寻路A*算法 (下)

2023-05-16

这样还剩下 5 个相邻的方格。当前方格下面的 2 个方格还没有加入 open list ,所以把它们加入,同时把当前方格设为他们的父亲。在剩下的 3 个方格中,有 2 个已经在 close list 中 ( 一个是起点,一个是当前方格上面的方格,外框被加亮的 ) ,我们忽略它们。最后一个方格,也就是当前方格左边的方格,我们检查经由当前方格到达那里是否具有更小的 G 值。没有。因此我们准备从 open list 中选择下一个待处理的方格。

不断重复这个过程,直到把终点也加入到了 open list 中,此时如下图所示。

图 6

注意,在起点下面 2 格的方格的父亲已经与前面不同了。之前它的 G 值是 28 并且指向它右上方的方格。现在它的 G 值为 20 ,并且指向它正上方的方格。这在寻路过程中的某处发生,使用新路径时 G 值经过检查并且变得更低,因此父节点被重新设置, G 和 F 值被重新计算。尽管这一变化在本例中并不重要,但是在很多场合中,这种变化会导致寻路结果的巨大变化。

那么我们怎么样去确定实际路径呢?很简单,从终点开始,按着箭头向父节点移动,这样你就被带回到了起点,这就是你的路径。如下图所示。从起点 A 移动到终点 B 就是简单从路径上的一个方格的中心移动到另一个方格的中心,直至目标。就是这么简单!

图 7

A*算法总结(Summary of the A* Method)

Ok ,现在你已经看完了整个的介绍,现在我们把所有步骤放在一起:

1.         把起点加入 open list 。

2.         重复如下过程:

a.         遍历 open list ,查找 F 值最小的节点,把它作为当前要处理的节点。

b.         把这个节点移到 close list 。

c.         对当前方格的 8 个相邻方格的每一个方格?

◆     如果它是不可抵达的或者它在 close list 中,忽略它。否则,做如下操作。

◆     如果它不在 open list 中,把它加入 open list ,并且把当前方格设置为它的父亲,记录该方格的 F , G 和 H 值。

◆     如果它已经在 open list 中,检查这条路径 ( 即经由当前方格到达它那里 ) 是否更好,用 G 值作参考。更小的 G 值表示这是更好的路径。如果是这样,把它的父亲设置为当前方格,并重新计算它的 G 和 F 值。如果你的 open list 是按 F 值排序的话,改变后你可能需要重新排序。

d.         停止,当你

◆     把终点加入到了 open list 中,此时路径已经找到了,或者

◆     查找终点失败,并且 open list 是空的,此时没有路径。

3.         保存路径。从终点开始,每个方格沿着父节点移动直至起点,这就是你的路径。

题外话(Small Rant)

请原谅我的离题,当你在网上或论坛上看到各种关于 A* 算法的讨论时,你偶尔会发现一些 A* 的代码,实际上他们不是。要使用 A* ,你必须包含上面讨论的所有元素 ---- 尤其是 open list , close list 和路径代价 G , H 和 F 。也有很多其他的寻路算法,这些算法并不是 A* 算法, A* 被认为是最好的。在本文末尾引用的一些文章中 Bryan Stout 讨论了他们的一部分,包括他们的优缺点。在某些时候你可以二中择一,但你必须明白自己在做什么。 Ok ,不废话了。回到文章。

实现的注解(Notes on Implemetation)

现在你已经明白了基本方法,这里是你在写自己的程序是需要考虑的一些额外的东西。下面的材料引用了一些我用 C++ 和 Basic 写的程序,但是对其他语言同样有效。

1.  维护 Open List :这是 A* 中最重要的部分。每次你访问 Open list ,你都要找出具有最小 F 值的方格。有几种做法可以做到这个。你可以随意保存路径元素,当你需要找到具 有最小 F 值的方格时,遍历整个 open list 。这个很简单,但对于很长的路径会很慢。这个方法可以通过维护一个排好序的表来改进,每次当你需要找到具有最小 F 值的方格时,仅取出表的第一项即可。我写程序时,这是我用的第一个方法。

   

    对于小地图,这可以很好的工作,但这不是最快的方案。追求速度的 A* 程序员使用了叫做二叉堆的东西,我的程序里也用了这个。以我的经验,这种方法在多数场合下会快 2—3 倍,对于更长的路径速度成几何级数增长 (10 倍甚至更快 ) 。如果你想更多的了解二叉堆,请阅读 Using Binary Heaps in A* Pathfinding 。

