GO语言网络编程(并发编程)GMP原理与调度

2023-11-04

GO语言网络编程(并发编程)GMP原理与调度

1、GMP 原理与调度

1.1.1. 一、Golang “调度器” 的由来?

(1) 单进程时代不需要调度器

我们知道,一切的软件都是跑在操作系统上,真正用来干活 (计算) 的是 CPU。早期的操作系统每个程序就是一个进程,知道一个程序运行完,才能进行下一个进程,就是 “单进程时代”

一切的程序只能串行发生。
在这里插入图片描述
早期的单进程操作系统,面临 2 个问题:

  • 1、单一的执行流程,计算机只能一个任务一个任务处理。
  • 2、进程阻塞所带来的 CPU 时间浪费。

那么能不能有多个进程来宏观一起来执行多个任务呢?

后来操作系统就具有了最早的并发能力:多进程并发,当一个进程阻塞的时候,切换到另外等待执行的进程,这样就能尽量把 CPU 利用起来,CPU 就不浪费了。

(2) 多进程 / 线程时代有了调度器需求

在这里插入图片描述
在多进程 / 多线程的操作系统中,就解决了阻塞的问题,因为一个进程阻塞 cpu 可以立刻切换到其他进程中去执行,而且调度 cpu 的算法可以保证在运行的进程都可以被分配到 cpu 的运行时间片。这样从宏观来看,似乎多个进程是在同时被运行。

但新的问题就又出现了,进程拥有太多的资源,进程的创建、切换、销毁,都会占用很长的时间,CPU 虽然利用起来了,但如果进程过多,CPU 有很大的一部分都被用来进行进程调度了。

怎么才能提高 CPU 的利用率呢?

但是对于 Linux 操作系统来讲,cpu 对进程的态度和线程的态度是一样的。

在这里插入图片描述

很明显,CPU 调度切换的是进程和线程。尽管线程看起来很美好,但实际上多线程开发设计会变得更加复杂,要考虑很多同步竞争等问题,如锁、竞争冲突等。

(3) 协程来提高 CPU 利用率

多进程、多线程已经提高了系统的并发能力,但是在当今互联网高并发场景下,为每个任务都创建一个线程是不现实的,因为会消耗大量的内存 (进程虚拟内存会占用 4GB [32 位操作系统], 而线程也要大约 4MB)。

大量的进程 / 线程出现了新的问题

  • 高内存占用
  • 调度的高消耗 CPU

好了,然后工程师们就发现,其实一个线程分为 “内核态 “线程和” 用户态 “线程。

一个 “用户态线程” 必须要绑定一个 “内核态线程”,但是 CPU 并不知道有 “用户态线程” 的存在,它只知道它运行的是一个 “内核态线程”(Linux 的 PCB 进程控制块)。

在这里插入图片描述
这样,我们再去细化去分类一下,内核线程依然叫 “线程 (thread)”,用户线程叫 “协程 (co-routine)”.

在这里插入图片描述
​ 看到这里,我们就要开脑洞了,既然一个协程 (co-routine) 可以绑定一个线程 (thread),那么能不能多个协程 (co-routine) 绑定一个或者多个线程 (thread) 上呢。

​ 之后,我们就看到了有 3 中协程和线程的映射关系:

N:1 关系

N 个协程绑定 1 个线程,优点就是协程在用户态线程即完成切换,不会陷入到内核态,这种切换非常的轻量快速。但也有很大的缺点,1 个进程的所有协程都绑定在 1 个线程上

缺点:

  • 1、某个程序用不了硬件的多核加速能力
  • 2、一旦某协程阻塞,造成线程阻塞,本进程的其他协程都无法执行了,根本就没有并发的能力了。

在这里插入图片描述
1 个协程绑定 1 个线程,这种最容易实现。协程的调度都由 CPU 完成了,不存在 N:1 缺点,

缺点:

  • 协程的创建、删除和切换的代价都由 CPU 完成,有点略显昂贵了。

在这里插入图片描述
M:N 关系

M 个协程绑定 1 个线程,是 N:1 和 1:1 类型的结合,克服了以上 2 种模型的缺点,但实现起来最为复杂。

在这里插入图片描述
​ 协程跟线程是有区别的,线程由 CPU 调度是抢占式的,协程由用户态调度是协作式的,一个协程让出 CPU 后,才执行下一个协程。

(4) Go 语言的协程 goroutine

Go 为了提供更容易使用的并发方法,使用了 goroutine 和 channel。goroutine 来自协程的概念,让一组可复用的函数运行在一组线程之上,即使有协程阻塞,该线程的其他协程也可以被 runtime 调度,转移到其他可运行的线程上。最关键的是,程序员看不到这些底层的细节,这就降低了编程的难度,提供了更容易的并发。

