教你如何构建 Linux 内核

2023-10-26

介绍

我不会告诉你怎么在自己的电脑上去构建、安装一个定制化的 Linux 内核,这样的资料太多了,它们会对你有帮助。本文会告诉你当你在内核源码路径里敲下make 时会发生什么。

当我刚刚开始学习内核代码时,Makefile 是我打开的第一个文件,这个文件看起来真令人害怕 :)。那时候这个 Makefile 还只包含了1591 行代码,当我开始写本文时,内核已经是4.2.0的第三个候选版本 了。

这个 makefile 是 Linux 内核代码的根 makefile ,内核构建就始于此处。是的,它的内容很多,但是如果你已经读过内核源代码,你就会发现每个包含代码的目录都有一个自己的 makefile。当然了,我们不会去描述每个代码文件是怎么编译链接的,所以我们将只会挑选一些通用的例子来说明问题。而你不会在这里找到构建内核的文档、如何整洁内核代码、tags 的生成和交叉编译 相关的说明,等等。我们将从make 开始,使用标准的内核配置文件,到生成了内核镜像 bzImage 结束。

如果你已经很了解 make 工具那是最好,但是我也会描述本文出现的相关代码。

让我们开始吧!

编译内核前的准备

在开始编译前要进行很多准备工作。最主要的就是找到并配置好配置文件,make 命令要使用到的参数都需要从这些配置文件获取。现在就让我们深入内核的根 makefile 吧

内核的根 Makefile 负责构建两个主要的文件:vmlinux (内核镜像可执行文件)和模块文件。内核的 Makefile 从定义如下变量开始:

VERSION = 4
PATCHLEVEL = 2
SUBLEVEL = 0
EXTRAVERSION = -rc3
NAME = Hurr durr I'ma sheep

这些变量决定了当前内核的版本,并且被使用在很多不同的地方,比如同一个 Makefile 中的 KERNELVERSION :

KERNELVERSION = $(VERSION)$(if $(PATCHLEVEL),.$(PATCHLEVEL)$(if $(SUBLEVEL),.$(SUBLEVEL)))$(EXTRAVERSION)

接下来我们会看到很多ifeq 条件判断语句,它们负责检查传递给 make 的参数。内核的 Makefile提供了一个特殊的编译选项 make help ,这个选项可以生成所有的可用目标和一些能传给 make 的有效的命令行参数。举个例子,make V=1 会在构建过程中输出详细的编译信息,第一个 ifeq 就是检查传递给 make 的 V=n 选项。

ifeq ("$(origin V)", "command line")
  KBUILD_VERBOSE = $(V)
endif
ifndef KBUILD_VERBOSE
  KBUILD_VERBOSE = 0
endif

ifeq ($(KBUILD_VERBOSE),1)
  quiet =
  Q =
else
  quiet=quiet_
  Q = @
endif

export quiet Q KBUILD_VERBOSE

如果 V=n 这个选项传给了 make ,系统就会给变量 KBUILD_VERBOSE 选项附上 V 的值,否则的话KBUILD_VERBOSE 就会为 0。然后系统会检查 KBUILD_VERBOSE 的值,以此来决定 quiet 和Q 的值。符号 @ 控制命令的输出,如果它被放在一个命令之前,这条命令的输出将会是 CC scripts/mod/empty.o,而不是Compiling .... scripts/mod/empty.o(LCTT 译注:CC 在 makefile 中一般都是编译命令)。在这段最后,系统导出了所有的变量。

下一个 ifeq 语句检查的是传递给 make 的选项 O=/dir,这个选项允许在指定的目录 dir 输出所有的结果文件:

ifeq ($(KBUILD_SRC),)

ifeq ("$(origin O)", "command line")
  KBUILD_OUTPUT := $(O)
endif

ifneq ($(KBUILD_OUTPUT),)
saved-output := $(KBUILD_OUTPUT)
KBUILD_OUTPUT := $(shell mkdir -p $(KBUILD_OUTPUT) && cd $(KBUILD_OUTPUT) \
        && /bin/pwd)
$(if $(KBUILD_OUTPUT),, \
     $(error failed to create output directory "$(saved-output)"))

sub-make: FORCE
 $(Q)$(MAKE) -C $(KBUILD_OUTPUT) KBUILD_SRC=$(CURDIR) \
 -f $(CURDIR)/Makefile $(filter-out _all sub-make,$(MAKECMDGOALS))

skip-makefile := 1
endif # ifneq ($(KBUILD_OUTPUT),)
endif # ifeq ($(KBUILD_SRC),)

