SPI协议代码

2023-10-31

软件模拟SPI程序代码


概述:
   通过两个MCU(STM32F103)来模拟SPI的主从机,完成主机发送从机接收,便于理解SPI协议。

SPI协议简介

●SPI接口介绍

  SCK: 时钟信号,由主设备产生,所以主设备SCK信号为输出模式,从设备的SCK信号为输入模式。
  CS: 使能信号,由主设备控制从设备,,所以主设备CS信号为输出模式,从设备的CS信号为输入模式。
  MOSI: 主设备数据输出,从设备数据输入,所以主设备MOSI信号为输出模式,从设备的MOSI信号为输入模式。
  MISO: 主设备数据输入,从设备数据输出,所以主设备MISO信号为输入模式,从设备的MISO信号为输出模式。
  
SPI接口连接图
在这里插入图片描述
  注意:MOSI和MISO不能交叉连接(可以把主从机理解为一个整体系统,MOSI为系统主机发送从机接收的数据线,MISO为主机接收从机发送的数据线)。

●SPI数据传输方向

SPI作为全双工的的串行通信协议,数据传输时高位在前,低位在后。主机和从机公用由主机产生的SCK信号,所以在每个时钟周期内主机和从机有1bit的数据交换(因为MOSI和MISO数据线上的数据都是在时钟的边沿处被采样)。
  如下图:
 在这里插入图片描述
 SPI协议规定数据采样是在SCK的上升沿或下降沿时刻(由SPI模式决定,下面会说到),观察上图,在SCK的边沿处(上升沿或下降沿),主机会在MISO数据线上采样(接收来从机的数据),从机会在MOSI数据线上采样(接收来自主机的数据),所以每个时钟周期中会有一bit的数据交换。
 SPI数据交换

●SPI传输模式

SPI总线传输一共有4种模式,这4种模式分别由时钟极性(CPOL)和时钟相位(CPHA)来定义。
   在这里插入图片描述

CPOL CPHA
规定了SCK时钟信号空闲状态的电平 规定了数据是在SCK时钟的上升沿还是下降沿被采样
----------- ------------------------------------
模式0:CPOL=0,CPHA =0 SCK空闲为低电平,数据在SCK的上升沿被采样(提取数据)
模式1:CPOL=0,CPHA =1 SCK空闲为低电平,数据在SCK的下降沿被采样(提取数据)
模式2:CPOL=1,CPHA =0 SCK空闲为高电平,数据在SCK的下降沿被采样(提取数据)
模式3:CPOL=1,CPHA =1 SCK空闲为高电平,数据在SCK的上升沿被采样(提取数据)

以模式0为例:
SCK空闲为低电平,数据在SCK的上升沿被采样(提取数据),在SCK的下降沿切换数据线的数据。
在这里插入图片描述
  ◐在时钟的第1个上升沿(游标1处)(采样点)
  MOSI上数据为1,则在此边沿从机采样(提取)数据为1,采样点在MOSI数据线的中间。
  MISO上数据为0,则在此边沿主机采样(提取)数据为0,采样点在MISO数据线的中间。
  ◐在时钟的第1个下降沿(游标2处)(切换点)
  MOSI上数据由1切换为0,,数据在时钟下降沿时切换数据。
  MISO上数据由0切换为1,,数据在时钟下降沿时切换数据。
 ◐在时钟的第2~8个上升沿(采样点),主机在MISO上采样数据,从机在MOSI上采样数据。
 ◐在时钟的第2~8个下降沿(切换点),主机在MISO上切换数据,从机在MOSI上切换数据。

通过两个单片机模拟SPI来加深理解

利用了STM32F103VET6和STM32F103C8T6(身边只有这两块了)两款MUC。

※硬件连接方式

主机- STM32F103VET6 从机-STM32F103C8T6
(主机产生) SCK→ →SCK(从机被动)
(主机产生) CS→ →CS (从机被动)
(主机发送)MOSI → →MOSI (从机接收)
(主机接收) MISO ← ←MISO (从机发送)

●注意:MOSI连接MOSI,MISO连接MISO(不能像串口那样交叉连接)。

✯SPI模式

采用模式0(CPOL=0,CPHA =0):SCK空闲为低电平,数据在SCK的上升沿被采样(提取数据) ,在SCK的下降沿被切换。

✯程序思路

★主机拉低CS开始传输数据,在SCK上升沿之前保持MOSI上有稳定的数据输出(因为从机要在SCK的上升沿去采样(提取数据),所以主机在SCK上升沿之前要完成发送数据的放置)。
  ★从机在CS拉低后(CS有下降沿)开始数据的接收(在SCK的上升沿采集MOSI上的数据)。

