定运行的重要性 毕竟 xff0c 项目的智能化发展需要时刻保持数据的可靠性和稳定传输 xff0c 如果一旦传输因设备或者网络等因素导致中
  • 什么是光耦隔离?光耦隔离的主要作用

    欢迎来到东用知识小课堂 xff01 光耦合器的结构相当于把发光二极管和光敏三极管封装在一起 光耦隔离电路使被隔离的两部分电路之间没有电的直接连接 xff0c 主要是防止因有电的连接而引起的干扰 xff0c 特别是低压的控制电路与外部高压电路
  • ORB305与CISCO路由器构建L2TP over IPSec VPN操作手册

    1 网络拓扑 在思科路由器与ORB305之间建立一个安全隧道 xff0c 对客户路由器端设备子网 xff0c 与思科路由器端服务器子网之间的数据流进行安全保护 xff0c 组网拓扑图如图所示 2 思科路由器端配置指导 此处以多数客户使用专线
  • linux下使用UDP发送接收数据

    接收 static int sock fd struct sockaddr in recv addr 读取参数 struct sockaddr in send addr 发送参数 sock fd 61 socket AF INET SOCK
  • 0长度数组的使用,重点掌握的知识

    0长度的数组在ISO C和C 43 43 的规格说明书中是不允许的 xff0c 但是GCC的C99支持的这种用法 GCC对0长度数组的文档参考 xff1a Arrays of Length Zero 如下代码片段 xff0c 哪个更简洁更灵
  • Freertos中检测内存的剩余函数

    static uint16 t prvTaskCheckFreeStackSpace const uint8 t pucStackByte
  • 重定位

    一 必须知道的几个概念 1 链接地址和运行地址 运行地址 xff0c 顾名思义就是程序运行的时候的地址 xff0c 也就是你用工具将代码下载到RAM的那个地址 xff0c 也叫加载地址 链接地址 xff0c 由链接脚本指定的地址 为什么需要
  • CC2541低功耗的实现方法

    转自 xff1a http blog csdn net mzy202 article details 42091537 CC2541 CC2540 实现超低功耗是非常重要的 xff1a 我们来总结一下实现方法 xff1a 1 xff0c 有
  • Macbook pro/air 2013 late -2014 使用转接卡更换NVME SSD休眠不醒问题的解决办法

    2021年1月更新 xff0c 发现升级 big sur 11 1之后 xff0c 固件版本变成了429 0 0 0 睡眠问题又回来了 xff0c 每次都睡死 xff0c 不醒 于是我按老办法 xff0c 把mbp114的nvme驱动刷到m
  • stm32使用stlink v2.0下载的sw接线方式

    stm32的sw下载需要用到4根线 GND VCC SWCLK SWDIO xff0c 对应好即可 xff0c 相比较3根线的方式 xff0c 优先推荐4根线下载方式
  • stm32芯片的焊接

    stm32的焊接 xff0c 使用到东西 xff1a 松香 xff0c 维修佬 xff0c 烙铁 1 首先将stm32的一个角的脚上涂上维修佬 xff0c 要特别特别少 xff0c 太多了 xff0c 容易粘连到其他脚上面 xff0c 不好
  • Modbus-RTU通讯协议中CRC校验码的计算步骤

    在CRC计算时只用8个数据位 xff0c 起始位及停止位 xff0c 如有奇偶校验位也包括奇偶校验位 xff0c 都不参与CRC计算 CRC计算方法是 xff1a 1 预置1个16位的寄存器为十六进制FFFF xff08 全1 xff09
  • 一个很好的makefile例子(经典)

    转自http www cnblogs com sld666666 archive 2010 04 08 1707789 html 相信在unix下编程的没有不知道makefile的 xff0c 刚开始学习unix平台 下的东西 xff0c
  • 无线传输距离计算公式

    转自一篇文档 无线传输距离计算 Pr dBm 61 Pt dBm Ct dB 43 Gt dB FL dB 43 Gr dB Cr dB Pr xff1a 接受端灵敏度 Pt 发送端功率 Cr 接收端接头和电缆损耗 Ct 发送端接头和电缆损