Go 中,协程被称为 goroutine,它非常轻量,一个 goroutine 只占几 KB,并且这几 KB 就足够 goroutine 运行完,这就能在有限的内存空间内支持大量 goroutine,支持了更多的并发。虽然一个 goroutine 的栈只占几 KB,但实际是可伸缩的,如果需要更多内容,runtime 会自动为 goroutine 分配。

Goroutine 特点:

  • 占用内存更小(几 kb)
  • 调度更灵活 (runtime 调度)

(5) 被废弃的 goroutine 调度器

​好了,既然我们知道了协程和线程的关系,那么最关键的一点就是调度协程的调度器的实现了。

Go 目前使用的调度器是 2012 年重新设计的,因为之前的调度器性能存在问题,所以使用 4 年就被废弃了,那么我们先来分析一下被废弃的调度器是如何运作的?

大部分文章都是会用 G 来表示 Goroutine,用 M 来表示线程,那么我们也会用这种表达的对应关系。

在这里插入图片描述
下面我们来看看被废弃的 golang 调度器是如何实现的?

在这里插入图片描述
M 想要执行、放回 G 都必须访问全局 G 队列,并且 M 有多个,即多线程访问同一资源需要加锁进行保证互斥 / 同步,所以全局 G 队列是有互斥锁进行保护的。

老调度器有几个缺点:

  • 创建、销毁、调度 G 都需要每个 M 获取锁,这就形成了激烈的锁竞争。
  • M 转移 G 会造成延迟和额外的系统负载。比如当 G 中包含创建新协程的时候,M 创建了 G’,为了继续执行 G,需要把 G’交给
    M’执行,也造成了很差的局部性,因为 G’和 G 是相关的,最好放在 M 上执行,而不是其他 M’。
  • 系统调用 (CPU 在 M 之间的切换) 导致频繁的线程阻塞和取消阻塞操作增加了系统开销。

1.1.2. 二、Goroutine 调度器的 GMP 模型的设计思想

面对之前调度器的问题,Go 设计了新的调度器。

在新调度器中,出列 M (thread) 和 G (goroutine),又引进了 P (Processor)。

在这里插入图片描述
Processor,它包含了运行 goroutine 的资源,如果线程想运行 goroutine,必须先获取 P,P 中还包含了可运行的 G 队列。

(1) GMP 模型

在 Go 中,线程是运行 goroutine 的实体,调度器的功能是把可运行的 goroutine 分配到工作线程上。

在这里插入图片描述

  • 全局队列(Global Queue):存放等待运行的 G。
  • P 的本地队列:同全局队列类似,存放的也是等待运行的 G,存的数量有限,不超过 256 个。新建 G’时,G’优先加入到 P
    的本地队列,如果队列满了,则会把本地队列中一半的 G 移动到全局队列。
  • P 列表:所有的 P 都在程序启动时创建,并保存在数组中,最多有 GOMAXPROCS(可配置) 个。
  • M:线程想运行任务就得获取 P,从 P 的本地队列获取 G,P 队列为空时,M 也会尝试从全局队列拿一批 G 放到 P
    的本地队列,或从其他 P 的本地队列偷一半放到自己 P 的本地队列。M 运行 G,G 执行之后,M 会从 P 获取下一个
    G,不断重复下去。

Goroutine 调度器和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行。

有关 P 和 M 的个数问题

1、P 的数量:

  • 由启动时环境变量 $GOMAXPROCS 或者是由 runtime 的方法 GOMAXPROCS()
    决定。这意味着在程序执行的任意时刻都只有 $GOMAXPROCS 个 goroutine 在同时运行。

2、M 的数量:

  • go 语言本身的限制:go 程序启动时,会设置 M 的最大数量,默认 10000. 但是内核很难支持这么多的线程数,所以这个限制可以忽略。
  • runtime/debug 中的 SetMaxThreads 函数,设置 M 的最大数量
  • 一个 M 阻塞了,会创建新的 M。

M 与 P 的数量没有绝对关系,一个 M 阻塞,P 就会去创建或者切换另一个 M,所以,即使 P 的默认数量是 1,也有可能会创建很多个 M 出来。
P 和 M 何时会被创建