✯主机C代码+波形

/*SPI发送函数*/
//时钟的上升沿采样数据,下降沿切换数据   先发送高位
void SPI_Write(uint8_t Data)
{
	uint8_t i=0;
	CS_L;	//片选拉低开始传输数据
	/*循环8次,发送8bit数据*/
	for(i=0;i<8;i++)	
	{
		
		/*切换数据*/
		if(Data&0x80)//通过8次循环移位,将一个字节的数据,由高到低一位一位的放置到数据线上
		{
			MOSI_H;
		}
		else
		{
			MOSI_L;
		}
		SCK_L;//产生下降沿,准备切换数据
		delay_us(1);//(可忽略,这里是因为接收时此单片机外部中断上升沿触发有时延,SCK太快无法准确提取数据)
		SCK_H;	//产生上升沿(从机在此上升沿时采集数据)
		Data <<= 1;
		
	}
	MOSI_L;
	SCK_L;
	CS_H;	//片选拉高等待下次数据传输
}
int main()
{
	int i=0,j=0;
	SysTick_init();
	SPI_GPIO_Config();
	while(1)
	{
		SPI_Write(0xA5);
	}
}

●注意:上面1us的延时[delay_us(1)]此处可以忽略,这里是因为接收时此单片机外部中断上升沿触发有时延,SCK太快无法准确提取数据,利用其他方式解析从机数据的请忽略。(详细了解请参考博文:STM32外部中断边沿触发存在延时问题)。
  ★代码解析:要了解代码思路,就要时刻记得我们采用SPI的是模式0(SCK空闲为低电平,数据在SCK的上升沿被采样(提取数据),下降沿被切换 ),所以1Byte数据放置完毕后,SCK要拉低,CS要拉高,MOSI要恢复默认电平,但是每Bit数据在SCK拉低时被放置到MOSI数据线(因为SCK上升沿前要确保稳定的数据(因为接收数据最好是在数据的中间采样),这样从机才可以在上升沿采样到正确的数据)。所谓放置数据,其实就是在每次SCK拉高之前对MOSI引脚赋值。比如我们发送的数据为0xA5(1010_0101)。
在这里插入图片描述
在上图中标号2处的下降沿处切换数据,上升沿之前保证了MOSI上(游标1)处有稳定的1bit数据(1),随后的7个上升沿也一样分析。
✯主机产生的波形
在这里插入图片描述)
  ★波形解析:通道1数据:SCK
        通道2数据:MOSI
        通道3数据:CS
   在上图中可以观察到整个数据的传输是在片选CS为低的时刻进行的。在SCK下降沿时主机对MOSI数据线上的数据进行了切换,在SCK上升沿之前完成了1bit数据的发送。完成1Byte数据的发送后,SC置高,CS置高,MOSI置低,为下一帧数据做准备。

✯从机C代码+波形

/*SPI接收数据*/
uint8_t SPI_Read()
{
	/*CS下降沿*/
	if(CS_Trigger_Falling == 1)
	{
		CS_Trigger_Falling = 0;
		/*SCK上升沿*/
		for(i=0;i<8;i++)
		{
			while(SCK_Trigger_Rising != 1);//等待上升沿
			SCK_Trigger_Rising = 0;
			Data_Rec<<=1;
			if(MOSI_State)//在SCK上升沿时提取数据
			{		
				Data_Rec ++;	
				Rec_Data1[i] = 1;	
			}
			else{}
		}
	}
	return Data_Rec;
}
int main()
{
	SysTick_init();
	SPI_GPIO_Config();
	EXTI_PB1_Config();
	EXTI_PA2_Config();
	while(1)
	{
	Get_Data = SPI_Read();

	}
}
/*外部中断0中断*/
void EXTI1_IRQHandler(void)//中断服务函数
{
	if(EXTI_GetITStatus(EXTI_Line1) != RESET )//reset为清零(!=reset等价于IT=1)
	{
	SCK_Trigger_Rising = 1;
	EXTI_ClearITPendingBit(EXTI_Line1);
	}


}
void EXTI2_IRQHandler(void)//中断服务函数
{
	if(EXTI_GetITStatus(EXTI_Line2) != RESET )//reset为清零(!=reset等价于IT=1)
	{
	CS_Trigger_Falling = 1;
	EXTI_ClearITPendingBit(EXTI_Line2);
	
