MPU6050工作原理及STM32控制MPU6050

2023-05-16

一·简介:

1.要想知道MPU6050工作原理,得先了解下面俩个传感器:

①陀螺仪传感器:

       陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。现代陀螺仪可以精确地确定运动物体的方位的仪器,它在现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器。传统的惯性陀螺仪主要部分有机械式的陀螺仪,而机械式的陀螺仪对工艺结构的要求很高。70年代提出了现代光纤陀螺仪的基本设想,到八十年代以后,光纤陀螺仪就得到了非常迅速的发展,激光谐振陀螺仪也有了很大的发展。光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠。光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。光纤陀螺仪同时发展的除了环式激光陀螺仪外。


加速度传感器:

      加速度传感器是一种能够测量加速度的传感器。通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。

其实说简单点,在mpu6050中我们用陀螺仪传感器测角度,用加速度传感器测加速度

MPU-60X0 :

      MPU-60X0是全球首例9轴运动处理传感器。它集成了3轴MEMS陀螺仪, 3轴MEMS 加速度计,以及一个可扩展的数字运动处理器 DMP(DigitalMotion Processor),可用 I2C 接口连接一个第三方的数字传感器,比如磁力计。扩展之后就可以通过其 I2C 或 SPI 接口 输出一个 9 轴的信号(SPI 接口仅在 MPU-6000 可用)。MPU-60X0 也可以通过其 I2C 接口 连接非惯性的数字传感器,比如压力传感器。 MPU-60X0 对陀螺仪和加速度计分别用了三个 16 位的 ADC,将其测量的模拟量转化 为可输出的数字量。为了精确跟踪快速和慢速的运动,传感器的测量范围都是用户可控的, 陀螺仪可测范围为±250,±500,±1000,±2000°/秒(dps),加速度计可测范围为±2,±4, ±8,±16g。 一个片上 1024 字节的 FIFO,有助于降低系统功耗。 和所有设备寄存器之间的通信采用 400kHz 的 I2C 接口或 1MHz 的 SPI 接口(SPI 仅 MPU-6000 可用)。对于需要高速传输的应用,对寄存器的读取和中断可用 20MHz 的 SPI。 另外,片上还内嵌了一个温度传感器和在工作环境下仅有±1%变动的振荡器。 芯片尺寸 4×4×0.9mm,采用 QFN 封装(无引线方形封装),可承受最大 10000g 的冲 击,并有可编程的低通滤波器。 关于电源,MPU-60X0 可支持 VDD 范围 2.5V±5%,3.0V±5%,或 3.3V±5%。另外 MPU-6050 还有一个 VLOGIC 引脚,用来为 I2C 输出提供逻辑电平。VLOGIC 电压可取 1.8±5%或者 VDD。

         数字运动处理器(DMP):

 DMP 从陀螺仪、加速度计以及外接的传感器接收并处理数据,处理结果可以从 DMP 寄存器读出,或通过 FIFO 缓冲。DMP 有权使用 MPU 的一个外部引脚产生中断。


二·数据传输:

    1.I2C原理在上一篇博客里有详细讲解,在这里不再赘述。

如果要写 MPU-60X0 寄存器,主设备除了发出开始标志(S)和地址位,还要加一个 R/W 位,0 为写,1 为读。在第 9 个时钟周期(高电平时),MPU-60X0 产生应答信号。然 后主设备开始传送寄存器地址(RA),接到应答后,开始传送寄存器数据,然后仍然要有应 答信号,依次类推。

单字节写时序:


多字节写时序:



如果要读取 MPU-60X0 寄存器的值,首先由主设备产生开始信号(S),然后发送从设 备地址位和一个写数据位,然后发送寄存器地址,才能开始读寄存器。紧接着,收到应答信 号后,主设备再发一个开始信号,然后发送从设备地址位和一个读数据位。然后,作为从设 备的 MPU-60X0 产生应答信号并开始发送寄存器数据。通信以主设备产生的拒绝应答信号 (NACK)和结束标志(P)结束。拒绝应答信号(NACK)产生定义为 SDA 数据在第 9 个 时钟周期一直为高。 


    

三·STM32控制MPU6050

1.硬件连接

实验采用正点原子公司的 AN1507 ATK-MPU6050 六轴传感器模块

MPU6050             STM32
VCC         <--->   VCC
GND         <--->   GND
SDA         <--->   PB9
SCL         <--->   PB8
INT         <--->   不接
AD0         <--->   不接