1、P 何时创建:在确定了 P 的最大数量 n 后,运行时系统会根据这个数量创建 n 个 P。

2、M 何时创建:没有足够的 M 来关联 P 并运行其中的可运行的 G。比如所有的 M 此时都阻塞住了,而 P 中还有很多就绪任务,就会去寻找空闲的 M,而没有空闲的,就会去创建新的 M。

(2) 调度器的设计策略

复用线程:避免频繁的创建、销毁线程,而是对线程的复用。

1)work stealing 机制

​ 当本线程无可运行的 G 时,尝试从其他线程绑定的 P 偷取 G,而不是销毁线程。

2)hand off 机制

​ 当本线程因为 G 进行系统调用阻塞时,线程释放绑定的 P,把 P 转移给其他空闲的线程执行。

利用并行:GOMAXPROCS 设置 P 的数量,最多有 GOMAXPROCS 个线程分布在多个 CPU 上同时运行。GOMAXPROCS 也限制了并发的程度,比如 GOMAXPROCS = 核数/2,则最多利用了一半的 CPU 核进行并行。

抢占:在 coroutine 中要等待一个协程主动让出 CPU 才执行下一个协程,在 Go 中,一个 goroutine 最多占用 CPU 10ms,防止其他 goroutine 被饿死,这就是 goroutine 不同于 coroutine 的一个地方。

全局 G 队列:在新的调度器中依然有全局 G 队列,但功能已经被弱化了,当 M 执行 work stealing 从其他 P 偷不到 G 时,它可以从全局 G 队列获取 G。

(3) go func () 调度流程

在这里插入图片描述
从上图我们可以分析出几个结论:

​ 1、我们通过 go func () 来创建一个 goroutine;

​ 2、有两个存储 G 的队列,一个是局部调度器 P 的本地队列、一个是全局 G 队列。新创建的 G 会先保存在 P 的本地队列中,如果 P 的本地队列已经满了就会保存在全局的队列中;

​ 3、G 只能运行在 M 中,一个 M 必须持有一个 P,M 与 P 是 1:1 的关系。M 会从 P 的本地队列弹出一个可执行状态的 G 来执行,如果 P 的本地队列为空,就会想其他的 MP 组合偷取一个可执行的 G 来执行;

​ 4、一个 M 调度 G 执行的过程是一个循环机制;

​ 5、当 M 执行某一个 G 时候如果发生了 syscall 或则其余阻塞操作,M 会阻塞,如果当前有一些 G 在执行,runtime 会把这个线程 M 从 P 中摘除 (detach),然后再创建一个新的操作系统的线程 (如果有空闲的线程可用就复用空闲线程) 来服务于这个 P;

​ 6、当 M 系统调用结束时候,这个 G 会尝试获取一个空闲的 P 执行,并放入到这个 P 的本地队列。如果获取不到 P,那么这个线程 M 变成休眠状态, 加入到空闲线程中,然后这个 G 会被放入全局队列中。

(4) 调度器的生命周期

在这里插入图片描述
特殊的 M0 和 G0

M0

M0 是启动程序后的编号为 0 的主线程,这个 M 对应的实例会在全局变量 runtime.m0 中,不需要在 heap 上分配,M0 负责执行初始化操作和启动第一个 G, 在之后 M0 就和其他的 M 一样了。

G0

G0 是每次启动一个 M 都会第一个创建的 gourtine,G0 仅用于负责调度的 G,G0 不指向任何可执行的函数,每个 M 都会有一个自己的 G0。在调度或系统调用时会使用 G0 的栈空间,全局变量的 G0 是 M0 的 G0。

我们来跟踪一段代码

package main

import "fmt"

func main() {
    fmt.Println("Hello world")
}

接下来我们来针对上面的代码对调度器里面的结构做一个分析。

也会经历如上图所示的过程:

  • 1.runtime 创建最初的线程 m0 和 goroutine g0,并把 2 者关联。
  • 2.调度器初始化:初始化 m0、栈、垃圾回收,以及创建和初始化由 GOMAXPROCS 个 P 构成的 P 列表。
  • 3.示例代码中的 main 函数是 main.main,runtime 中也有 1 个 main 函数 ——runtime.main,代码经过编译后,runtime.main 会调用 main.main,程序启动时会为
    runtime.main 创建 goroutine,称它为 main goroutine 吧,然后把 main goroutine 加入到
    P 的本地队列。
  • 4.启动 m0,m0 已经绑定了 P,会从 P 的本地队列获取 G,获取到 main goroutine。
  • 5.G 拥有栈,M 根据 G 中的栈信息和调度信息设置运行环境
  • 6.M 运行 G
  • 7.G 退出,再次回到 M 获取可运行的 G,这样重复下去,直到 main.main 退出,runtime.main 执行 Defer 和 Panic 处理,或调用 runtime.exit 退出程序。