系统会检查变量 KBUILD_SRC,它代表内核代码的顶层目录,如果它是空的(第一次执行 makefile 时总是空的),我们会设置变量 KBUILD_OUTPUT 为传递给选项 O 的值(如果这个选项被传进来了)。下一步会检查变量 KBUILD_OUTPUT ,如果已经设置好,那么接下来会做以下几件事:

  • 将变量 KBUILD_OUTPUT 的值保存到临时变量 saved-output
  • 尝试创建给定的输出目录;
  • 检查创建的输出目录,如果失败了就打印错误;
  • 如果成功创建了输出目录,那么就在新目录重新执行 make 命令(参见选项-C)。

下一个 ifeq 语句会检查传递给 make 的选项 C 和 M

ifeq ("$(origin C)", "command line")
  KBUILD_CHECKSRC = $(C)
endif
ifndef KBUILD_CHECKSRC
  KBUILD_CHECKSRC = 0
endif

ifeq ("$(origin M)", "command line")
  KBUILD_EXTMOD := $(M)
endif

第一个选项 C 会告诉 makefile 需要使用环境变量 $CHECK 提供的工具来检查全部 c 代码,默认情况下会使用sparse。第二个选项 M 会用来编译外部模块(本文不做讨论)。

系统还会检查变量 KBUILD_SRC,如果 KBUILD_SRC 没有被设置,系统会设置变量 srctree 为.

ifeq ($(KBUILD_SRC),)
        srctree := .
endif
  
objtree := .
src  := $(srctree)
obj  := $(objtree)

export srctree objtree VPATH

这将会告诉 Makefile 内核的源码树就在执行 make 命令的目录,然后要设置 objtree 和其他变量为这个目录,并且将这些变量导出。接着就是要获取 SUBARCH 的值,这个变量代表了当前的系统架构(LCTT 译注:一般都指CPU 架构):

SUBARCH := $(shell uname -m | sed -e s/i.86/x86/ -e s/x86_64/x86/ \
      -e s/sun4u/sparc64/ \
      -e s/arm.*/arm/ -e s/sa110/arm/ \
      -e s/s390x/s390/ -e s/parisc64/parisc/ \
      -e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
      -e s/sh[234].*/sh/ -e s/aarch64.*/arm64/ )

如你所见,系统执行 uname 得到机器、操作系统和架构的信息。因为我们得到的是 uname 的输出,所以我们需要做一些处理再赋给变量 SUBARCH 。获得 SUBARCH 之后就要设置SRCARCH 和 hfr-archSRCARCH 提供了硬件架构相关代码的目录,hfr-arch 提供了相关头文件的目录:

ifeq ($(ARCH),i386)
        SRCARCH := x86
endif
ifeq ($(ARCH),x86_64)
        SRCARCH := x86
endif

hdr-arch  := $(SRCARCH)

注意:ARCH 是 SUBARCH 的别名。如果没有设置过代表内核配置文件路径的变量 KCONFIG_CONFIG,下一步系统会设置它,默认情况下就是 .config :

KCONFIG_CONFIG ?= .config
export KCONFIG_CONFIG

以及编译内核过程中要用到的 shell

CONFIG_SHELL := $(shell if [ -x "$$BASH" ]; then echo $$BASH; \
   else if [ -x /bin/bash ]; then echo /bin/bash; \
   else echo sh; fi ; fi)

接下来就要设置一组和编译内核的编译器相关的变量。我们会设置主机的 C 和 C++ 的编译器及相关配置项:

HOSTCC       = gcc
HOSTCXX      = g++
HOSTCFLAGS   = -Wall -Wmissing-prototypes -Wstrict-prototypes -O2 -fomit-frame-pointer -std=gnu89
HOSTCXXFLAGS = -O2

接下来会去适配代表编译器的变量 CC,那为什么还要 HOST* 这些变量呢?这是因为 CC 是编译内核过程中要使用的目标架构的编译器,但是 HOSTCC 是要被用来编译一组 host 程序的(下面我们就会看到)。

然后我们就看到变量 KBUILD_MODULES 和 KBUILD_BUILTIN 的定义,这两个变量决定了我们要编译什么东西(内核、模块或者两者):

KBUILD_MODULES :=
KBUILD_BUILTIN := 1

ifeq ($(MAKECMDGOALS),modules)
  KBUILD_BUILTIN := $(if $(CONFIG_MODVERSIONS),1)
endif

在这我们可以看到这些变量的定义,并且,如果们仅仅传递了 modules 给 make,变量 KBUILD_BUILTIN 会依赖于内核配置选项 CONFIG_MODVERSIONS

下一步操作是引入下面的文件:

include scripts/Kbuild.include

文件 Kbuild 或者又叫做 Kernel Build System 是一个用来管理构建内核及其模块的特殊框架。kbuild 文件的语法与 makefile 一样。文件scripts/Kbuild.include 为 kbuild 系统提供了一些常规的定义。因为我们包含了这个 kbuild 文件,我们可以看到和不同工具关联的这些变量的定义,这些工具会在内核和模块编译过程中被使用(比如链接器、编译器、来自 binutils 的二进制工具包 ,等等):

