【设计模式】一、设计模式七大原则

2023-10-28

设计模式概述

  1. 有请使用 UML 类图画出原型模式核心角色
  2. 原型设计模式的深拷贝和浅拷贝是什么,并写出深拷贝的两种方式的源码(重写 clone 方法实现深拷贝、使用序列化来实现深拷贝)
  3. 在 Spring 框架中哪里使用到原型模式,并对源码进行分析
<!-- beans.xml -->
<bean id="id01" class="com.atguigu.spring.bean.Monster" scope="prototype"/>
  1. Spring 中原型 bean 的创建,就是原型模式的应用
  2. 代码分析+Debug 源码

设计模式七大原则

设计模式的目的

  1. 代码重用性 (即:相同功能的代码,不用多次编写)
  2. 可读性 (即:编程规范性, 便于其他程序员的阅读和理解)
  3. 可扩展性 (即:当需要增加新的功能时,非常的方便,称为可维护)
  4. 可靠性 (即:当我们增加新的功能后,对原来的功能没有影响)
  5. 使程序呈现高内聚,低耦合的特性

设计模式七大原则

1. 单一职责原则

一个类应该只负责一项职责

示例

public class SingleResponsibility1 {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Vehicle vehicle = new Vehicle();
		vehicle.run("摩托车");
		vehicle.run("汽车");
		vehicle.run("飞机");
	}

}

// 交通工具类
// 方式1
// 1. 在方式1 的run方法中,违反了单一职责原则
// 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
class Vehicle {
	public void run(String vehicle) {
		System.out.println(vehicle + " 在公路上运行....");
	}
}
public class SingleResponsibility2 {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		RoadVehicle roadVehicle = new RoadVehicle();
		roadVehicle.run("摩托车");
		roadVehicle.run("汽车");
		
		AirVehicle airVehicle = new AirVehicle();
		
		airVehicle.run("飞机");
	}

}

//方案2的分析
//1. 遵守单一职责原则
//2. 但是这样做的改动很大,即将类分解,同时修改客户端
//3. 改进:直接修改Vehicle 类,改动的代码会比较少=>方案3

class RoadVehicle {
	public void run(String vehicle) {
		System.out.println(vehicle + "公路运行");
	}
}

class AirVehicle {
	public void run(String vehicle) {
		System.out.println(vehicle + "天空运行");
	}
}

class WaterVehicle {
	public void run(String vehicle) {
		System.out.println(vehicle + "水中运行");
	}
}
public class SingleResponsibility3 {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Vehicle2 vehicle2  = new Vehicle2();
		vehicle2.run("汽车");
		vehicle2.runWater("轮船");
		vehicle2.runAir("飞机");
	}

}


//方式3的分析
//1. 这种修改方法没有对原来的类做大的修改,只是增加方法
//2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责
class Vehicle2 {
	public void run(String vehicle) {
		//处理
		
		System.out.println(vehicle + " 在公路上运行....");
		
	}
	
	public void runAir(String vehicle) {
		System.out.println(vehicle + " 在天空上运行....");
	}
	
	public void runWater(String vehicle) {
		System.out.println(vehicle + " 在水中行....");
	}
	
	//方法2.
	//..
	//..
}
  1. 降低类的复杂度,一个类只负责一项职责。
  2. 提高类的可读性,可维护性
  3. 降低变更引起的风险
  4. 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中
  5. 方法数量足够少,可以在方法级别保持单一职责原则

2. 接口隔离原则

一个类对另一个类的依赖应该建立在最小的接口

示例:

类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法。
按隔离原则应当这样处理:(重点)
接口 Interface1 拆分为独立的几个接口(这里我们拆分成 3 个接口),类 A 和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则

3. 依赖倒转(倒置)原则

1)高层模块不应该依赖低层模块,二者都应该依赖其抽象
2)抽象不应该依赖细节,细节应该依赖抽象
3)依赖倒转(倒置)的中心思想是面向接口编程
4)依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架
构比以细节为基础的架构要稳定的多。在 java 中,抽象指的是接口或抽象类,细节就是具体的实现类
5)使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成