调度器的生命周期几乎占满了一个 Go 程序的一生,runtime.main 的 goroutine 执行之前都是为调度器做准备工作,runtime.main 的 goroutine 运行,才是调度器的真正开始,直到 runtime.main 结束而结束。

(5) 可视化 GMP 编程

有 2 种方式可以查看一个程序的 GMP 的数据。

方式 1:go tool trace

trace 记录了运行时的信息,能提供可视化的 Web 页面。

简单测试代码:main 函数创建 trace,trace 会运行在单独的 goroutine 中,然后 main 打印”Hello World” 退出。

trace.go

package main

import (
    "os"
    "fmt"
    "runtime/trace"
)

func main() {

    //创建trace文件
    f, err := os.Create("trace.out")
    if err != nil {
        panic(err)
    }

    defer f.Close()

    //启动trace goroutine
    err = trace.Start(f)
    if err != nil {
        panic(err)
    }
    defer trace.Stop()

    //main
    fmt.Println("Hello World")
}

运行程序

$ go run trace.go 
Hello World

会得到一个 trace.out 文件,然后我们可以用一个工具打开,来分析这个文件。

$ go tool trace trace.out 
2020/02/23 10:44:11 Parsing trace...
2020/02/23 10:44:11 Splitting trace...
2020/02/23 10:44:11 Opening browser. Trace viewer is listening on http://127.0.0.1:33479

我们可以通过浏览器打开 http://127.0.0.1:33479 网址,点击 view trace 能够看见可视化的调度流程。

在这里插入图片描述
在这里插入图片描述
G 信息

点击 Goroutines 那一行可视化的数据条,我们会看到一些详细的信息。

在这里插入图片描述
一共有两个G在程序中,一个是特殊的G0,是每个M必须有的一个初始化的G,这个我们不必讨论。

其中 G1 应该就是 main goroutine (执行 main 函数的协程),在一段时间内处于可运行和运行的状态。

M 信息

点击 Threads 那一行可视化的数据条,我们会看到一些详细的信息。

在这里插入图片描述
一共有两个 M 在程序中,一个是特殊的 M0,用于初始化使用,这个我们不必讨论。

P 信息

在这里插入图片描述
G1 中调用了 main.main,创建了 trace goroutine g18。G1 运行在 P1 上,G18 运行在 P0 上。

这里有两个 P,我们知道,一个 P 必须绑定一个 M 才能调度 G。

我们在来看看上面的 M 信息。

在这里插入图片描述
我们会发现,确实 G18 在 P0 上被运行的时候,确实在 Threads 行多了一个 M 的数据,点击查看如下:

在这里插入图片描述
多了一个 M2 应该就是 P0 为了执行 G18 而动态创建的 M2.

方式 2:Debug trace

package main

import (
    "fmt"
    "time"
)

func main() {
    for i := 0; i < 5; i++ {
        time.Sleep(time.Second)
        fmt.Println("Hello World")
    }
}

编译

  • $ go build trace2.go

通过 Debug 方式运行

$ GODEBUG=schedtrace=1000 ./trace2 
SCHED 0ms: gomaxprocs=2 idleprocs=0 threads=4 spinningthreads=1 idlethreads=1 runqueue=0 [0 0]
Hello World
SCHED 1003ms: gomaxprocs=2 idleprocs=2 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0]
Hello World
SCHED 2014ms: gomaxprocs=2 idleprocs=2 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0]
Hello World
SCHED 3015ms: gomaxprocs=2 idleprocs=2 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0]
Hello World
SCHED 4023ms: gomaxprocs=2 idleprocs=2 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0]
Hello World
SCHED:调试信息输出标志字符串,代表本行是 goroutine 调度器的输出;
0ms:即从程序启动到输出这行日志的时间;
gomaxprocs: P 的数量,本例有 2 个 P, 因为默认的 P 的属性是和 cpu 核心数量默认一致,当然也可以通过 GOMAXPROCS 来设置;
idleprocs: 处于 idle 状态的 P 的数量;通过 gomaxprocs 和 idleprocs 的差值,我们就可知道执行 go 代码的 P 的数量;
threads: os threads/M 的数量,包含 scheduler 使用的 m 数量,加上 runtime 自用的类似 sysmon 这样的 thread 的数量;
spinningthreads: 处于自旋状态的 os thread 数量;
idlethread: 处于 idle 状态的 os thread 的数量;
runqueue=0: Scheduler 全局队列中 G 的数量;
[0 0]: 分别为 2 个 P 的 local queue 中的 G 的数量。