AS  = $(CROSS_COMPILE)as
LD  = $(CROSS_COMPILE)ld
CC  = $(CROSS_COMPILE)gcc
CPP  = $(CC) -E
AR  = $(CROSS_COMPILE)ar
NM  = $(CROSS_COMPILE)nm
STRIP  = $(CROSS_COMPILE)strip
OBJCOPY  = $(CROSS_COMPILE)objcopy
OBJDUMP  = $(CROSS_COMPILE)objdump
AWK  = awk
...
...
...

在这些定义好的变量后面,我们又定义了两个变量:USERINCLUDE 和 LINUXINCLUDE。他们包含了头文件的路径(第一个是给用户用的,第二个是给内核用的):

USERINCLUDE    := \
  -I$(srctree)/arch/$(hdr-arch)/include/uapi \
  -Iarch/$(hdr-arch)/include/generated/uapi \
  -I$(srctree)/include/uapi \
  -Iinclude/generated/uapi \
        -include $(srctree)/include/linux/kconfig.h

LINUXINCLUDE    := \
  -I$(srctree)/arch/$(hdr-arch)/include \
  ...

以及给 C 编译器的标准标志:

KBUILD_CFLAGS   := -Wall -Wundef -Wstrict-prototypes -Wno-trigraphs \
     -fno-strict-aliasing -fno-common \
     -Werror-implicit-function-declaration \
     -Wno-format-security \
     -std=gnu89

这并不是最终确定的编译器标志,它们还可以在其他 makefile 里面更新(比如 arch/ 里面的 kbuild)。变量定义完之后,全部会被导出供其他 makefile 使用。

下面的两个变量 RCS_FIND_IGNORE 和 RCS_TAR_IGNORE 包含了被版本控制系统忽略的文件:

export RCS_FIND_IGNORE := \( -name SCCS -o -name BitKeeper -o -name .svn -o    \
     -name CVS -o -name .pc -o -name .hg -o -name .git \) \
     -prune -o
export RCS_TAR_IGNORE := --exclude SCCS --exclude BitKeeper --exclude .svn \
    --exclude CVS --exclude .pc --exclude .hg --exclude .git

这就是全部了,我们已经完成了所有的准备工作,下一个点就是如果构建vmlinux

直面内核构建

现在我们已经完成了所有的准备工作,根 makefile(注:内核根目录下的 makefile)的下一步工作就是和编译内核相关的了。在这之前,我们不会在终端看到 make 命令输出的任何东西。但是现在编译的第一步开始了,这里我们需要从内核根 makefile 的 598 行开始,这里可以看到目标vmlinux

all: vmlinux
 include arch/$(SRCARCH)/Makefile

不要操心我们略过的从 export RCS_FIND_IGNORE..... 到 all: vmlinux..... 这一部分 makefile 代码,他们只是负责根据各种配置文件(make *.config)生成不同目标内核的,因为之前我就说了这一部分我们只讨论构建内核的通用途径。

目标 all: 是在命令行如果不指定具体目标时默认使用的目标。你可以看到这里包含了架构相关的 makefile(在这里就指的是 arch/x86/Makefile)。从这一时刻起,我们会从这个 makefile 继续进行下去。如我们所见,目标 all 依赖于根 makefile 后面声明的 vmlinux

vmlinux: scripts/link-vmlinux.sh $(vmlinux-deps) FORCE

vmlinux 是 linux 内核的静态链接可执行文件格式。脚本 scripts/link-vmlinux.sh 把不同的编译好的子模块链接到一起形成了 vmlinux。

第二个目标是 vmlinux-deps,它的定义如下:

vmlinux-deps := $(KBUILD_LDS) $(KBUILD_VMLINUX_INIT) $(KBUILD_VMLINUX_MAIN)

它是由内核代码下的每个顶级目录的 built-in.o 组成的。之后我们还会检查内核所有的目录,kbuild 会编译各个目录下所有的对应 $(obj-y) 的源文件。接着调用 $(LD) -r 把这些文件合并到一个 build-in.o 文件里。此时我们还没有vmlinux-deps,所以目标 vmlinux 现在还不会被构建。对我而言 vmlinux-deps 包含下面的文件:

arch/x86/kernel/vmlinux.lds arch/x86/kernel/head_64.o
arch/x86/kernel/head64.o    arch/x86/kernel/head.o
init/built-in.o             usr/built-in.o
arch/x86/built-in.o         kernel/built-in.o
mm/built-in.o               fs/built-in.o
ipc/built-in.o              security/built-in.o
crypto/built-in.o           block/built-in.o
lib/lib.a                   arch/x86/lib/lib.a
lib/built-in.o              arch/x86/lib/built-in.o
drivers/built-in.o          sound/built-in.o
firmware/built-in.o         arch/x86/pci/built-in.o
arch/x86/power/built-in.o   arch/x86/video/built-in.o
net/built-in.o