2. 重要寄存器

2.1 电源管理寄存器 1

这里写图片描述

DEVICE_RESET 位用来控制复位,设置为 1,复位 MPU6050,复位结束后, MPU 
硬件自动清零该位

SLEEEP 位用于控制 MPU6050 的工作模式,复位后,该位为 1,即进 
入了睡眠模式(低功耗),所以我们要清零该位,以进入正常工作模式

TEMP_DIS 用于设置是否使能温度传感器,设置为 0,则使能

CLKSEL[2:0]用于选择系统时钟源,选择关系如表

CLKSEL[2:0]时钟源
000内部 8M RC 晶振
001PLL,使用 X 轴陀螺作为参考
010PLL,使用 Y 轴陀螺作为参考
011PLL,使用 Z 轴陀螺作为参考
100PLL,使用外部 32.768Khz 作为参考
101PLL,使用外部 19.2Mhz 作为参考
110保留
111关闭时钟,保持时序产生电路复位状态

**默认是使用内部 8M RC 晶振的,精度不高,所以我们一般选择 X/Y/Z 轴陀螺作为参考 
的 PLL 作为时钟源,一般设置 CLKSEL=001 即可**

2.2 陀螺仪配置寄存器

这里写图片描述 
FS_SEL[1:0]这两个位,用于设置陀螺仪的满量程范围: 0,±250° 
/S; 1,±500° /S; 2,±1000° /S; 3,±2000° /S;我们一般设置为 3,即±2000° /S,因 
为陀螺仪的 ADC 为 16 位分辨率,所以得到灵敏度为: 65536/4000=16.4LSB/(° /S)

2.3 加速度传感器配置寄存器

这里写图片描述 
AFS_SEL[1:0]这两个位,用于设置加速度传感器的满量程范围: 0, 
±2g; 1,±4g; 2,±8g; 3,±16g;我们一般设置为 0,即±2g,因为加速度传感器的 
ADC 也是 16 位,所以得到灵敏度为: 65536/4=16384LSB/g

2.4 FIFO使能寄存器

这里写图片描述 
该寄存器用于控制 FIFO 使能,在简单读取传感器数据的时候,可以不用 FIFO,设置 
对应位为 0 即可禁止 FIFO,设置为 1,则使能 FIFO

加速度传感器的 3 个轴,全由 1 
个位( ACCEL_FIFO_EN)控制,只要该位置 1,则加速度传感器的三个通道都开启 FIFO

2.5 陀螺仪采样率分频寄存器

这里写图片描述 
该寄存器用于设置 MPU6050 的陀螺仪采样频率,计算公式为:

采样频率 = 陀螺仪输出频率 / (1+SMPLRT_DIV)

这里陀螺仪的输出频率,是 1Khz 或者 8Khz,与数字低通滤波器( DLPF)的设置有关, 
当 DLPF_CFG=0/7 的时候,频率为 8Khz,其他情况是 1Khz。而且 DLPF 滤波频率一般设置 
为采样率的一半。采样率,我们假定设置为 50Hz,那么 SMPLRT_DIV=1000/50-1=19

2.6 配置寄存器

这里写图片描述 
数字低通滤波器( DLPF)的设置位,即: DLPF_CFG[2:0],加速 
度计和陀螺仪,都是根据这三个位的配置进行过滤的。 DLPF_CFG 不同配置对应的过滤情 
况如表: 
这里写图片描述 
这里的加速度传感器,输出速率( Fs)固定是 1Khz,而角速度传感器的输出速率( Fs), 
则根据 DLPF_CFG 的配置有所不同。一般我们设置角速度传感器的带宽为其采样率的一半, 
如前面所说的,如果设置采样率为 50Hz,那么带宽就应该设置为 25Hz,取近似值 20Hz, 
就应该设置 DLPF_CFG=100

2.7 电源管理寄存器 2

这里写图片描述 
LP_WAKE_CTRL 用于控制低功耗时的唤醒频率

剩下的 6 位,分别控制加速度和陀螺仪的x/y/z轴是否进入待机模式,这里我们全部都不进入待机模式,所以全部设置为 0 即可

2.8 陀螺仪数据输出寄存器

这里写图片描述 
通过读取这6个寄存器,就可以读到陀螺仪 x/y/z 轴的值,比如 x 轴的数据,可以通过读取 
0X43(高 8 位)和 0X44(低 8 位)寄存器得到,其他轴以此类推