1.1.3. 三、Go 调度器调度场景过程全解析

(1) 场景 1

P 拥有 G1,M1 获取 P 后开始运行 G1,G1 使用 go func() 创建了 G2,为了局部性 G2 优先加入到 P1 的本地队列。
在这里插入图片描述

(2) 场景 2

G1 运行完成后 (函数:goexit),M 上运行的 goroutine 切换为 G0,G0 负责调度时协程的切换(函数:schedule)。从 P 的本地队列取 G2,从 G0 切换到 G2,并开始运行 G2 (函数:execute)。实现了线程 M1 的复用。

在这里插入图片描述
(3) 场景 3

假设每个 P 的本地队列只能存 3 个 G。G2 要创建了 6 个 G,前 3 个 G(G3, G4, G5)已经加入 p1 的本地队列,p1 本地队列满了。

在这里插入图片描述
(4) 场景 4

G2 在创建 G7 的时候,发现 P1 的本地队列已满,需要执行负载均衡 (把 P1 中本地队列中前一半的 G,还有新创建 G 转移到全局队列)

(实现中并不一定是新的 G,如果 G 是 G2 之后就执行的,会被保存在本地队列,利用某个老的 G 替换新 G 加入全局队列)

在这里插入图片描述
这些 G 被转移到全局队列时,会被打乱顺序。所以 G3,G4,G7 被转移到全局队列。

(5) 场景 5

G2 创建 G8 时,P1 的本地队列未满,所以 G8 会被加入到 P1 的本地队列。

在这里插入图片描述
G8 加入到 P1 点本地队列的原因还是因为 P1 此时在与 M1 绑定,而 G2 此时是 M1 在执行。所以 G2 创建的新的 G 会优先放置到自己的 M 绑定的 P 上。

(6) 场景 6

规定:在创建 G 时,运行的 G 会尝试唤醒其他空闲的 P 和 M 组合去执行。

在这里插入图片描述
假定 G2 唤醒了 M2,M2 绑定了 P2,并运行 G0,但 P2 本地队列没有 G,M2 此时为自旋线程(没有 G 但为运行状态的线程,不断寻找 G)。

(7) 场景 7

M2 尝试从全局队列 (简称 “GQ”) 取一批 G 放到 P2 的本地队列(函数:findrunnable())。M2 从全局队列取的 G 数量符合下面的公式:

n = min(len(GQ)/GOMAXPROCS + 1, len(GQ/2))

至少从全局队列取 1 个 g,但每次不要从全局队列移动太多的 g 到 p 本地队列,给其他 p 留点。这是从全局队列到 P 本地队列的负载均衡.

在这里插入图片描述
假定我们场景中一共有 4 个 P(GOMAXPROCS 设置为 4,那么我们允许最多就能用 4 个 P 来供 M 使用)。所以 M2 只从能从全局队列取 1 个 G(即 G3)移动 P2 本地队列,然后完成从 G0 到 G3 的切换,运行 G3。

(8) 场景 8

假设 G2 一直在 M1 上运行,经过 2 轮后,M2 已经把 G7、G4 从全局队列获取到了 P2 的本地队列并完成运行,全局队列和 P2 的本地队列都空了,如场景 8 图的左半部分。

在这里插入图片描述
全局队列已经没有 G,那 m 就要执行 work stealing (偷取):从其他有 G 的 P 哪里偷取一半 G 过来,放到自己的 P 本地队列。P2 从 P1 的本地队列尾部取一半的 G,本例中一半则只有 1 个 G8,放到 P2 的本地队列并执行。

(9) 场景 9

G1 本地队列 G5、G6 已经被其他 M 偷走并运行完成,当前 M1 和 M2 分别在运行 G2 和 G8,M3 和 M4 没有 goroutine 可以运行,M3 和 M4 处于自旋状态,它们不断寻找 goroutine。