	}


}

★代码解析:从机采用了外部中断的方式去采集CS的下降沿和SCK的上升沿(从机以CS下降沿为数据接收的开始,以SCK的上升沿作为每bit数据的采样点)。(★★★有好的方法欢迎指导)
  ●CS下降沿提取波形:图中紫色信号为CS下降沿点。
  在这里插入图片描述
  ●SCK上升沿提取波形:下图中紫色信号为SCK上升沿的提取(即从机接收MOSI数据线上的采样点)。
在这里插入图片描述
  ●提取数据(数据采样):紫色信号处(采样点)MOSI上的数据即为从机接收到的数据,仔细观察采样点几乎在稳定数据的中间点(因为之前所说的边沿检测存在延迟,所以采样点略微偏移中心点,参考链接STM32外部中断边沿触发存在延时问题)。
在这里插入图片描述
✯从机接收数据结果:0xA5
在这里插入图片描述

如有兴趣可查看类似的
IIC协议详解

★★★如有错误欢迎指导。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

SPI协议代码 的相关文章

  • VS Code 有没有办法导入 Makefile 项目?

    正如标题所说 我可以从现有的 Makefile 自动填充 c cpp properties json 吗 Edit 对于其他尝试导入 makefile 的人 我找到了一组脚本 它们完全可以实现我想要实现的目标 即通过 VS Code 管理
  • 在 Atollic TrueStudio、STM32CubeMX 中导入 C 库

    我目前正在开发 STM32F767ZI Nucleo 板和一个小安全芯片 microchip atecc508a 通过 i2c 连接进行连接 该芯片有一个可用的库加密验证库 https github com MicrochipTech cr
  • 跟着野火学FreeRTOS:第一段(任务定义,切换以及临界段)

    在裸机系统中 系统的主体就是 C P U CPU CP U 按照预先设定的程序逻辑在 m a i n
  • 跟着野火学FreeRTOS:第一段(任务定义,切换以及临界段)

    在裸机系统中 系统的主体就是 C P U CPU CP U 按照预先设定的程序逻辑在 m a i n
  • 擦除后无法写入闪存

    所以我不能在擦除后直接写入内部闪存 如果写操作之前没有擦除操作 那么我可以 有什么想法吗 编程函数返回 成功写入 值 但查看内存时 没有写入任何数据 这是代码 uint32 t pageAddress 0x08008000 uint16 t
  • 锂电池管理系统(BMS)

    引言 在现代科技的推动下 锂电池已经成为各种电动设备和能源存储系统的首选能源媒介 然而 锂电池在充电和放电过程中存在一系列潜在的安全隐患 同时其性能和寿命也受到一些限制 为了解决这些问题 锂电池管理系统 BMS 应运而生 BMS不仅仅是一个
  • 协议茶馆:TLV 格式及编码

    本篇是多年前的存篇 出处不详 旧酒换新瓶 温故知新 有了新的理解 一 什么是 TLV 格式 几乎所有的通信都有协议 而几乎所有的需要在卡片和终端之间传送的数据 结构 都是 TLV 格式的 TLV 是 tag length 和 value 的
  • stm32毕设分享 stm32单片机酒精浓度酒驾检测系统 - 物联网 嵌入式

    文章目录 0 前言 1 简介 2 主要器件 3 实现效果 4 硬件设计 MQ 3酒精乙醇传感器模块 SIM800C模块 5 软件说明 系统框图
  • STM32的HAL中实现单按、长按和双按功能

    我正在尝试实现单击 双击和长按功能来执行不同的功能 到目前为止 我已经理解了单击和长按的逻辑 但我不知道如何检测双击 至于代码 我使用计数器实现了单击和长按 但代码仅停留在第一个 if 条件上 bool single press false
  • STM32F207 I2C 测试失败

    我正在使用 STM32F207 微控制器在 STM3220G EVAL 板上学习嵌入式开发 我尝试通过连接同一芯片上的两个 I2C2 和 I2C3 模块并发送 接收字符来测试 I2C 接口 这是我当前编写的代码 使用 mdk arm 5 i
  • 世微AP9196 DC-DC 升压恒流电源管理芯 电解水驱动电源应用线路

    AP9196 是一系列外围电路简洁的宽调光比升压调光恒流驱动器 适用于 3 40V 输入电压范围的 LED照明领域 AP9196 采用我司专利算法 可以实现高精度的恒流效果 输出电流恒流精度 3 电压工作范围为5 40V 可以轻松满足锂电池
  • 学习STM32正点原子好吗?