2.9 加速度传感器数据输出寄存器

这里写图片描述 
通过读取这6个寄存器,就可以读到加速度传感器 x/y/z 轴的值,比如读 x 轴的数据,可以通过读取 0X3B(高 8 位)和0X3C(低8位)寄存器得到,其他轴以此类推

2.10 温度传感器数据输出寄存器

温度传感器的值,可以通过读取 0X41(高 8 位)和 0X42(低 8 位)寄存器得到, 
温度换算公式为:

Temperature = 36.53 + regval/340

其中, Temperature 为计算得到的温度值,单位为℃, regval 为从 0X41 和 0X42 读到的 
温度传感器值

2.11 中断使能寄存器

这里写图片描述 
OT_EN 该位置 1,该位使能运动检测(Motiondetection)产生中断。

FIFO_OFLOW_EN该位置1,该位使能FIFO缓冲区溢出产生中断。

I2C_MST_INT_EN该位置1,该位使能I2C主机所有中断源产生中断。

DATA_RDY_EN 该位置 1,该位使能数据就绪中断( Data Ready interrupt),所有的传感器寄存器写操作完成时都会产生

关闭所有中断则给此寄存器赋值0X00

3. 软件驱动

3.1 通过IIC对MPU6050寄存器进行读写

//IIC写一个字节 
//reg:      寄存器地址
//data:     数据
//返回值:  0,正常
//          其他,错误代码
u8 IIC_Write_Byte(u8 reg,u8 data)
{
    IIC_Start();
    IIC_Send_Byte((MPU_ADDR<<1)|0);//发送器件地址+写命令 
    if(IIC_Wait_Ack())  //等待应答
    {
        IIC_Stop(); 
        return 1;       
    }
    IIC_Send_Byte(reg); //写寄存器地址
    IIC_Wait_Ack();     //等待应答 
        IIC_Send_Byte(data);//发送数据
    if(IIC_Wait_Ack())  //等待ACK
    {
        IIC_Stop();  
        return 1;        
    }        
    IIC_Stop();  
    return 0;
}

//IIC读一个字节 
//reg:寄存器地址 
//返回值:读到的数据

u8 IIC_Read_Byte(u8 reg)
{
    u8 res;
    IIC_Start();
    IIC_Send_Byte((MPU_ADDR<<1)|0);//发送器件地址+写命令 
    IIC_Wait_Ack();//等待应答
    IIC_Send_Byte(reg);//写寄存器地址
    IIC_Wait_Ack();//等待应答
    IIC_Start();
    IIC_Send_Byte((MPU_ADDR<<1)|1);//发送期间地址+读命令
    IIC_Wait_Ack();//等待应答
    res=IIC_Read_Byte(0);//读取数据,发送nACK
    IIC_Stop();//产生一个停止条件
    return res;
}

//IIC连续写
//addr:器件地址
//reg: 寄存器地址
//len: 写入长度
//buf: 数据区
//返回值: 0,正常
//              其他,错误代码
u8 IIC_Write_Len(u8 addr,u8 reg,u8 len,u8 *buf)
{
    u8 i;
    IIC_Start();
    IIC_Send_Byte((addr<<1)|0);//发送器件地址+写命令
    if(IIC_Wait_Ack())//等待应答
    {
        IIC_Stop();
        return 1;
    }
    IIC_Send_Byte(reg);//写寄存器地址
    IIC_Wait_Ack();//等待应答
    for(i=0;i<len;i++)
    {
        IIC_Send_Byte(buf[i]);//发送数据
        if(IIC_Wait_Ack())//等待ACK
        {
            IIC_Stop();
            return 1;
        }
    }
    IIC_Stop();
    return 0;
}
//IIC连续读
//addr:器件地址
//reg:要读取的寄存器地址
//len:要读取得长度
//buf:读取到的数据存储区
//返回值: 0,正常
//              其他,错误代码
u8 IIC_Read_Len(u8 addr,u8 reg,u8 len,u8 *buf)
{
    IIC_Start();
    IIC_Send_Byte((addr<<1)|0);//发送器件地址+写命令
    if(IIC_Wait_Ack())//等待应答
    {
        IIC_Stop();
        return 1;
    }
    IIC_Send_Byte(reg);//写寄存器地址
    IIC_Wait_Ack();//等待应答
    IIC_Start();
    IIC_Send_Byte((addr<<1)|1);//发送器件地址+读命令
    IIC_Wait_Ack();//等待应答
    while(len)
    {
        if(len==1) *buf=IIC_Read_Byte(0);//读数据,发送nACK
        else *buf=IIC_Read_Byte(1);//读数据,发送ACK
        len--;
        buf++;
    }
    IIC_Stop();//产生一个停止条件
    return 0;
}

