第九章 numpy之线性代数+练习题

2023-11-09

线性代数

Numpy 定义了 matrix 类型,使用该 matrix 类型创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,因此用法和Matlab十分类似。但是由于 NumPy 中同时存在 ndarraymatrix 对象,因此用户很容易将两者弄混。这有违 Python 的“显式优于隐式”的原则,因此官方并不推荐在程序中使用 matrix。在这里,我们仍然用 ndarray 来介绍。

矩阵和向量积

矩阵的定义、矩阵的加法、矩阵的数乘、矩阵的转置与二维数组完全一致,不再进行说明,但矩阵的乘法有不同的表示。

  • numpy.dot(a, b[, out])计算两个矩阵的乘积,如果是一维数组则是它们的内积。

【例1】

import numpy as np

x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 4, 5, 6])
z = np.dot(x, y)
print(z)  # 70

x = np.array([[1, 2, 3], [3, 4, 5], [6, 7, 8]])
print(x)
# [[1 2 3]
#  [3 4 5]
#  [6 7 8]]

y = np.array([[5, 4, 2], [1, 7, 9], [0, 4, 5]])
print(y)
# [[5 4 2]
#  [1 7 9]
#  [0 4 5]]

z = np.dot(x, y)
print(z)
# [[  7  30  35]
#  [ 19  60  67]
#  [ 37 105 115]]

z = np.dot(y, x)
print(z)
# [[ 29  40  51]
#  [ 76  93 110]
#  [ 42  51  60]]

注意:在线性代数里面讲的维数和数组的维数不同,如线代中提到的n维行向量在 Numpy 中是一维数组,而线性代数中的n维列向量在 Numpy 中是一个shape为(n, 1)的二维数组。


矩阵特征值与特征向量

  • numpy.linalg.eig(a) 计算方阵的特征值和特征向量。
  • numpy.linalg.eigvals(a) 计算方阵的特征值。

【例1】求方阵的特征值特征向量

import numpy as np

# 创建一个对角矩阵!
x = np.diag((1, 2, 3))  
print(x)
# [[1 0 0]
#  [0 2 0]
#  [0 0 3]]

print(np.linalg.eigvals(x))
# [1. 2. 3.]

a, b = np.linalg.eig(x)  
# 特征值保存在a中,特征向量保存在b中
print(a)
# [1. 2. 3.]
print(b)
# [[1. 0. 0.]
#  [0. 1. 0.]
#  [0. 0. 1.]]

# 检验特征值与特征向量是否正确
for i in range(3): 
    if np.allclose(a[i] * b[:, i], np.dot(x, b[:, i])):
        print('Right')
    else:
        print('Error')
# Right
# Right
# Right

【例2】判断对称阵是否为正定阵(特征值是否全部为正)。

import numpy as np

A = np.arange(16).reshape(4, 4)
print(A)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]
#  [12 13 14 15]]

A = A + A.T  # 将方阵转换成对称阵
print(A)
# [[ 0  5 10 15]
#  [ 5 10 15 20]
#  [10 15 20 25]
#  [15 20 25 30]]

B = np.linalg.eigvals(A)  # 求A的特征值
print(B)
# [ 6.74165739e+01 -7.41657387e+00  1.82694656e-15 -1.72637110e-15]

# 判断是不是所有的特征值都大于0,用到了all函数,显然对称阵A不是正定的
if np.all(B > 0):
    print('Yes')
else:
    print('No')
# No

矩阵分解

奇异值分解

有关奇异值分解的原理:奇异值分解(SVD)及其应用

  • u, s, v = numpy.linalg.svd(a, full_matrices=True, compute_uv=True, hermitian=False)奇异值分解
    • a 是一个形如(M,N)矩阵
    • full_matrices的取值是为False或者True,默认值为True,这时u的大小为(M,M),v的大小为(N,N)。否则u的大小为(M,K),v的大小为(K,N) ,K=min(M,N)。
    • compute_uv的取值是为False或者True,默认值为True,表示计算u,s,v。为False的时候只计算s
    • 总共有三个返回值u,s,vu大小为(M,M),s大小为(M,N),v大小为(N,N),a = u*s*v
    • 其中s是对矩阵a的奇异值分解。s除了对角元素不为0,其他元素都为0,并且对角元素从大到小排列。s中有n个奇异值,一般排在后面的比较接近0,所以仅保留比较大的r个奇异值。