下一个可以被执行的目标如下:

$(sort $(vmlinux-deps)): $(vmlinux-dirs) ;
$(vmlinux-dirs): prepare scripts
 $(Q)$(MAKE) $(build)=$@

就像我们看到的,vmlinux-dir 依赖于两部分:prepare 和 scripts。第一个 prepare 定义在内核的根 makefile 中,准备工作分成三个阶段:

prepare: prepare0
prepare0: archprepare FORCE
 $(Q)$(MAKE) $(build)=.
archprepare: archheaders archscripts prepare1 scripts_basic

prepare1: prepare2 $(version_h) include/generated/utsrelease.h \
                   include/config/auto.conf
 $(cmd_crmodverdir)
prepare2: prepare3 outputmakefile asm-generic

第一个 prepare0 展开到 archprepare ,后者又展开到 archheader 和 archscripts,这两个变量定义在 x86_64 相关的 Makefile。让我们看看这个文件。x86_64 特定的 makefile 从变量定义开始,这些变量都是和特定架构的配置文件 (defconfig,等等)有关联。在定义了编译 16-bit 代码的编译选项之后,根据变量 BITS 的值,如果是 32, 汇编代码、链接器、以及其它很多东西(全部的定义都可以在arch/x86/Makefile找到)对应的参数就是 i386,而 64 就对应的是 x86_84

第一个目标是 makefile 生成的系统调用列表(syscall table)中的 archheaders :

archheaders:
 $(Q)$(MAKE) $(build)=arch/x86/entry/syscalls all

第二个目标是 makefile 里的 archscripts

archscripts: scripts_basic
 $(Q)$(MAKE) $(build)=arch/x86/tools relocs

我们可以看到 archscripts 是依赖于根 Makefile里的scripts_basic 。首先我们可以看出 scripts_basic 是按照 scripts/basic 的 makefile 执行 make 的:

scripts_basic:
 $(Q)$(MAKE) $(build)=scripts/basic

scripts/basic/Makefile 包含了编译两个主机程序 fixdep 和 bin2 的目标:

hostprogs-y := fixdep
hostprogs-$(CONFIG_BUILD_BIN2C)     += bin2c
always  := $(hostprogs-y)

$(addprefix $(obj)/,$(filter-out fixdep,$(always))): $(obj)/fixdep

第一个工具是 fixdep:用来优化 gcc 生成的依赖列表,然后在重新编译源文件的时候告诉make。第二个工具是 bin2c,它依赖于内核配置选项 CONFIG_BUILD_BIN2C,并且它是一个用来将标准输入接口(LCTT 译注:即 stdin)收到的二进制流通过标准输出接口(即:stdout)转换成 C 头文件的非常小的 C 程序。你可能注意到这里有些奇怪的标志,如 hostprogs-y 等。这个标志用于所有的 kbuild 文件,更多的信息你可以从documentation 获得。在我们这里, hostprogs-y 告诉 kbuild 这里有个名为 fixed 的程序,这个程序会通过和 Makefile 相同目录的 fixdep.c 编译而来。

执行 make 之后,终端的第一个输出就是 kbuild 的结果:

$ make
  HOSTCC  scripts/basic/fixdep

当目标 script_basic 被执行,目标 archscripts 就会 make arch/x86/tools 下的 makefile 和目标 relocs:

$(Q)$(MAKE) $(build)=arch/x86/tools relocs

包含了重定位 的信息的代码 relocs_32.c 和 relocs_64.c 将会被编译,这可以在make 的输出中看到:

  HOSTCC  arch/x86/tools/relocs_32.o
  HOSTCC  arch/x86/tools/relocs_64.o
  HOSTCC  arch/x86/tools/relocs_common.o
  HOSTLD  arch/x86/tools/relocs

在编译完 relocs.c 之后会检查 version.h:

$(version_h): $(srctree)/Makefile FORCE
 $(call filechk,version.h)
 $(Q)rm -f $(old_version_h)

我们可以在输出看到它:

CHK     include/config/kernel.release

以及在内核的根 Makefiel 使用 arch/x86/include/generated/asm 的目标 asm-generic 来构建 generic汇编头文件。在目标 asm-generic 之后,archprepare 就完成了,所以目标 prepare0 会接着被执行,如我上面所写:

prepare0: archprepare FORCE
 $(Q)$(MAKE) $(build)=.