3.2 MPU6050初始化

//初始化MPU6050
//返回值: 0,成功
//        其他,错误代码
u8 MPU_Init(void)
{
    u8 res;
    IIC_Init();//初始化IIC总线
    IIC_Write_Byte(MPU_PWR_MGMT1_REG,0X80);//复位MPU6050
    delay_ms(100);
    IIC_Write_Byte(MPU_PWR_MGMT1_REG,0X00);//唤醒MPU6050
    MPU_Set_Gyro_Fsr(3); //陀螺仪传感器,±2000dps
    MPU_Set_Accel_Fsr(0); //加速度传感器 ±2g
    MPU_Set_Rate(50); //设置采样率50HZ
    IIC_Write_Byte(MPU_INT_EN_REG,0X00); //关闭所有中断
    IIC_Write_Byte(MPU_USER_CTRL_REG,0X00);//I2C主模式关闭
    IIC_Write_Byte(MPU_FIFO_EN_REG,0X00);//关闭FIFO
    IIC_Write_Byte(MPU_INTBP_CFG_REG,0X80);//INT引脚低电平有效
    res=IIC_Read_Byte(MPU_DEVICE_ID_REG);
    if(res==MPU_ADDR)//器件ID正确
    {
        IIC_Write_Byte(MPU_PWR_MGMT1_REG,0X01);//设置CLKSEL,PLL X 轴为参考
        IIC_Write_Byte(MPU_PWR_MGMT2_REG,0X00);//加速度陀螺仪都工作
        MPU_Set_Rate(50); //设置采样率为50HZ
    }else return 1;
    return 0;
}

//设置MPU6050陀螺仪传感器满量程范围
//fsr:0,±250dps;1,±500dps;2,±1000dps;3,±2000dps
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Gyro_Fsr(u8 fsr)
{
    return IIC_Write_Byte(MPU_GYRO_CFG_REG,fsr<<3);//设置陀螺仪满量程范围
}

//设置MPU6050加速度传感器满量程范围
//fsr:0,±2g;1,±4g;2,±8g;3,±16g
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Accel_Fsr(u8 fsr)
{
    return IIC_Write_Byte(MPU_ACCEL_CFG_REG,fsr<<3);//设置加速度传感器满量程范围
}

//设置MPU6050的数字低通滤波器
//lpf:数字低通滤波频率(Hz)
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_LPF(u16 lpf)
{
    u8 data=0;
    if(lpf>=188) data=1;
    else if(lpf>=98) data=2;
    else if(lpf>=42) data=2;
    else if(lpf>=42) data=3;
    else if(lpf>=20) data=4;
    else if(lpf>=10) data=5;
    else data=6; 
    return IIC_Write_Byte(MPU_CFG_REG,data);//设置数字低通滤波器  
}

//设置MPU6050的采样率(假定Fs=1KHz)
//rate:4~1000(Hz)
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Rate(u16 rate)
{
    u8 data;
    if(rate>1000)rate=1000;
    if(rate<4)rate=4;
    data=1000/rate-1;
    data=IIC_Write_Byte(MPU_SAMPLE_RATE_REG,data);  //设置数字低通滤波器
    return MPU_Set_LPF(rate/2); //自动设置LPF为采样率的一半
}

3.3 读取MPU6050相关测得原始数据

//得到温度值
//返回值:温度值(扩大了100倍)
short MPU_Get_Temperature(void)
{
    u8 buf[2]; 
    short raw;
        float temp;
        IIC_Read_Len(MPU_ADDR,MPU_TEMP_OUTH_REG,2,buf); 
    raw=((u16)buf[0]<<8)|buf[1];  
    temp=36.53+((double)raw)/340;  
    return temp*100;;
}
//得到陀螺仪值(原始值)
//gx,gy,gz:陀螺仪x,y,z轴的原始读数(带符号)
//返回值:0,成功
//    其他,错误代码
u8 MPU_Get_Gyroscope(short *gx,short *gy,short *gz)
{
    u8 buf[6],res;
    res=IIC_Read_Len(MPU_ADDR,MPU_GYRO_XOUTH_REG,6,buf);
    if(res==0)
    {
        *gx=((u16)buf[0]<<8)|buf[1];  
        *gy=((u16)buf[2]<<8)|buf[3];  
        *gz=((u16)buf[4]<<8)|buf[5];
    }   
    return res;
}