三种传递方式:

  1. 接口传递
  2. 构造方法传递
  3. setter 方式传递
//实现对接口的依赖
public class DependecyInversion {

	public static void main(String[] args) {
		//客户端无需改变
		Person person = new Person();
		person.receive(new Email());
		
		person.receive(new WeiXin());
	}

}

//定义接口
interface IReceiver {
	public String getInfo();
}

class Email implements IReceiver {
	public String getInfo() {
		return "电子邮件信息: hello,world";
	}
}

//增加微信
class WeiXin implements IReceiver {
	public String getInfo() {
		return "微信信息: hello,ok";
	}
}

//方式2
class Person {
	//这里我们是对接口的依赖
	public void receive(IReceiver receiver ) {
		System.out.println(receiver.getInfo());
	}
}
// 方式1: 通过接口传递实现依赖
public class DependencyPass {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        ChangHong changHong = new ChangHong();
		OpenAndClose openAndClose = new OpenAndClose();
		openAndClose.open(changHong);
    }

}

// 开关的接口
interface IOpenAndClose {
    public void open(ITV tv); //抽象方法,接收接口
}

interface ITV { //ITV接口
    public void play();
}

class ChangHong implements ITV {

    @Override
    public void play() {
        // TODO Auto-generated method stub
        System.out.println("长虹电视机,打开");
    }

}

// 实现接口
class OpenAndClose implements IOpenAndClose {
    public void open(ITV tv) {
        tv.play();
    }
}
//方式2:通过构造器传递
public class DependencyPass {

    public static void main(String[] args) {
        ChangHong changHong = new ChangHong();
        OpenAndClose openAndClose = new OpenAndClose(changHong);
		openAndClose.open();
    }

}

interface ITV { //ITV接口
    public void play();
}

class ChangHong implements ITV {

    @Override
    public void play() {
        // TODO Auto-generated method stub
        System.out.println("长虹电视机,打开");
    }

}

interface IOpenAndClose {
    public void open(); //抽象方法
}

class OpenAndClose implements IOpenAndClose {
    public ITV tv; //成员

    public OpenAndClose(ITV tv) { //构造器
        this.tv = tv;
    }

    public void open() {
        this.tv.play();
    }
}
//方式3:通过setter方法进行依赖传递
public class DependencyPass {

    public static void main(String[] args) {
        ChangHong changHong = new ChangHong();
       	OpenAndClose openAndClose = new OpenAndClose();
		openAndClose.setTv(changHong);
		openAndClose.open();
    }

}

interface IOpenAndClose {
	public void open(); // 抽象方法

	public void setTv(ITV tv);
}

interface ITV { // ITV接口
	public void play();
}

class ChangHong implements ITV {

	@Override
	public void play() {
		// TODO Auto-generated method stub
		System.out.println("长虹电视机,打开");
	}

}

class OpenAndClose implements IOpenAndClose {
	private ITV tv;

	public void setTv(ITV tv) {
		this.tv = tv;
	}

	public void open() {
		this.tv.play();
	}
}

小结:

  1. 低层模块尽量都要有抽象类或接口,或者两者都有,程序稳定性更好.
  2. 变量的声明类型尽量是抽象类或接口, 这样我们的变量引用和实际对象间,就存在一个缓冲层,利于程序扩展和优化
  3. 继承时遵循里氏替换原则

4. 里氏替换原则

继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能产生故障

  1. 如果对每个类型为 T1 的对象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都代换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象
  2. 在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法
  3. 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖 来解决问题

问题示例:

public class Liskov {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		A a = new A();
		System.out.println("11-3=" + a.func1(11, 3));
		System.out.println("1-8=" + a.func1(1, 8));