在这里插入图片描述
为什么要让 m3 和 m4 自旋,自旋本质是在运行,线程在运行却没有执行 G,就变成了浪费 CPU. 为什么不销毁现场,来节约 CPU 资源。因为创建和销毁 CPU 也会浪费时间,我们希望当有新 goroutine 创建时,立刻能有 M 运行它,如果销毁再新建就增加了时延,降低了效率。当然也考虑了过多的自旋线程是浪费 CPU,所以系统中最多有 GOMAXPROCS 个自旋的线程 (当前例子中的 GOMAXPROCS=4,所以一共 4 个 P),多余的没事做线程会让他们休眠。

(10) 场景 10

​ 假定当前除了 M3 和 M4 为自旋线程,还有 M5 和 M6 为空闲的线程 (没有得到 P 的绑定,注意我们这里最多就只能够存在 4 个 P,所以 P 的数量应该永远是 M>=P, 大部分都是 M 在抢占需要运行的 P),G8 创建了 G9,G8 进行了阻塞的系统调用,M2 和 P2 立即解绑,P2 会执行以下判断:如果 P2 本地队列有 G、全局队列有 G 或有空闲的 M,P2 都会立马唤醒 1 个 M 和它绑定,否则 P2 则会加入到空闲 P 列表,等待 M 来获取可用的 p。本场景中,P2 本地队列有 G9,可以和其他空闲的线程 M5 绑定。

在这里插入图片描述
(11) 场景 11

G8 创建了 G9,假如 G8 进行了非阻塞系统调用。

在这里插入图片描述
​ M2 和 P2 会解绑,但 M2 会记住 P2,然后 G8 和 M2 进入系统调用状态。当 G8 和 M2 退出系统调用时,会尝试获取 P2,如果无法获取,则获取空闲的 P,如果依然没有,G8 会被记为可运行状态,并加入到全局队列,M2 因为没有 P 的绑定而变成休眠状态 (长时间休眠等待 GC 回收销毁)。

1.1.4 四、小结

总结,Go 调度器很轻量也很简单,足以撑起 goroutine 的调度工作,并且让 Go 具有了原生(强大)并发的能力。Go 调度本质是把大量的 goroutine 分配到少量线程上去执行,并利用多核并行,实现更强大的并发。

转自公众号:刘丹冰Aceld

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

GO语言网络编程(并发编程)GMP原理与调度 的相关文章

  • 如何修改s_client的代码?

    我正在玩apps s client c in the openssl源代码 我想进行一些更改并运行它 但是在保存文件并执行操作后 我的更改没有得到反映make all or a make 例如 我改变了sc usage函数为此 BIO pr
  • 当存在点和下划线时,使用 sed 搜索并替换

    我该如何更换foo with foo sed 只需运行 sed s foo foo g file php 不起作用 逃离 sed s foo foo g file php Example cat test txt foo bar sed s
  • sed 仅最后一个匹配模式

    我想sed仅文本文件的最后一个匹配模式 输入文件 boy boy girl boy 输出文件 boy boy girl boys 一种方法是反转文件 仅替换第一个匹配项 然后再次反转 tac
  • 在 Alpine 中找不到运行时/cgo

    In an alpine edge我安装的容器通过 RUN apk add no cache musl dev go 我试着跑go get github com golang protobuf protoc gen go then 这会导致
  • 在Linux伪终端中执行从一个终端发送到另一个终端的字符串

    假设我有一个终端 其中 tty 的输出是 dev pts 2 我想从另一个终端向第一个终端发送命令并执行它 使用 echo ls gt dev pts 2 仅在第一个终端中打印 ls 有没有办法执行字符串 不 终端不执行命令 它们只是数据的
  • 如何“grep”连续流?

    可以用吗grep在连续的流中 我的意思是有点tail f
  • 在64位操作系统上以32位模式和64位模式编译ioctl函数的执行有什么不同?

    我有 64 位 Enterprise SuSE 11 我有一个应用程序 它打开 HIDRAW 设备并在其上操作 ioctl 函数以从该设备获取原始信息 如下所示 struct hidraw devinfo devinfo int fd op
  • 在键盘热插拔上加载模块

    我正在尝试学习如何为 Linux 系统编写模块和驱动程序 类似于this https unix stackexchange com questions 120839 usb kernel module does not load on de
  • Bash 中 $() 和 () 之间的区别

    当我打字时ls l echo file 支架的输出 这只是简单的回显 被获取并传递到外部ls l命令 就等于简单的ls l file 当我打字时ls l echo file 我们有错误 因为不能嵌套 内部外部命令 有人可以帮助我理解之间的区
  • 使用 MongoDB docker 镜像停止虚拟机而不丢失数据

    我已经在 AWS EC2 上的虚拟机中安装了官方的 MongoDB docker 映像 并且数据库上已经有数据 如果我停止虚拟机 以节省过夜费用 我会丢失数据库中包含的所有数据吗 在这些情况下我怎样才能让它持久 有多种选择可以实现此目的 但
  • 如何顺序运行 golang 测试?