注意 build,它是定义在文件 scripts/Kbuild.include,内容是这样的:

build := -f $(srctree)/scripts/Makefile.build obj

或者在我们的例子中,它就是当前源码目录路径:.

$(Q)$(MAKE) -f $(srctree)/scripts/Makefile.build obj=.

脚本 scripts/Makefile.build 通过参数 obj 给定的目录找到 Kbuild 文件,然后引入 kbuild 文件:

include $(kbuild-file)

并根据这个构建目标。我们这里 . 包含了生成 kernel/bounds.s 和 arch/x86/kernel/asm-offsets.s的 Kbuild 文件。在此之后,目标 prepare 就完成了它的工作。 vmlinux-dirs 也依赖于第二个目标 scripts ,它会编译接下来的几个程序:filealiasmk_elfconfigmodpost 等等。之后,scripts/host-programs 就可以开始编译我们的目标 vmlinux-dirs 了。

首先,我们先来理解一下 vmlinux-dirs 都包含了那些东西。在我们的例子中它包含了下列内核目录的路径:

init usr arch/x86 kernel mm fs ipc security crypto block
drivers sound firmware arch/x86/pci arch/x86/power
arch/x86/video net lib arch/x86/lib

我们可以在内核的根 Makefile 里找到 vmlinux-dirs 的定义:

vmlinux-dirs := $(patsubst %/,%,$(filter %/, $(init-y) $(init-m) \
       $(core-y) $(core-m) $(drivers-y) $(drivers-m) \
       $(net-y) $(net-m) $(libs-y) $(libs-m)))

init-y  := init/
drivers-y := drivers/ sound/ firmware/
net-y  := net/
libs-y  := lib/
...
...
...

这里我们借助函数 patsubst 和 filter去掉了每个目录路径里的符号 /,并且把结果放到 vmlinux-dirs 里。所以我们就有了 vmlinux-dirs 里的目录列表,以及下面的代码:

$(vmlinux-dirs): prepare scripts
 $(Q)$(MAKE) $(build)=$@

符号 $@ 在这里代表了 vmlinux-dirs,这就表明程序会递归遍历从 vmlinux-dirs 以及它内部的全部目录(依赖于配置),并且在对应的目录下执行 make 命令。我们可以在输出看到结果:

  CC      init/main.o
  CHK     include/generated/compile.h
  CC      init/version.o
  CC      init/do_mounts.o
  ...
  CC      arch/x86/crypto/glue_helper.o
  AS      arch/x86/crypto/aes-x86_64-asm_64.o
  CC      arch/x86/crypto/aes_glue.o
  ...
  AS      arch/x86/entry/entry_64.o
  AS      arch/x86/entry/thunk_64.o
  CC      arch/x86/entry/syscall_64.o

每个目录下的源代码将会被编译并且链接到 built-io.o 里:

$ find . -name built-in.o
./arch/x86/crypto/built-in.o
./arch/x86/crypto/sha-mb/built-in.o
./arch/x86/net/built-in.o
./init/built-in.o
./usr/built-in.o
...
...

好了,所有的 built-in.o 都构建完了,现在我们回到目标 vmlinux 上。你应该还记得,目标 vmlinux 是在内核的根makefile 里。在链接 vmlinux 之前,系统会构建 samplesDocumentation 等等,但是如上文所述,我不会在本文描述这些。

vmlinux: scripts/link-vmlinux.sh $(vmlinux-deps) FORCE
    ...
    ...
    +$(call if_changed,link-vmlinux)

你可以看到,调用脚本 scripts/link-vmlinux.sh 的主要目的是把所有的 built-in.o 链接成一个静态可执行文件,和生成 System.map。 最后我们来看看下面的输出:

  LINK    vmlinux
  LD      vmlinux.o
  MODPOST vmlinux.o
  GEN     .version
  CHK     include/generated/compile.h
  UPD     include/generated/compile.h
  CC      init/version.o
  LD      init/built-in.o
  KSYM    .tmp_kallsyms1.o
  KSYM    .tmp_kallsyms2.o
  LD      vmlinux
  SORTEX  vmlinux
  SYSMAP  System.map

vmlinux 和System.map 生成在内核源码树根目录下。

$ ls vmlinux System.map 
System.map  vmlinux

这就是全部了,vmlinux 构建好了,下一步就是创建 bzImage.