注:Numpy中返回的v是通常所谓奇异值分解a=u*s*v'v的转置。

【例1】

import numpy as np

A = np.array([[4, 11, 14], [8, 7, -2]])
print(A)
# [[ 4 11 14]
#  [ 8  7 -2]]

u, s, vh = np.linalg.svd(A, full_matrices=False)
print(u.shape)  # (2, 2)
print(u)
# [[-0.9486833  -0.31622777]
#  [-0.31622777  0.9486833 ]]

print(s.shape)  # (2,)
print(np.diag(s))
# [[18.97366596  0.        ]
#  [ 0.          9.48683298]]

print(vh.shape)  # (2, 3)
print(vh)
# [[-0.33333333 -0.66666667 -0.66666667]
#  [ 0.66666667  0.33333333 -0.66666667]]

a = np.dot(u, np.diag(s))
a = np.dot(a, vh)
print(a)
# [[ 4. 11. 14.]
#  [ 8.  7. -2.]]

【例2】

import numpy as np

A = np.array([[1, 1], [1, -2], [2, 1]])
print(A)
# [[ 1  1]
#  [ 1 -2]
#  [ 2  1]]

u, s, vh = np.linalg.svd(A, full_matrices=False)
print(u.shape)  # (3, 2)
print(u)
# [[-5.34522484e-01 -1.11022302e-16]
#  [ 2.67261242e-01 -9.48683298e-01]
#  [-8.01783726e-01 -3.16227766e-01]]

print(s.shape)  # (2,)
print(np.diag(s))
# [[2.64575131 0.        ]
#  [0.         2.23606798]]

print(vh.shape)  # (2, 2)
print(vh)
# [[-0.70710678 -0.70710678]
#  [-0.70710678  0.70710678]]

a = np.dot(u, np.diag(s))
a = np.dot(a, vh)
print(a)
# [[ 1.  1.]
#  [ 1. -2.]
#  [ 2.  1.]]

QR分解

  • q,r = numpy.linalg.qr(a, mode='reduced')计算矩阵a的QR分解。
    • a是一个(M, N)的待分解矩阵。
    • mode = reduced:返回(M, N)的列向量两两正交的矩阵q,和(N, N)的三角阵r(Reduced QR分解)。
    • mode = complete:返回(M, M)的正交矩阵q,和(M, N)的三角阵r(Full QR分解)。

【例1】

import numpy as np

A = np.array([[2, -2, 3], [1, 1, 1], [1, 3, -1]])
print(A)
# [[ 2 -2  3]
#  [ 1  1  1]
#  [ 1  3 -1]]

q, r = np.linalg.qr(A)
print(q.shape)  # (3, 3)
print(q)
# [[-0.81649658  0.53452248  0.21821789]
#  [-0.40824829 -0.26726124 -0.87287156]
#  [-0.40824829 -0.80178373  0.43643578]]

print(r.shape)  # (3, 3)
print(r)
# [[-2.44948974  0.         -2.44948974]
#  [ 0.         -3.74165739  2.13808994]
#  [ 0.          0.         -0.65465367]]

print(np.dot(q, r))
# [[ 2. -2.  3.]
#  [ 1.  1.  1.]
#  [ 1.  3. -1.]]