		System.out.println("-----------------------");
		B b = new B();
		System.out.println("11-3=" + b.func1(11, 3));//这里本意是求出11-3
		System.out.println("1-8=" + b.func1(1, 8));// 1-8
		System.out.println("11+3+9=" + b.func2(11, 3));
		
		

	}

}

// A类
class A {
	// 返回两个数的差
	public int func1(int num1, int num2) {
		return num1 - num2;
	}
}

// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends A {
	//这里,重写了A类的方法, 可能是无意识
	public int func1(int a, int b) {
		return a + b;
	}

	public int func2(int a, int b) {
		return func1(a, b) + 9;
	}
}

使用里氏替换:

public class Liskov {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		A a = new A();
		System.out.println("11-3=" + a.func1(11, 3));
		System.out.println("1-8=" + a.func1(1, 8));

		System.out.println("-----------------------");
		B b = new B();
		//因为B类不再继承A类,因此调用者,不会再func1是求减法
		//调用完成的功能就会很明确
		System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3
		System.out.println("1+8=" + b.func1(1, 8));// 1+8
		System.out.println("11+3+9=" + b.func2(11, 3));
		
		
		//使用组合仍然可以使用到A类相关方法
		System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3
		

	}

}

//创建一个更加基础的基类
class Base {
	//把更加基础的方法和成员写到Base类
}

// A类
class A extends Base {
	// 返回两个数的差
	public int func1(int num1, int num2) {
		return num1 - num2;
	}
}

// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends Base {
	//如果B需要使用A类的方法,使用组合关系
	private A a = new A();
	
	//这里,重写了A类的方法, 可能是无意识
	public int func1(int a, int b) {
		return a + b;
	}

	public int func2(int a, int b) {
		return func1(a, b) + 9;
	}
	
	//我们仍然想使用A的方法
	public int func3(int a, int b) {
		return this.a.func1(a, b);
	}
}

5. 开闭原则(Open-Closed Principle简称OCP原则)

最基础、最重要的设计原则

  1. 一个软件实体如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)。用抽象构建框架,用实现扩展细节。
  2. 当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
  3. 编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则
//看看存在的问题
public class Ocp {

	public static void main(String[] args) {
		//使用看看存在的问题
		GraphicEditor graphicEditor = new GraphicEditor();
		graphicEditor.drawShape(new Rectangle());
		graphicEditor.drawShape(new Circle());
		graphicEditor.drawShape(new Triangle());
	}

}

//这是一个用于绘图的类 [使用方]
class GraphicEditor {
	//接收Shape对象,然后根据type,来绘制不同的图形
	public void drawShape(Shape s) {
		if (s.m_type == 1)
			drawRectangle(s);
		else if (s.m_type == 2)
			drawCircle(s);
		else if (s.m_type == 3)
			drawTriangle(s);
	}

	//绘制矩形
	public void drawRectangle(Shape r) {
		System.out.println(" 绘制矩形 ");
	}

	//绘制圆形
	public void drawCircle(Shape r) {
		System.out.println(" 绘制圆形 ");
	}
	
	//绘制三角形
	public void drawTriangle(Shape r) {
		System.out.println(" 绘制三角形 ");
	}
}

//Shape类,基类
class Shape {
	int m_type;
}

class Rectangle extends Shape {
	Rectangle() {
		super.m_type = 1;
	}
}

class Circle extends Shape {
	Circle() {
		super.m_type = 2;
	}
}

//新增画三角形
class Triangle extends Shape {
	Triangle() {
		super.m_type = 3;
	}
}
public class Ocp {

	public static void main(String[] args) {
		//使用看看存在的问题
		GraphicEditor graphicEditor = new GraphicEditor();
		graphicEditor.drawShape(new Rectangle());
		graphicEditor.drawShape(new Circle());
		graphicEditor.drawShape(new Triangle());
		graphicEditor.drawShape(new OtherGraphic());
	}