制作bzImage

bzImage 就是压缩了的 linux 内核镜像。我们可以在构建了 vmlinux 之后通过执行 make bzImage 获得bzImage。同时我们可以仅仅执行 make 而不带任何参数也可以生成 bzImage ,因为它是在 arch/x86/kernel/Makefile 里预定义的、默认生成的镜像:

all: bzImage

让我们看看这个目标,它能帮助我们理解这个镜像是怎么构建的。我已经说过了 bzImage 是被定义在 arch/x86/kernel/Makefile,定义如下:

bzImage: vmlinux
 $(Q)$(MAKE) $(build)=$(boot) $(KBUILD_IMAGE)
 $(Q)mkdir -p $(objtree)/arch/$(UTS_MACHINE)/boot
 $(Q)ln -fsn ../../x86/boot/bzImage $(objtree)/arch/$(UTS_MACHINE)/boot/$@

在这里我们可以看到第一次为 boot 目录执行 make,在我们的例子里是这样的:

boot := arch/x86/boot

现在的主要目标是编译目录 arch/x86/boot 和 arch/x86/boot/compressed 的代码,构建 setup.bin 和 vmlinux.bin,最后用这两个文件生成 bzImage。第一个目标是定义在 arch/x86/boot/Makefile 的 $(obj)/setup.elf:

$(obj)/setup.elf: $(src)/setup.ld $(SETUP_OBJS) FORCE
 $(call if_changed,ld)

我们已经在目录 arch/x86/boot 有了链接脚本 setup.ld,和扩展到 boot 目录下全部源代码的变量 SETUP_OBJS 。我们可以看看第一个输出:

  AS      arch/x86/boot/bioscall.o
  CC      arch/x86/boot/cmdline.o
  AS      arch/x86/boot/copy.o
  HOSTCC  arch/x86/boot/mkcpustr
  CPUSTR  arch/x86/boot/cpustr.h
  CC      arch/x86/boot/cpu.o
  CC      arch/x86/boot/cpuflags.o
  CC      arch/x86/boot/cpucheck.o
  CC      arch/x86/boot/early_serial_console.o
  CC      arch/x86/boot/edd.o

下一个源码文件是 arch/x86/boot/header.S,但是我们不能现在就编译它,因为这个目标依赖于下面两个头文件:

$(obj)/header.o: $(obj)/voffset.h $(obj)/zoffset.h

第一个头文件 voffset.h 是使用 sed 脚本生成的,包含用 nm 工具从 vmlinux 获取的两个地址:

#define VO__end 0xffffffff82ab0000
#define VO__text 0xffffffff81000000

这两个地址是内核的起始和结束地址。第二个头文件 zoffset.h 在 arch/x86/boot/compressed/Makefile 可以看出是依赖于目标 vmlinux的:

$(obj)/zoffset.h: $(obj)/compressed/vmlinux FORCE
 $(call if_changed,zoffset)

目标 $(obj)/compressed/vmlinux 依赖于 vmlinux-objs-y —— 说明需要编译目录 arch/x86/boot/compressed 下的源代码,然后生成 vmlinux.binvmlinux.bin.bz2,和编译工具 mkpiggy。我们可以在下面的输出看出来:

  LDS     arch/x86/boot/compressed/vmlinux.lds
  AS      arch/x86/boot/compressed/head_64.o
  CC      arch/x86/boot/compressed/misc.o
  CC      arch/x86/boot/compressed/string.o
  CC      arch/x86/boot/compressed/cmdline.o
  OBJCOPY arch/x86/boot/compressed/vmlinux.bin
  BZIP2   arch/x86/boot/compressed/vmlinux.bin.bz2
  HOSTCC  arch/x86/boot/compressed/mkpiggy

vmlinux.bin 是去掉了调试信息和注释的 vmlinux 二进制文件,加上了占用了 u32 (LCTT 译注:即4-Byte)的长度信息的 vmlinux.bin.all 压缩后就是 vmlinux.bin.bz2。其中 vmlinux.bin.all 包含了 vmlinux.bin 和vmlinux.relocs(LCTT 译注:vmlinux 的重定位信息),其中 vmlinux.relocs 是 vmlinux 经过程序 relocs 处理之后的 vmlinux 镜像(见上文所述)。我们现在已经获取到了这些文件,汇编文件 piggy.S 将会被 mkpiggy 生成、然后编译:

  MKPIGGY arch/x86/boot/compressed/piggy.S
  AS      arch/x86/boot/compressed/piggy.o

这个汇编文件会包含经过计算得来的、压缩内核的偏移信息。处理完这个汇编文件,我们就可以看到 zoffset 生成了:

  ZOFFSET arch/x86/boot/zoffset.h

现在 zoffset.h 和 voffset.h 已经生成了,arch/x86/boot 里的源文件可以继续编译:

  AS      arch/x86/boot/header.o
  CC      arch/x86/boot/main.o
  CC      arch/x86/boot/mca.o
  CC      arch/x86/boot/memory.o
  CC      arch/x86/boot/pm.o
  AS      arch/x86/boot/pmjump.o
  CC      arch/x86/boot/printf.o
  CC      arch/x86/boot/regs.o
  CC      arch/x86/boot/string.o
  CC      arch/x86/boot/tty.o
  CC      arch/x86/boot/video.o
  CC      arch/x86/boot/video-mode.o
  CC      arch/x86/boot/video-vga.o
  CC      arch/x86/boot/video-vesa.o
  CC      arch/x86/boot/video-bios.o

所有的源代码会被编译,他们最终会被链接到 setup.elf :

  LD      arch/x86/boot/setup.elf

或者:

ld -m elf_x86_64   -T arch/x86/boot/setup.ld arch/x86/boot/a20.o arch/x86/boot/bioscall.o arch/x86/boot/cmdline.o arch/x86/boot/copy.o arch/x86/boot/cpu.o arch/x86/boot/cpuflags.o arch/x86/boot/cpucheck.o arch/x86/boot/early_serial_console.o arch/x86/boot/edd.o arch/x86/boot/header.o arch/x86/boot/main.o arch/x86/boot/mca.o arch/x86/boot/memory.o arch/x86/boot/pm.o arch/x86/boot/pmjump.o arch/x86/boot/printf.o arch/x86/boot/regs.o arch/x86/boot/string.o arch/x86/boot/tty.o arch/x86/boot/video.o arch/x86/boot/video-mode.o arch/x86/boot/version.o arch/x86/boot/video-vga.o arch/x86/boot/video-vesa.o arch/x86/boot/video-bios.o -o arch/x86/boot/setup.elf

最后的两件事是创建包含目录 arch/x86/boot/* 下的编译过的代码的 setup.bin

objcopy  -O binary arch/x86/boot/setup.elf arch/x86/boot/setup.bin

以及从 vmlinux 生成 vmlinux.bin :

objcopy  -O binary -R .note -R .comment -S arch/x86/boot/compressed/vmlinux arch/x86/boot/vmlinux.bin

最最后,我们编译主机程序 arch/x86/boot/tools/build.c,它将会用来把 setup.bin 和 vmlinux.bin打包成 bzImage:

arch/x86/boot/tools/build arch/x86/boot/setup.bin arch/x86/boot/vmlinux.bin arch/x86/boot/zoffset.h arch/x86/boot/bzImage

实际上 bzImage 就是把 setup.bin 和 vmlinux.bin 连接到一起。最终我们会看到输出结果,就和那些用源码编译过内核的同行的结果一样:

Setup is 16268 bytes (padded to 16384 bytes).
System is 4704 kB
CRC 94a88f9a
Kernel: arch/x86/boot/bzImage is ready  (#5)

全部结束。

结论

这就是本文的结尾部分。本文我们了解了编译内核的全部步骤:从执行 make 命令开始,到最后生成 bzImage。我知道,linux 内核的 makefile 和构建 linux 的过程第一眼看起来可能比较迷惑,但是这并不是很难。希望本文可以帮助你理解构建 linux 内核的整个流程。

视频资料获取  后台私信我哦

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

教你如何构建 Linux 内核 的相关文章

随机推荐

  • YOLOv5改进算法之添加CA注意力机制模块

    目录 1 CA注意力机制 2 YOLOv5添加注意力机制 送书活动 1 CA注意力机制 CA Coordinate Attention 注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制 CA 注意力机制的核心思想是引
  • Atmel Studio 7.0 快速上手指南(基于ASF)

    Atmel Studio 7 0 快速上手指南 基于ASF 程序员大本营 pianshen com
  • 【Kubernetes部署篇】K8s图形化管理工具Dasboard部署及使用

    文章目录 一 Dashboard简介 二 Dashboard部署安装 三 配置Dashboard登入用户 1 通过Token令牌登入 2 通过kubeconfig文件登入 四 Dashboard创建容器 五 扩展 一 Dashboard简介
  • switch...case...和if...else...区别

    switch 和 if 都是用来处理分支语句的 那么使用的时候 考虑到代码效率问题 就必须先来了解他们有什么区别 先来看看这两个语句的使用格式 if else if 表达式1 语句1 else if 表达式2 语句2 else if 表达式
  • Altium Designer (AD) 元器件出现绿色叉叉报错的解决办法

    出现报错的原因 元器件的安全间距小于设定的安全间距 但通常情况下 这个问题并不严重 可以理解为是一个警告 不去处理也可以 解决办法 点击菜单栏的工具 T 再点击复位错误标志 M 即可解决报错
  • 一个爬虫代码价值 7000 万

    一个爬虫代码价值 7000 亿 这样的代码你听说过吗 这是一个爬取比特币密钥的代码 比特币相信大家都有听说过 尤其最近比特币价格还突破了 5 万美元大关 现在1 枚比特币就价值 35 万人民币 难怪有句说 币圈一天 人间一年 最近朋友圈关于
  • 登录,注册HTML页面,详细过程