    今日话题 学习STM32正点原子好吗 正点原子的教程内容简单明了 代码也清晰直接 使初学者能够轻松理解其功能和使用方法 尤其对于需要快速完成大学作业等任务的大学生来说 可以直接借鉴并稍作修改 便可满足需求 正点原子提供的资料通俗易懂 适合用
  • Freertos低功耗管理

    空闲任务中的低功耗Tickless处理 在整个系统运行得过程中 其中大部分时间都是在执行空闲任务的 空闲任务之所以执行 因为在系统中的其他任务处于阻塞或者被挂起时才会执行 因此可以将空闲任务的执行时间转换成低功耗模式 在其他任务解除阻塞而准
  • 库函数点亮Led

    提示 文章写完后 目录可以自动生成 如何生成可参考右边的帮助文档 文章目录 前言 一 pandas是什么 二 使用步骤 1 引入库 2 读入数据 总结 前言 提示 这里可以添加本文要记录的大概内容 例如 随着人工智能的不断发展 机器学习这门
  • 特殊寄存器

    特殊寄存器 文章目录 前言 一 背景 二 2 1 2 2 总结 前言 前期疑问 STM32特殊寄存器到底是什么 特殊寄存器怎么查看和调试代码 本文目标 记录和理解特殊寄存器 一 背景 最近在看ucosIII文章是 里面提到特殊寄存器 这就进
  • Cortex-M3与M4权威指南

    处理器类型 所有的ARM Cortex M 处理器是32位的精简指令集处理器 它们有 32位寄存器 32位内部数据路径 32位总线接口 除了32位数据 Cortex M处理器也可以有效地处理器8位和16位数据以及支持许多涉及64位数据的操作
  • 嵌入式 C++11 代码 — 我需要 volatile 吗?

    采用 Cortex M3 MCU STM32F1 的嵌入式设备 它具有嵌入式闪存 64K MCU固件可以在运行时重新编程闪存扇区 这是由闪存控制器 FMC 寄存器完成的 所以它不像a b那么简单 FMC 获取缓冲区指针并将数据刻录到某个闪存
  • STM32 上的 ADC 单次转换

    我正在研究 STM32 F103x 上的 ADC 编程 并从最简单的情况 单次转换开始 测量内部温度传感器 连接到 ADC1 的值 并使用 USART 将其发送到 COM 端口 目标似乎很明确 但是当我尝试将源代码下载到闪存时 它不会向 C
  • 哪些变量类型/大小在 STM32 微控制器上是原子的?

    以下是 STM32 微控制器上的数据类型 http www keil com support man docs armcc armcc chr1359125009502 htm http www keil com support man d
  • STM32 传输结束时,循环 DMA 外设到存储器的行为如何?

    我想问一下 在以下情况下 STM32 中的 DMA SPI rx 会如何表现 我有一个指定的 例如 96 字节数组 名为 A 用于存储从 SPI 接收到的数据 我打开循环 SPI DMA 它对每个字节进行操作 配置为 96 字节 是否有可能

随机推荐

  • Kubernetes -K8S安装部署及SpringCloud应用

    k set image deploy kubia nodejs luksa kubia v2 一 Kubernetes 一键安装Kubernetes集群 集群方案 使用三台物理机或VMware虚拟机来搭建集群环境 一台主控服务器 两台工作节
  • 微信报错:40001: invalid credential, access_token is invalid or not latest rid: xxx(附带存储access_token代码)

    我使用的是redis作为存储服务器 来存储access token 代码亲测没有任何问题 在做微信公众号模板推送的时候用到了access token 但是有时推送成功 有时失败 报错显示为 40001 invalid credential
  • unity中vs编辑代码时没有自动补全的解决方案之一

    点击 unity编辑器中的 Edit选项 gt preferences gt External Tools 把选项改成这个就ok
  • Lambda 实战-集合分组统计

    package com lingoace edu util import lombok Data import java util ArrayList import java util List import java util LongS
  • ◆考试题目◆◇NOIP模拟赛◇turtle(乌龟)

    NOIP模拟赛 turtle Description 一只乌龟由于智商低下 它只会向左或向右走 不过它会遵循主人小h的指令 F 向前走一步 T 掉头 现在小h给出一串指令 由于小h有高超的计算能力 他可以马上知道乌龟最后走到哪里 为了难倒小
  • bitlocker 恢复密钥

    开机出现问题 需要bitlocker 恢复密钥 登录Microsoft官网自己的账号 我的Microsoft账户 有问题电脑的详细信息 登录 找到对应密钥填入
  • STANet基于时空自注意力的神经网络--变化检测模型