}

//这是一个用于绘图的类 [使用方]
class GraphicEditor {
	//接收Shape对象,调用draw方法
	public void drawShape(Shape s) {
		s.draw();
	}

	
}

//Shape类,基类
abstract class Shape {
	int m_type;
	
	public abstract void draw();//抽象方法
}

class Rectangle extends Shape {
	Rectangle() {
		super.m_type = 1;
	}

	@Override
	public void draw() {
		// TODO Auto-generated method stub
		System.out.println(" 绘制矩形 ");
	}
}

class Circle extends Shape {
	Circle() {
		super.m_type = 2;
	}
	@Override
	public void draw() {
		// TODO Auto-generated method stub
		System.out.println(" 绘制圆形 ");
	}
}

//新增画三角形
class Triangle extends Shape {
	Triangle() {
		super.m_type = 3;
	}
	@Override
	public void draw() {
		// TODO Auto-generated method stub
		System.out.println(" 绘制三角形 ");
	}
}

//新增一个图形
class OtherGraphic extends Shape {
	OtherGraphic() {
		super.m_type = 4;
	}

	@Override
	public void draw() {
		// TODO Auto-generated method stub
		System.out.println(" 绘制其它图形 ");
	}
}

6. 迪米特法则

  1. 一个对象应该对其他对象保持最少的了解
  2. 类与类关系越密切,耦合度越大
  3. 迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的 public 方法,不对外泄露任何信息
  4. 迪米特法则还有个更简单的定义:只与直接的朋友通信
  5. 直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现成员变量方法参数方法返回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部。
//客户端
public class Demeter1 {

	public static void main(String[] args) {
		//创建了一个 SchoolManager 对象
		SchoolManager schoolManager = new SchoolManager();
		//输出学院的员工id 和  学校总部的员工信息
		schoolManager.printAllEmployee(new CollegeManager());

	}

}


//学校总部员工类
class Employee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}

	public String getId() {
		return id;
	}
}


//学院的员工类
class CollegeEmployee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}

	public String getId() {
		return id;
	}
}


//管理学院员工的管理类
class CollegeManager {
	//返回学院的所有员工
	public List<CollegeEmployee> getAllEmployee() {
		List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
		for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
			CollegeEmployee emp = new CollegeEmployee();
			emp.setId("学院员工id= " + i);
			list.add(emp);
		}
		return list;
	}
}

//学校管理类

//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则 
class SchoolManager {
	//返回学校总部的员工
	public List<Employee> getAllEmployee() {
		List<Employee> list = new ArrayList<Employee>();
		
		for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
			Employee emp = new Employee();
			emp.setId("学校总部员工id= " + i);
			list.add(emp);
		}
		return list;
	}

	//该方法完成输出学校总部和学院员工信息(id)
	void printAllEmployee(CollegeManager sub) {
		
		//分析问题
		//1. 这里的 CollegeEmployee 不是  SchoolManager的直接朋友
		//2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
		//3. 违反了 迪米特法则 
		
		//获取到学院员工
		List<CollegeEmployee> list1 = sub.getAllEmployee();
		System.out.println("------------学院员工------------");
		for (CollegeEmployee e : list1) {
			System.out.println(e.getId());
		}
		//获取到学校总部员工
		List<Employee> list2 = this.getAllEmployee();
		System.out.println("------------学校总部员工------------");
		for (Employee e : list2) {
			System.out.println(e.getId());
		}
	}
}
//客户端
public class Demeter1 {

	public static void main(String[] args) {
		System.out.println("~~~使用迪米特法则的改进~~~");
		//创建了一个 SchoolManager 对象
		SchoolManager schoolManager = new SchoolManager();
		//输出学院的员工id 和  学校总部的员工信息
		schoolManager.printAllEmployee(new CollegeManager());