2.       其他单位:如果你碰巧很仔细的看了我的程序,你会注意到我完全忽略了其他单位。我的寻路者实际上可以互相穿越。这取决于游戏,也许可以,也许不可以。如果你想考虑其他单位,并想使他们移动时绕过彼此,我建议你的寻路程序忽略它们,再写一些新的程序来判断两个单位是否会发生碰撞。如果发生碰撞,你可以产生一个新的路径,或者是使用一些标准的运动法则(比如永远向右移动,等等)直至障碍物不在途中,然后产生一个新的路径。为什么在计算初始路径是不包括其他单位呢?因为其他单位是可以动的,当你到达的时候它们可能不在自己的位置上。这可以产生一些怪异的结果,一个单位突然转向来避免和一个已不存在的单位碰撞,在它的路径计算出来后和穿越它路径的那些单位碰撞了。

在寻路代码中忽略其他单位,意味着你必须写另一份代码来处理碰撞。这是游戏的细节,所以我把解决方案留给你。本文末尾引用的 Bryan Stout's 的文章中的几种解决方案非常值得了解。

3.       一些速度方面的提示:如果你在开发自己的 A* 程序或者是改编我写的程序,最后你会发现寻路占用了大量的 CPU 时间,尤其是当你有相当多的寻路者和一块很大的地图时。如果你阅读过网上的资料,你会发现就算是开发星际争霸,帝国时代的专家也是这样。如果你发现事情由于寻路而变慢了,这里有些主意很不错:

◆     使用小地图或者更少的寻路者。

◆     千万不要同时给多个寻路者寻路。取而代之的是把它们放入队列中,分散到几个游戏周期中。如果你的游戏以每秒 40 周期的速度运行,没人能察觉到。但是如果同时有大量的寻路者在寻路的话,他们会马上就发现游戏慢下来了。

◆     考虑在地图中使用更大的方格。这减少了寻路时需要搜索的方格数量。如果你是有雄心的话,你可以设计多套寻路方案,根据路径的长度而使用在不同场合。这也是专业人士的做法,对长路径使用大方格,当你接近目标时使用小方格。如果你对这个有兴趣,请看 Two-Tiered A* Pathfinding 。

◆     对于很长的路径,考虑使用路径点系统,或者可以预先计算路径并加入游戏中。

◆     预先处理你的地图,指出哪些区域是不可到达的。这些区域称为“孤岛”。实际上,他们可以是岛屿,或者是被墙壁等包围而不可到达的任意区域。 A* 的下限是,你告诉他搜寻通往哪些区域的路径时,他会搜索整个地图,直到所有可以抵达的方格都通过 open list 或 close list 得到了处理。这会浪费大量的 CPU 时间。这可以通过预先设定不可到达的区域来解决。在某种数组中记录这些信息,在寻路前检查它。在我的 Blitz 版程序中,我写了个地图预处理程序来完成这个。它可以提前识别寻路算法会忽略的死路径,这又进一步提高了速度。

4.  不同的地形损耗:在这个教程和我的程序中,地形只有 2 种:可抵达的和不可抵达    的。但是如果你有些可抵达的地形,移动代价会更高些,沼泽,山丘,地牢的楼梯

    等都是可抵达的地形,但是移动代价比平地就要高。类似的,道路的移动代价就比 它周围的地形低。

在你计算给定方格的 G 值时加上地形的代价就很容易解决了这个问题。简单的给这些方格加上一些额外的代价就可以了。 A* 算法用来查找代价最低的路径,应该很容易处理这些。在我的简单例子中,地形只有可达和不可达两种, A* 会搜寻最短和最直接的路径。但是在有地形代价的环境中,代价最低的的路径可能会很长。

就像沿着公路绕过沼泽而不是直接穿越它。

另一个需要考虑的是专家所谓的“ influence Mapping ”,就像上面描述的可变成本地形一样,你可以创建一个额外的计分系统,把它应用到寻路的 AI 中。假设你有这样一张地图,地图上由个通道穿过山丘,有大批的寻路者要通过这个通道,电脑每次产生一个通过那个通道的路径都会变得很拥挤。如果需要,你可以产生一个 influence map ,它惩罚那些会发生大屠杀的方格。这会让电脑选择更安全的路径,也可以帮助它避免因为路径短(当然也更危险)而持续把队伍或寻路者送往某一特定路径。

5.  维护未探测的区域:你玩 PC 游戏的时候是否发现电脑总是能精确的选择路径,甚至地图都未被探测。对于游戏来说,寻路过于精确反而不真实。幸运的是,这个问题很容易修正。答案就是为每个玩家和电脑(每个玩家,不是每个单位 --- 那会浪费很多内存)创建一个独立的 knownWalkability 数组。每个数组包含了玩家已经探测的区域的信息,和假设是可到达的其他区域,直到被证实。使用这种方法,单位会在路的死端徘徊,并会做出错误的选择,直到在它周围找到了路径。地图一旦被探测了,寻路又向平常一样工作。

6.  平滑路径: A* 自动给你花费最小的,最短的路径,但它不会自动给你最平滑的路径。看看我们的例子所找到的路径(图 7 )。在这条路径上,第一步在起点的右下方,如果第一步在起点的正下方是不是路径会更平滑呢?