//得到加速度值(原始值)
//ax,ay,az:陀螺仪x,y,z轴的原始读数(带符号)
//返回值:0,成功
//    其他,错误代码
u8 MPU_Get_Accelerometer(short *ax,short *ay,short *az)
{
    u8 buf[6],res;  
    res=IIC_Read_Len(MPU_ADDR,MPU_ACCEL_XOUTH_REG,6,buf);
    if(res==0)
    {
        *ax=((u16)buf[0]<<8)|buf[1];  
        *ay=((u16)buf[2]<<8)|buf[3];  
        *az=((u16)buf[4]<<8)|buf[5];
    }   
    return res;;
}



本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

MPU6050工作原理及STM32控制MPU6050 的相关文章

  • 【转载】关于Visual Studio、VC和C++的那些事

    size 61 medium 首先 xff0c 这三个东西有什么区别呢 xff1f VC和C 43 43 是相同的吗 xff0c 有什么区别呢 xff1f 我刚开始学C 43 43 的时候也有这样的问题 xff0c 在这里我来替大家解释一下
  • Byte、bit 、和16进制之间的关系

    bit xff08 比特 xff09 byte xff08 字节 xff09 一 bit xff08 比特 xff09 计算机内存储和处理信息的最小单位是位 xff08 bit 或比特 xff09 xff0c 一个比特值可以是0或1 xff
  • ROS常见问题1——找不到包

    ROS常见问题1 找不到包 1 问题 每次打开终端会提示找不到相关包或者相关文件 比如在查看自己在catkin工作区间下创建的消息时提示找不到文件 xff1a 输入 xff1a span class hljs variable span r
  • 架空线路的基本结构及组成

    最近没有什么实时的新闻发 xff0c 所以小编就给大家整理了一些干货 准备好了吗 xff1f 具体是什么干货呢 xff1f 这句话问的好 xff0c 今天小编就给大家聊一聊电力巡检的基本知识 xff1a 架空线路的基本构成及组成 架空输电线
  • 微信小程序云开发,数据库数据的增加

    1 在wxml中添加一个按钮绑定事件 xff0c 添加数据 2 在云数据库中新建一个数据文件夹list 3 在JS中添加数据 4 在数据库中即可有增加的数据
  • Anaconda如何成功配置OpenCV的开发环境

    1 打开Anaconda的运行环境 xff1a 点击Anaconda Prompt运行 2 进入环境 使盘符在Anaconda 安装目录下 进入Scripts文件夹下 xff1b 3 找到相应路径位置 xff1a 4 敲代码运行到相应盘符
  • jupyter notebook快速入门使用详解及标记的使用(Markdown使用笔记)

    1 软件 xff08 终端的打开 xff09 打开软件之后 xff0c Jupyter Notebook 将在你的默认浏览器中打开 xff0c 网址为 xff1a http localhost 8888 tree 在某些情况下 xff0c
  • F3飞控的调试

    http www moz8 com thread 109506 1 1 html
  • 航模飞机设计基础知识

    部分引用源1 xff1a KSP飞机设计简易指南 http tieba baidu com p 2272016546 FAR进阶气动稳定性和控制教程 http bbs deeptimes org forum php mod 61 viewt
  • SLA技术3D打印机的原理

    SLA是Stereo lithography Appearance的缩写 xff0c 即立体光固化成型法 用特定波长与强度的激光聚焦到光固化材料表面 xff0c 使之由点到线 xff0c 由线到面顺序凝固 xff0c 完成一个层面的绘图作业
  • STM32F103C8T6读取气压计MS5611,I2C读取模式

    笔者最近想用气压计模块来测一下相对高度 xff0c 使用的元器件如下图所示 所使用的最小系统板 所使用的气压计模块 其实读取还是蛮简单的 xff0c 根据核心板引脚图选择I2c接口 xff0c 然后借鉴正点原子的模拟i2c程序 xff0c
  • keil 的头文件