	}

}


//学校总部员工类
class Employee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}

	public String getId() {
		return id;
	}
}


//学院的员工类
class CollegeEmployee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}

	public String getId() {
		return id;
	}
}


//管理学院员工的管理类
class CollegeManager {
	//返回学院的所有员工
	public List<CollegeEmployee> getAllEmployee() {
		List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
		for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
			CollegeEmployee emp = new CollegeEmployee();
			emp.setId("学院员工id= " + i);
			list.add(emp);
		}
		return list;
	}
	
	//输出学院员工的信息
	public void printEmployee() {
		//获取到学院员工
		List<CollegeEmployee> list1 = getAllEmployee();
		System.out.println("------------学院员工------------");
		for (CollegeEmployee e : list1) {
			System.out.println(e.getId());
		}
	}
}

//学校管理类

//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则 
class SchoolManager {
	//返回学校总部的员工
	public List<Employee> getAllEmployee() {
		List<Employee> list = new ArrayList<Employee>();
		
		for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
			Employee emp = new Employee();
			emp.setId("学校总部员工id= " + i);
			list.add(emp);
		}
		return list;
	}

	//该方法完成输出学校总部和学院员工信息(id)
	void printAllEmployee(CollegeManager sub) {
		
		//分析问题
		//1. 将输出学院的员工方法,封装到CollegeManager
		sub.printEmployee();
	
		//获取到学校总部员工
		List<Employee> list2 = this.getAllEmployee();
		System.out.println("------------学校总部员工------------");
		for (Employee e : list2) {
			System.out.println(e.getId());
		}
	}
}

注意事项:

  1. 迪米特法则的核心是降低类之间的耦合
  2. 但是注意:由于每个类都减少了不必要的依赖,因此迪米特法则只是要求降低类间(对象间)耦合关系, 并不是要求完全没有依赖关系

7. 合成复用原则(Composite Reuse Principle)

设计原则核心思想

  1. 找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起。
  2. 针对接口编程,而不是针对实现编程。
  3. 为了交互对象之间的松耦合设计而努力

设计模式类型

  1. 创建型模式:单例模式、抽象工厂模式、原型模式、建造者模式、工厂模式。
  2. 结构型模式:适配器模式、桥接模式、装饰模式、组合模式、外观模式、享元模式、代理模式。
  3. 行为型模式:模版方法模式、命令模式、访问者模式、迭代器模式、观察者模式、中介者模式、备忘录模式、解释器模式(Interpreter 模式)、状态模式、策略模式、职责链模式(责任链模式)。
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

【设计模式】一、设计模式七大原则 的相关文章

随机推荐

  • Pip install 和Conda install 的区别和使用场景

    文章目录 一 Conda 和Pip的区别 总结 二 Pip install和Conda install的区别 1 默认安装路径不同 1 python包 2 非python包 相关问题 解决 2 conda list列表数量 gt pip l
  • mysql中替换字段的部分内容

    如果想替换表中所有记录的某一个字段的指定字符串内容 可以使用mysql提供的replace 函数来实现 表记录如下 我想将address字段的湖北这部分内容替换成拼音hubei 那么sql语句如下 update user set addre
  • ConvTranspose2d(反卷积操作)

    nn ConvTranspose2d 反卷积操作 1 公式 class torch nn ConvTranspose2d in channels out channels kernel size stride 1 padding 0 out
  • Python 教程

    一 Python环境下载 百度网盘链接 https pan baidu com s 12MnzyIZZuKBiveebPdtJ3w 提取码 0st4 二 Python安装步骤 1 点击python 3 8 1 amd64 exe 2 选择安
  • Python中模块、包、库、框架的理解

    一 模块 module 以 py 文件开头的都叫做模块 模块中有定义的变量 函数 类 模块的名称为 py文件的名称 作为全局变量 name 的值 如果是模块A自己py A py则 name main 如果是被其他模块import之后使用的话
  • 机器学习实战之决策树最有特征的选取