    当我跑步时go test 我的输出 FAIL TestGETSearchSuccess 0 00s Location drivers api test go 283 Error Not equal 200 expected 204 actu
  • 变量作为 bash 数组索引?

    bin bash set x array counter 0 array value 1 array 0 0 0 for number in array do array array counter array value array co
  • Linux TCP服务器:在接受连接之前读取客户端的IP地址

    Related C Winsock API如何在接受连接之前获取连接客户端IP https stackoverflow com questions 716209 c winsock api how to get connecting cli
  • 使用netcat将unix套接字传输到tcp套接字

    我正在尝试使用以下命令将 unix 套接字公开为 tcp 套接字 nc lkv 44444 nc Uv var run docker sock 当我尝试访问时localhost 44444 containers json从浏览器中 它不会加
  • 原生 Linux 应用程序可像 ResHacker 一样编辑 Win32 PE

    我想运行自动修改 dll服务 用户提交特定的 dll 我在服务器上修改它 然后用户可以下载 dll的修改版本 是否有任何本机 Linux 应用程序提供常见的 Win32 PE 修改功能 例如图标 字符串 加速器 对话等 至少提供命令行或脚本
  • 使用 google.protobuf.Timestamp 在 Go 中解析带有时区偏移的日期时间戳

    我正在创建一个将使用 GRPC 和 protobuf 的 Go 应用程序 我的 RPC 服务应获取包含类型的消息google protobuf Timestamp 解析它并最终将其保存在数据库中或对其执行更多操作 我对什么被认为是该类型的有
  • ReverseProxy取决于golang中的request.Body

    我想构建一个 http 反向代理 它检查 HTTP 主体 然后将 HTTP 请求发送到它的上游服务器 你怎么能在 Go 中做到这一点 初始尝试 如下 失败 因为 ReverseProxy 复制传入请求 修改它并发送 但正文已被读取 func
  • 如何在 Linux 中使用单行命令获取 Java 版本

    我想通过单个命令获取 Linux 中的 Java 版本 我是 awk 的新手 所以我正在尝试类似的事情 java version awk print 3 但这不会返回版本 我将如何获取1 6 0 21从下面的Java版本输出 java ve
  • 编写多个mysql脚本

    是否可以在复合脚本中包含其他 mysql 脚本 理想情况下 我不想为包含的脚本创建存储过程 对于较大的项目 我想分层维护几个较小的脚本 然后根据需要组合它们 但现在 我很乐意学习如何包含其他脚本 source是一个内置命令 您可以在 MyS
  • sqlite 插入需要很长时间

    我正在将不到 200 000 行插入到 sqlite 数据库表中 我只是在终端中通过 sqlite3 使用一个非常简单的 sql 文件 我打赌它已经运行了至少 30 分钟 这是正常现象还是我应该关闭该过程并尝试不同的方法 sqlite中的插

随机推荐

  • Float比较大小

    目录 起因 结论 科学计数法 十进制转二进制 整数 基本 二进制科学计数法 总结 小数 基本 二进制科学计数法 总结 IEEE754标准存储 基本 起因 在阅读 阿里巴巴开发手册 时发现了一句话 强制 浮点数之间的等值判断 基本数据类型不能
  • Linux(查看服务cpu核数和内存)

    linux服务器中最重要的两个配置是CPU和内存 那么怎么开始查看CPU核数和内存 以及使用情况 是日常运维中使用最多的操作 查看linux服务器cpu最简单的命令是 cat proc cpuinfo 查看linux服务器cpu最简单的命令
  • TCP常见面试题

    1 画出TCP的报头 2 说一下TCP的三次握手过程 3 为什么TCP握手需要三次 TCP是可靠的传输控制协议 三次握手能保证数据可靠传输又能提高传输效率 如果TCP的握手是两次 lt 1 gt 如果client发给server的SYN报文
  • Spring 事务事件控制 解决业务异步操作解耦 TransactionSynchronizationManager Transaction

    场景 在业务中 经常需要在执行数据库操作后 事务提交完成 发送消息或事件来异步调用其他组件执行相应的业务操作 比如 用户注册成功后 发送激活码或激活邮件 如果用户保存后就执行异步操作发送激活码或激活邮件 但是前面用户保存后发生异常 数据库进
  • kmeans聚类簇个数选择