    有几个方法解决这个问题。在你计算路径时,你可以惩罚那些改变方向的方格,把它的 G 值增加一个额外的开销。另一种选择是,你可以遍历你生成的路径,查找那些用相邻的方格替代会使路径更平滑的地方。要了解更多,请看 Toward More Realistic Pathfinding 。

7.  非方形搜索区域:在我们的例子中,我们使用都是 2D 的方形的区域。你可以使用不规则的区域。想想冒险游戏中的那些国家,你可以设计一个像那样的寻路关卡。你需要建立一张表格来保存国家相邻关系,以及从一个国家移动到另一个国家的 G 值。你还需要一个方法了估算 H 值。其他的都可以向上面的例子一样处理。当你向 open list 添加新项时,不是使用相邻的方格,而是查看表里相邻的国家。

类似的,你可以为一张固定地形的地图的路径建立路径点系统。路径点通常是道路或地牢通道的转折点。作为游戏设计者,你可以预先设定路径点。如果两个路径点的连线没有障碍物的话它们被视为相邻的。在冒险游戏的例子中,你可以保存这些相邻信息在某种表中,当 open list 增加新项时使用。然后记录 G 值(可能用两个结点间的直线距离)和 H 值(可能使用从节点到目标的直线距离)。其它的都想往常一样处理。

进一步阅读(Further Reading)

Ok ,现在你已经对 A* 有了个基本的了解,同时也认识了一些高级的主题。我强烈建议你看看我的代码,压缩包里包含了 2 个版本的实现,一个是 C++ ,另一个是 Blitz Basic 。 2 个版本都有注释,你以该可以很容易就看懂。下面是链接:

Sample Code: A* Pathfinder (2D) Version 1.71 。

如果你不会使用 C++ 或是 BlitzBasic ,在 C++ 版本下你可以找到两个 exe 文件。 BlitzBasic 版本必须去网站 Blitz Basic 下载 BlitzBasic 3D 的免费 Demo 才能运行。 在这里 here 你可以看到一个 Ben O'Neill 的 A* 在线验证实例。

你应该阅读下面这几个站点的文章。在你读完本教程后你可以更容易理解他们。

Amit's A* Pages : Amit Patel 的这篇文章被广泛引用,但是如果你没有阅读本教程的话,你可能会感到很迷惑。尤其是你可以看到 Amit Patel 自己的一些想法。

Smart Moves: Intelligent Path Finding : Bryan Stout 的这篇需要去 Gamasutra.com 注册才能阅读。 Bryan 用 Delphi 写的程序帮助我学习了 A* ,同时给了我一些我的程序中的一些灵感。他也阐述了 A* 的其他选择。

Terrain Analysis : Dave Pottinger 一篇非常高阶的,有吸引力的文章。他是 Ensemble Studios 的一名专家。这个家伙调整了游戏帝国时代和王者时代。不要期望能够读懂这里的每一样东西,但是这是一篇能给你一些不错的主意的很有吸引力的文章。它讨论了包 mip-mapping ,

influence mapping ,和其他高阶 AI 寻路主题。他的 flood filling 给了我在处理死路径 ”dead ends” 和孤岛 ”island” 时的灵感。这包含在我的 Blitz 版本的程序里。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

寻路A*算法 (下) 的相关文章

  • 算法工程师的自我修养(AlgorithmEngineerPrepares)

    算法工程师的自我修养 整理一份算法工程师的最小必需的知识框架 xff0c 内容包括 计算机视觉 机器学习基础 深度学习基础 数据处理分析 矩阵论 信息论 NLP基础 xff0c 持续更新中 xff0c 欢迎关注 地址 xff1a https
  • 从零开始实现一个简单的CycleGAN项目

    项目地址 xff1a https github com jzsherlock4869 cyclegan pytorch pytorch 中CycleGAN xff08 循环一致生成对抗网络 xff09 的简单且易于修改的实现 CycleGA
  • 【计算机视觉】一个简单易上手的图像分类任务pipeline代码

    整理了一个针对图像分类任务的pipeline xff0c 主要用于快速开始验证现有模型结果 xff0c 以及后续的自定义模型的开发 https github com jzsherlock4869 image classification p
  • MySQL存储数据加密

    加密方式主流的有两种 ENCODE 与 DECODE 建一张测试表 create table users username varchar 128 用户昵称 password blob 密码 engine 61 innodb default
  • 线程池BUG复现和解决