    在学习了jack cui机器学习博客后 为了给自己留下一个理解的笔记 本人比较笨 以后方便查看 他的博客地址在下方 写得很好 点击打开链接 决策树机器学习的一种分类方法 拿相亲来说 决策树模型就是上面这一个 长方形为这个人的某个特征 决策树
  • sql把逗号分割的字符串转换为可放入in的条件语句的字符数列

    mysql 不能直接使用in子句 会当做一个字符来处理 使用FIND IN SET 字段 变量 orcal在in子句中加入 SELECT REGEXP SUBSTR 变量 1 LEVEL FROM DUAL CONNECT BY REGEX
  • element-ui的分页如何实现

    element ui的分页如何实现 表格需要绑定的属性
  • mysql 中enum用法

    enum最大长度65535 也就是可以存65535个预定义值 enum底层存的是十进制整数 严格按顺序1 2 3 4 5 排列 固千万不要用enum来存数字 用例 一件商品从付款到收货的流程的5个流程 未付款 已付款 已发货 已送达 已收货
  • Prometheus(三)Grafana部署及部署告警

    文章目录 一 Grafana部署及模板展示 1 Grafan部署步骤 二 打标签 1 重新打标定义 在job上定义 2 relabel config 重新打标配置 三 prometheus告警功能 1 告警功能概述 2 告警规则 3 通知告
  • 定时器使用总结

    gd32定时器使用总结 本次项目中较多模块使用了定时器 对定时器的不同使用方法进行总结补充 模块一 回充红外 通过定时器的计数器模块记录红外发射出来的脉冲宽度 void ir timer init uint16 t prescaler ui
  • 数据仓库与数据挖掘课后思考题整理

    数据仓库与数据挖掘课后思考题整理 文章目录 数据仓库与数据挖掘课后思考题整理 1 数据仓库概述 思考题 2 数据仓库及其设计 思考题 实践题 3 OLAP技术 思考题 课后书面作业 4 数据挖掘概述 思考题 5 关联分析 思考题 实践题 7
  • mysql:Error executing row event: ‘Table ‘hk_db.jf_share_task_item‘ doesn‘t exist‘

    场景 在主从同步的时候报错 这种情况 1 确实这个表不存在 2 在hk db这个库的目录下 缺失了这张表的 frm文件 或者 idb文件 cd xx hk db ll grep jf share task item rw r 1 mysql
  • YOLO(You Only Look Once)算法详解+NMS算法

    https blog csdn net u014380165 article details 72616238 NMS算法 https blog csdn net shuzfan article details 52711706
  • USB_HID协议基础

    目录 一 HID类设备相关概念 1 USB HID名词解释 2 HID类设备数据传输特性
  • 深度学习优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

    作者丨ycszen 来源 https zhuanlan zhihu com p 22252270 编辑丨极市平台 导读 本文仅对一些常见的优化方法进行直观介绍和简单的比较 前言 本文仅对一些常见的优化方法进行直观介绍和简单的比较 各种优化方
  • SpringBoot 自动配置原理详解

    自动配置类原理 一些公用或通用性的类或第三方的配置类 不需要每个项目都重复的编写 将他们抽取成自动配置类 使用的时候只需要引入即可 代码实现 public class A14 public static void main String a
  • 计算机三四级网络技术,全国计算机等级考试四级网络技术论述题真题3

    1 2003年 网络安全策略设计的重要内容之一是 确定当网络安全受到威胁时应采取的应急措施 当我们发现网络受到非法侵入与攻击时 所能采取的行动方案基本上有两种 保护方式与跟踪方式 请根据你对网络安全方面知识的了解 讨论以下几个问题 1 当网
  • table完成动态表头与动态数据

  • 【设计模式】一、设计模式七大原则

    文章目录 设计模式概述 设计模式七大原则 设计模式的目的 设计模式七大原则 1 单一职责原则 2 接口隔离原则 3 依赖倒转 倒置 原则 4 里氏替换原则 5 开闭原则 Open Closed Principle简称OCP原则 6 迪米特法