    借助sklearn库实现kmeans聚类和轮廓系数计算 from sklearn cluster import KMeans from sklearn metrics import silhouette score K range 2 20
  • 使用Python与Stm32进行通信

    方法 利用python的serial函数库与STM32进行通信 将Stm32用USB连接到电脑 打开设备管理器查看端口 端口为COM3 写下Python程序 import serial 连接串口 serial serial Serial C
  • python Typing模块-类型注解

    写在篇前 typing 是python3 5中开始新增的专用于类型注解 type hints 的模块 为python程序提供静态类型检查 如下面的greeting函数规定了参数name的类型是str 返回值的类型也是str def gree
  • STL几种常见类型的比较

    这里主要是想要比较几种容器的性能 至于他们的接口不在考虑范围 Vector 相当于一个数组 在内存中分配一块连续的内存空间进行存储 支持不指定vector大小的存储 STL内部实现时 首先分配一个非常大的内存空间预备进行存储 即capaci
  • Mac pycharm 导入pyspark

    转载于 点击打开链接 1 前提 已经安装了pycharm 下载了spark 官网下载 我下的是spark 2 1 1 bin hadoop2 7 tgz 解压缩后为文件夹spark 2 1 1 bin hadoop2 7 我将文件放在了 A
  • C#项目实战|人脸识别考勤

    人脸识别考勤是一种基于人脸识别技术的智能化考勤系统 可以实现快速准确的考勤记录 提高考勤管理的效率和准确性 本文将介绍如何使用C 语言开发人脸识别考勤系统 一 项目概述 本项目使用C 语言 采用人脸识别技术和数据库技术 实现了一个基于人脸识
  • robots.txt 泄漏敏感信息

    robots txt 泄漏敏感信息 漏洞描述 搜索引擎可以通过robots文件可以获知哪些页面可以爬取 哪些页面不可以 爬取 Robots协议是网站国际互联网界通行的道德规范 其目的是保护网站数据和敏感信 息 确保用户个人信息和隐私不被侵犯
  • UVa 120 Stacks of Flapjacks

    Background Stacks and Queues are often considered the bread and butter of data structures and find use in architecture p
  • linux命令之tar -C命令的含义

    C代表change目录的意思 本例中指定解压文件到 opt cloudera manager这个目录下
  • 华为DevEco Device Tool的一个小bug及其解决方法

    今天 尝试烧录hi3516镜像遇到如下错误 正在执行任务 home vboxuser Huawei DevEco Device Tool core deveco venv bin hos run target upload project
  • Layui弹出层的yes/btin实现表单验证

    我们都知道layui的弹出层的btn属性生成的按钮 没办法实现弹出层内部的form验证成功后再执行相应操作 我的方法是 在弹出层写一个隐藏按钮 一个隐藏的input和form on方法 和自定义验证方法或者layui的验证方法 我使用的是l
  • 网络连接错误错误代码103怎么解决

    网络连接错误错误代码103的解决办法 1 查看网络是否通畅 点击开始 运行 输入cmd 然后输入ping空格加网址 按enter 查看该网站网络是否通畅 是否网络的问题 如果不是可能就是浏览器等其他问题 2 dns优选 打开杀毒软件 人工服
  • fastJson 前端对象null转为空字符串 “ “,空数组 [ ],空对象{ }

    Jackson请看 JsonProperty SpringBoot Jackson 将null转字符串 List Array转 int转0 前提 使用FastJson的 JsonField注解 import java util List i
  • Zigbee出现Warning[w69]: Address translation (-M, -b# or -b@) has no effect on the output format ‘debug

    Building configuration SampleApp EndDeviceEB Updating build tree ZMain c Warning Pe550 variable lcd buf was set but neve
  • 编程题实训-基于链表的图书信息管理

    第1关 基于链式存储结构的图书信息表的创建和输出 任务描述 本关任务 定义一个包含图书信息 书号 书名 价格 的链表 读入相应的图书数据来完成图书信息表的创建 然后统计图书表中的图书个数 同时逐行输出每本图书的信息 编程要求 输入 输入n
  • GO语言网络编程(并发编程)GMP原理与调度

    GO语言网络编程 并发编程 GMP原理与调度 1 GMP 原理与调度 1 1 1 一 Golang 调度器 的由来 1 单进程时代不需要调度器 我们知道 一切的软件都是跑在操作系统上 真正用来干活 计算 的是 CPU 早期的操作系统每个程序