    逻辑很简单 xff0c 线程池执行了一个带结果的异步任务 但是最近有偶发的报错 xff1a java util concurrent RejectedExecutionException Task java util concurrent
  • 移动端开发——APP端上H5容器化建设

    1 背景 当前移动端和前端的结合愈加紧密 xff0c 尤其是在偏重活动运营的电商App中 xff0c 受制于App版本审核 xff0c 具备研发成本低 可灵活发布等特点的H5页面受到青睐 xff0c 使其在APP端上承接了越来越多的业务 然
  • C++时间与字符串转换

    1 常用的时间存储方式 1 xff09 time t类型 xff0c 这本质上是一个长整数 xff0c 表示从1970 01 01 00 00 00到目前计时时间的秒数 xff0c 如果需要更精确一点的 xff0c 可以使用timeval精
  • 解决linux环境下nohup: redirecting stderr to stdout问题

    在生产环境下启动Weblogic时 xff0c 发现原来好好的nohup信息输出到指定文件中的功能 xff0c 突然出问题了 现象是控制台输出的信息一部分输出到了我指定的文件 xff0c 另一部分却输出到了nohup out xff0c 而
  • [转]Redis作为消息队列与RabbitMQ的性能对比

    周末测试了一下RabbitMQ的性能 xff0c RabbitMQ是使用Erlang编写的一个开源的消息队列 xff0c 本身支持很多的协议 xff1a AMQP xff0c XMPP SMTP STOMP xff0c 也正是如此 xff0
  • Python3.7 实现TCP通信

    TCP 连接程序分为服务端和客户端两部分 服务端步骤如下 xff1a 1 创建套接字Socket 什么是套接字 应用层通过传输层进行数据通信时 xff0c TCP和UDP会遇到同时为多个应用程序进程提供并发服务的问题 为了区别不同的应用程序
  • CentOS、Ubuntu、Debian三个linux比较异同

    Linux有非常多的发行版本 xff0c 从性质上划分 xff0c 大体分为由商业公司维护的商业版本与由开源社区维护的免费发行版本 商业版本以Redhat为代表 xff0c 开源社区版本则以debian为代表 这些版本各有不同的特点 xff
  • LDAP 中 CN, OU, DC 的含义

    1 LDAP的存储规则 区分名 xff08 DN xff0c Distinguished Name xff09 和自然界中的树不同 xff0c 文件系统 LDAP 电话号码簿目录的每一片枝叶都至少有一个独一无二的属性 xff0c 这一属性可
  • bat修改hosts文件

    attrib R C WINDOWS system32 drivers etc hosts 64 echo 64 echo 127 0 0 1 aaaa bbb com gt gt C WINDOWS system32 drivers et
  • 使用org.apache.tools.zip实现zip压缩和解压

    import java io import org apache tools zip import java util Enumeration 功能 zip压缩 解压 支持中文文件名 说明 本程序通过使用Apache Ant里提供的zip工
  • freeModbus代码解读及移植笔记

    freeModbus的代码库还是很好用的 xff0c 本人在wince和C8051F410下均移植成功 xff08 只用到RTU模式 xff09 但freeModbus提供的文档比较少 xff0c 只能对照着Modbus协议一点点试着读懂源
  • MySQL变量:local_infile

    local infile服务器变量指示能否使用load data local infile命令 该变量默认为ON 该变量为OFF时 xff0c 禁用客户端的load data local infile命令 Sql代码 mysql gt sh
  • strcpy函数实现

    C语言标准库函数strcpy的一种典型的工业级的最简实现 返回值 xff1a 返回目标串的地址 对于出现异常的情况ANSI C99标准并未定义 xff0c 故由实现者决定返回值 xff0c 通常为NULL 参数 xff1a strDesti
  • C++库介绍

    1 C 43 43 标准库 xff08 STL xff09 STL六大组件 容器 算法 迭代器 仿函数 适配器 配接器 空间配置器 1 容器 各种数据结构 xff0c 如vector list deque set map等 xff0c 用来
  • 【C++】extern “C“ 用法详解

    前言 前面简单了解了C 43 43 中的extern 34 C 34 之后 xff0c 可能很多小伙伴对这个陌生的词非常困惑 xff0c 不能理解他的使用场景 所以本章内容就来详细了解extern 34 C 34 的用法 xff0c 这里使
  • FreeRTOS学习第三篇——FreeRTOS任务创建(下)

    声明 xff1a 本文为博主的学习篇章 xff0c 欢迎大家指错 xff0c 共同学习 在解决一下上篇遗留下来的问题之前 xff0c 还得提前做些功课 xff0c 了解一些FreeRTOS的全局变量 PRIVILEGED DATA stat

随机推荐