    STANet基于时空自注意力的神经网络检测模型 A spatial temporal attention based method and a new dataset for remote sensing image change dete
  • C#----使用继承选择器创建继承窗体

    欢迎大家提出意见 一起讨论 转载请标明是引用于 http blog csdn net chenyujing1234 代码 VS2008 http www rayfile com zh cn files 68b23066 9aab 11e1
  • mos管驱动电路设计

    对于开关电源来说 驱动电路作为控制电路和功率电路的接口 其作用至关重要 本文就将详细探讨开关电源的驱动电路的参数设计以及驱动芯片的选型 常用的mos管驱动电路结构如图1所示 驱动信号经过图腾柱放大后 经过一个驱动电阻Rg给mos管驱动 其中
  • 集合nim(C++)

    题目 给定 n 堆石子以及一个由 k 个不同正整数构成的数字集合 S 现在有两位玩家轮流操作 每次操作可以从任意一堆石子中拿取石子 每次拿取的石子数量必须包含于集合 S 最后无法进行操作的人视为失败 问如果两人都采用最优策略 先手是否必胜
  • RFID标签打印机在加工制造业中的应用

    1 行业背景 在物联网家电制造 机械制造 电子元器件 电器等产品加工制造行业中 通常都需要打印标签直接贴到产品上 如 铭牌标签 条码序列号标签 合格证标签 电路图标签 RFID标签等等 传统的部分企业的这些标签是印刷后粘贴到产品上 但是随着
  • 从小白到专家的五个阶段,你处在哪里?

    专家和新手的区别在哪里 每一个程序员都有一个梦想 成为领域内的专家 专家和新手有什么不同 1970年代左右 德雷福斯兄弟通过对飞行员 国际著名象棋大师的技能习得进行研究 他们发现专家和新手在技能调用上有很大的不同 并提出了德雷福斯模型 Dr
  • OpenStack中glance对接swift

    OpenStack中glance对接swift 一 环境介绍 二 查看数据库中glance相关信息 1 查询数据库glance用户密码 2 登录数据库 3 查询glance相关数据库 4 查询glance数据库表 5 查询image loc
  • HikariCP MBean (JMX) Monitoring and Management

    The JMX MBean for HikariCP exposes Idle Connection count Active Connections in use Total Connections The number of threa
  • 本地下载的软件包制作成本地repo源并使用apache发布

    背景 在前面的博客中 介绍了如何使用apt mirror同步远程的repo源 本文将介绍如何利用本地已经缓存的软件包制作成本地repo源 并对外提供源服务 应用目标 在应用中 有时候会遇到类似问题 远程的软件源太慢 而如果同步远程的软件源到
  • 国标GB28181协议视频平台EasyGBS内网访问正常,公网无法访问是什么原因?

    国标视频云服务平台EasyGBS可支持通过国标GB28181协议 接入多路视频源设备 实现视频流的接入 转码 处理与分发等功能 对外输出的视频流格式包括RTSP RTMP FLV HLS WebRTC等 平台视频能力丰富灵活 包括监控直播
  • XML中PCDATA与CDATA的区别

    XML中PCDATA与CDATA的区别 2011 02 10 19 27 25 分类 XML 标签 xml中pcdata与cdata的区别 字号 大中小 订阅 所有 XML 文档中的文本均会被解析器解析 只有 CDATA 区段 CDATA
  • C语言自定义类型详解(结构体 枚举 联合)

    目录 1 结构体类型 1 1声明 1 2结构的自引用 1 3结构体变量的定义和初始化 1 4结构体内存对齐 1 4 1结构体的对齐规则 1 4 2编译器的默认对齐数修改 1 5结构体传参 1 6结构体实现位段 位段的填充 可移植性 1 6
  • unity的asmdef报错GUID(这个报错记得重现一下,报错信息作为标题记录一下)

    这应该是unity给这个程序集分配的guid unity基于2020开发的科骏插件1 0 8 放到了2017 首先出现的这个报错 解决方法是将这个asmdef删除 asmdef简单来说是 库的描述信息文件 相关参考 初步理解Unity的as
  • SPI协议代码

    软件模拟SPI程序代码 文章目录 SPI协议简介 SPI接口介绍 SPI数据传输方向 SPI传输模式 通过两个单片机模拟SPI来加深理解 硬件连接方式 SPI模式 程序思路 主机C代码 波形 从机C代码 波形 概述 通过两个MCU STM3