    许多初学者使用网上下载的程序时都会遇到这样一个问题 xff0c 就是头文件找不到 我想就这个问题说明一下 首先 xff0c 我们用到的KEIL有几种版本的 xff0c 头文件也不同 有reg51 h和at89x51 h两种比较常见 at89
  • 关于串口的初始化Uart_Init(0, 115200)

    void Uart Init int pclk int baud int i if pclk 61 61 0 因为Main c 中定义了 GLOBAL CLK 61 1 所以 PCLK 在 option h 中定义 在Main c 中的设置
  • 【学习笔记】Ubuntu双系统+搭建个人服务器

    Ubuntu双系统 43 搭建个人服务器 前言1 Ubuntu 43 Win双系统1 1 制作U盘启动盘1 2 系统分盘1 3 安装Ubuntu系统 2 搭建个人服务器2 1 设置root2 2 配置ssh2 3 向日葵连接 3 内网穿透3
  • IMU 测量模型和运动学模型

    一 概念 高斯白噪声 测量噪声是AD转换器件引起的外部噪声 xff0c 波动激烈的测量白噪声 随机游走 这里指零偏Bias 随机游走噪声 xff0c 是传感器内部机械 温度等各种物理因素产生的传感器内部误差的综合参数 xff0c 是变化缓慢
  • java参数校验注解

    java参数校验注解 java中前后台参数传递时如何对参数进行校验 校验主要使用到 javax validation类 一 引入依赖 SpringBoot的web组件中已引入validation的jar包 xff0c 但也可自行引入 spa
  • SpringBoot集成阿里easyexcel(三)CellWriteHandler图片转换

    继承单元格处理器 xff0c 通过重写不同方法 xff0c 对单元格进行处理 span class token keyword public span span class token keyword class span span cla
  • 使用Mybatis-plus拦截加密数据

    使用Mybatis plus拦截加密数据 使用自定义注解来标识需要加密的po和字段 xff0c 并通过mybaitsplus的插件工具类Interceptor类来实现对数据的拦截与加密转换操作 一 自定义加密注解 作用在类上的注解 pack
  • SpringBoot集成阿里easyexcel(四)Converter导入导出数据转换器

    SpringBoot集成阿里easyexcel xff08 四 xff09 Converter导入导出数据转换器 通过com alibaba excel converters Converter转换器实现Excel导入导出时Java数据与E
  • SpringBoot集成Ehcache缓存

    SpringBoot集成Ehcache缓存 Ehcache有两种缓存方式 xff0c 分别是堆内存 磁盘 xff08 非堆内存 xff09 一 堆内存缓存 也就是MemoryStore xff0c 速度最快 xff0c 不适合存放大量数据

随机推荐

  • Spring的切面编程(AOP)概念与使用AOP实现日志记录

    Spring的切面编程 xff08 AOP xff09 概念与使用 一 面向切面编程 定义 面向切面编程 xff08 AOP xff09 是通过预编译方式和运行期间动态代理实现程序功能的统一维护的一种技术 作用 xff1a 利用AOP对业务
  • 关于intrins.h头文件的介绍

    在单片机中应用最多的当然就是移位函数 xff0c 利用移位函数可以更简便的实现流水灯等效果 移位函数 移位函数名 左移 span class token function crol span span class token punctua
  • 大批量数据分批批量插入或更新(Mybatis+MySQL)

    大批量数据分批批量插入或更新 在MySQL数据库的前提下 xff0c 插入或更新大批量数据 首先批量插入需要考虑到以下几个因素 xff1a 数据库一次可以承受多大或者多少条数据的插入批量插入是否会占用Mysql资源太久 xff0c 影响系统
  • VSCode配置C++开发环境

    更新细节 2020 7 3 更新细节及排版 2022 6 9 昨天从下午一直研究到晚上十一点 xff0c 查阅了很多博客资料 xff0c 还是没配置好VSCode的C 43 43 开发环境 xff0c 今天早上又弄了一下 xff0c 现在O
  • stm32模拟输出PPM信号

    PPM信号周期为20ms xff0c 分成10分代表10个通道信号 xff0c 也就是2ms代表一个信号 0 5ms代表一个通道信号的开始 xff0c 所以0 5ms 2ms为通道范围控制 LED p1 39 A 39 8 IO口初始化 x
  • 使用JSON.parse,解决ie6-7上JSON未定义问题