    1 页面说明 登录和注册切换按钮 当点击登录按钮时 显示登录表单 当点击注册按钮时 显示注册表单 每个表单都有对应的 JavaScript 校验函数 校验用户名 邮箱和密码是否为空 如果为空 会弹出警告框 2 效果图展示 3 代码部分 3
  • 手把手教你快速上手人体姿态估计(MMPose)

    最近在研究如何快速实现图像中人体姿态的估计 也就是常见的pose estimation任务 花了些时间 实际对比了AlphaPose BlazePose和MMPose BlazePose主要为移动端设计 AlphaPose安装配置比较麻烦
  • 服务器显卡驱动重装系统,windows7旗舰版系统重装显卡驱动的方法

    在windows7旗舰版电脑中 我们都是需要安装显卡驱动 但是如果显卡驱动安装不合适的话 就会容易导致电脑出现问题 所以如果有碰到安装到不合适的显卡驱动的话我们可以通过重装显卡驱动来解决 那么该怎么操作呢 为此小编这就给大家讲解一下wind
  • 图片 url blob base64 互转

    待补充 url to blob export const urlToBlob async url string gt return new Promise resolve gt fetch url then res gt res blob
  • Nginx

    HTTP和反向代理web服务器 Nginx是一个高性能的HTTP和反向代理web服务器 同时也提供了IMAP POP3 SMTP服务 Nginx是一款轻量级的Web服务器反向代理服务器及电子邮件 IMAP POP3 代理服务器 nginx反
  • 结合 服务器+后端+前端,完成 vue项目 后台管理系统

    目录 以上是项目的服务器php 后端 前端 已经可以正常运行 一 登录 登录页进度条 戳这里Vue项目电商后台管理系统 nprogress 进度条 活在风浪里的博客 CSDN博客 二 侧导航 三 列表页源码 四 角色分配 五 权限页面开发
  • 多线程实现Runable接口和Callable接口的区别

    先看源码callable接口 返回泛型v 可以抛出异常 Runable接口是抽象方法run 没有返回值 不能抛出异常 有异常在run方法内部处理 总结 区别1 两者最大的区别 实现Callable接口的任务线程能返回执行结果 而实现Runn
  • 交换机电口、光口、网络速率的基本概念总结

    电口和光口 千兆网 万兆网 POE 包转发率 背板带宽 交换容量 光纤跳线 电口和光口 电口 电口也即RJ45口 插双绞线的端口 网线 一般速率为10M或100M 即为百兆工业交换机 部分支持1000M 即为千兆交换机 光口 工业以太网交换
  • python sklearn 梯度下降法_Python与机器学习:梯度下降

    梯度下降 Gradient Descent 梯度下降法不是一个机器学习算法 是一种基于搜索的最优化算法 目的是最小化一个损失函数 同样 梯度上升法用于最大化一个效用函数 求解损失函数的最小值有两种方法 1 正规方程求解 上一章已经讲使用线性
  • java多线程和高并发系列三 & Synchronized锁详解

    目录 设计同步器的意义 如何解决线程并发安全问题 同步器的本质就是加锁 synchronized原理详解 synchronized底层原理 Monitor监视器锁 什么是monitor 对象的内存布局 对象头 对象头分析工具 锁的膨胀升级过
  • Python入门教学——多进程和多线程

    目录 一 线程和进程 1 线程和进程的基本概念 2 线程和进程的关系 3 串行 并行和并发 二 创建多个线程 1 线程相关的模块 2 创建线程 2 1 通过Thread类构造器来创建新线程 2 2 通过继承于Thread类来创建新线程 三
  • Kubernetes 集群使用 NFS 网络文件存储

    文章目录 1 NFS 介绍 2 环境 软件准备 3 Kubernetes HA 集群搭建 4 直接挂载 NFS 5 PV PVC 方式使用 NFS 6 StorageClasses 动态创建 PV 方式使用 NFS 1 NFS 介绍 Kub
  • JDBC实现纵向导出数据库数据

    使用到的技术点 1 Java写文件 2 熟悉JDBC API 3 Java集合ArrayList的使用 4 Java字符串截取 本代码仅供测试 如要使用 需自行增加数据库列类型定义和判定逻辑 DBConnectMySQL java pack
  • 教你如何构建 Linux 内核

    介绍 我不会告诉你怎么在自己的电脑上去构建 安装一个定制化的 Linux 内核 这样的资料太多了 它们会对你有帮助 本文会告诉你当你在内核源码路径里敲下make 时会发生什么 当我刚刚开始学习内核代码时 Makefile 是我打开的第一个文