    使用JSON parse时出现JSON未定义问题 xff0c JSON不是标准的javascript类型 xff0c 一些高级的浏览器支持 xff0c 但一些老一点的浏览器不支持JSON 如ie6 7 若需要 ie6 7 支持JSON只需要
  • C语言中的大小端转换与高低位颠倒

    在说大小端高低位之前 xff0c 肯定要说明数据在计算机内是如何存储的 在计算机中 xff0c 我们将数据分割成了一个一个的字节 xff08 byte xff09 xff0c 而每个字节又有8位 xff08 bit xff09 一个字节 x
  • C语言库函数中的Strcat函数

    一 Strcat函数的参数 Strcat函数所引用的头文件是 lt string h gt char strcat char strDestination const char strSource 参数说明 xff1a strDestina
  • SLAM中的marginalization 和 Schur complement

    在视觉SLAM的很多论文中 xff0c 会大量或者偶尔出现marginalization这个词 翻译为边缘化 xff0c 有的论文是特地要用它 xff0c 比如sliding window slam 2 okvis 3 dso 4 而有的论
  • 数据结构之单链表循环

    单链表循环代码如下 xff1a include lt stdio h gt include lt stdlib h gt typedef struct node int data struct node next sqlist sqlist
  • 数据结构之双链表循环

    定义是 xff1a 每个数据结点都有两个指针 xff0c 分别指向直接后继和直接前驱 因此双向链表中单任意一个结点开始 xff0c 都可以很方便的访问它的前驱结点和后继结点 循环链表指 xff1a 最后一个结点next指向头结点 xff0c
  • linux学习之进程

    进程概念 xff1a 活跃度程序 xff0c 占用系统资源 xff0c 在内存中执行产生一个进程 孤儿进程 xff1a 父进程先于子进程结束 xff0c 则子进程称为孤儿进程 xff0c 并且这个子进程被init进程回收 include l
  • 使用libcurl实现http通信——post上传数据并获取response

    接口释义 使用libcurl实现http通信 get获取response 代码实现 size t span class token function responseStr span span class token punctuation
  • C语言学习之sprintf

    sprintf函数介绍 xff1a 该函数原型为 xff1a int sprintf char str const char format 该函数的功能为 xff1a 本该输出到显示上的数据 xff0c 改为输出到str所指导内存空间中 x
  • linux学习之存储器

    存储器的种类 xff1a 分为易失性存储器和非易失性存储器 易失性存储器 掉电数据会丢失 读写速度快 xff1a RAM random access memory 随机存储内存 又分为DRAM xff08 动态随机存储内存 xff09 和S
  • HTTP请求报文(请求行、请求头、请求体)

    HTTP协议 1 简介 HTTP协议 xff08 Hyper Text Transfer Protocol xff0c 超文本传输协议 xff09 是用于从万维网 xff08 WWW World Wide Web xff09 服务器传输超文
  • UART详解

    UART 通用异步收发传输器 xff08 Universal Asynchronous Receiver Transmitter xff0c 通常称作UART 是一种异步全双工串行通信协议 xff0c 它将要传输的资料在串行通信与并行通信之
  • 基于STM32的NB-IoT模块驱动

    一 概述 目前这个NB IoT在国内还是比较火的 xff0c 最近刚好使用了一款NB IoT模块 将驱动程序贡献给大家 希望能对用到的朋友有点帮助 二 NB IoT模块介绍 本次采用的是有人物联网公司的WHNB75模块 xff08 支持电信
  • 将十六进制转换为对应的字符串,将字符串转换为对应的十六进制字符串,

    功能 xff1a 将输入的字符串转成对应的HEX 16进制格式 作者 xff1a 贺远 日期 xff1a 2019 05 15 参数 xff1a hexdata 要转换的HEX数字 n 字符串长度 xff0c buff 输出缓存区 返回值
  • MPU6050工作原理及STM32控制MPU6050

    一 简介 1 要想知道MPU6050工作原理 xff0c 得先了解下面俩个传感器 xff1a 陀螺仪传感器 xff1a 陀螺仪的原理就是 xff0c 一个旋转物体的 旋转轴所指的方向在不受外力影响时 xff0c 是不会改变的 人们根据这个道