a = np.allclose(np.dot(q.T, q), np.eye(3))
print(a)  # True

【例2】

import numpy as np

A = np.array([[1, 1], [1, -2], [2, 1]])
print(A)
# [[ 1  1]
#  [ 1 -2]
#  [ 2  1]]

q, r = np.linalg.qr(A, mode='complete')
print(q.shape)  # (3, 3)
print(q)
# [[-0.40824829  0.34503278 -0.84515425]
#  [-0.40824829 -0.89708523 -0.16903085]
#  [-0.81649658  0.27602622  0.50709255]]

print(r.shape)  # (3, 2)
print(r)
# [[-2.44948974 -0.40824829]
#  [ 0.          2.41522946]
#  [ 0.          0.        ]]

print(np.dot(q, r))
# [[ 1.  1.]
#  [ 1. -2.]
#  [ 2.  1.]]

a = np.allclose(np.dot(q, q.T), np.eye(3))
print(a)  # True

【例3】

import numpy as np

A = np.array([[1, 1], [1, -2], [2, 1]])
print(A)
# [[ 1  1]
#  [ 1 -2]
#  [ 2  1]]

q, r = np.linalg.qr(A)
print(q.shape)  # (3, 2)
print(q)
# [[-0.40824829  0.34503278]
#  [-0.40824829 -0.89708523]
#  [-0.81649658  0.27602622]]

print(r.shape)  # (2, 2)
print(r)
# [[-2.44948974 -0.40824829]
#  [ 0.          2.41522946]]

print(np.dot(q, r))
# [[ 1.  1.]
#  [ 1. -2.]
#  [ 2.  1.]]

a = np.allclose(np.dot(q.T, q), np.eye(2))
print(a)  # True   (说明q为正交矩阵)

Cholesky分解

  • L = numpy.linalg.cholesky(a) 返回正定矩阵a的 Cholesky 分解a = L*L.T,其中L是下三角。

【例1】

import numpy as np

A = np.array([[1, 1, 1, 1], [1, 3, 3, 3],
              [1, 3, 5, 5], [1, 3, 5, 7]])
print(A)
# [[1 1 1 1]
#  [1 3 3 3]
#  [1 3 5 5]
#  [1 3 5 7]]

print(np.linalg.eigvals(A))
# [13.13707118  1.6199144   0.51978306  0.72323135]

L = np.linalg.cholesky(A)
print(L)
# [[1.         0.         0.         0.        ]
#  [1.         1.41421356 0.         0.        ]
#  [1.         1.41421356 1.41421356 0.        ]
#  [1.         1.41421356 1.41421356 1.41421356]]

print(np.dot(L, L.T))
# [[1. 1. 1. 1.]
#  [1. 3. 3. 3.]
#  [1. 3. 5. 5.]
#  [1. 3. 5. 7.]]

范数和其它数字

矩阵的范数

  • numpy.linalg.norm(x, ord=None, axis=None, keepdims=False) 计算向量或者矩阵的范数。

根据ord参数的不同,计算不同的范数:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4SuPT8VK-1620376676976)(attachment:task13%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0-%E7%9F%A9%E9%98%B5%E7%9A%84%E8%8C%83%E6%95%B0-%E5%AF%B9%E5%BA%94%E5%85%AC%E5%BC%8F.png)]

【例1】求向量的范数。

import numpy as np

x = np.array([1, 2, 3, 4])

print(np.linalg.norm(x, ord=1)) 
# 10.0
print(np.sum(np.abs(x)))  
# 10

print(np.linalg.norm(x, ord=2))  
# 5.477225575051661
print(np.sum(np.abs(x) ** 2) ** 0.5)  
# 5.477225575051661

print(np.linalg.norm(x, ord=-np.inf))  
# 1.0
print(np.min(np.abs(x)))  
# 1

print(np.linalg.norm(x, ord=np.inf))  
# 4.0
print(np.max(np.abs(x)))  
# 4

【例2】求矩阵的范数

import numpy as np

A = np.array([[1, 2, 3, 4], [2, 3, 5, 8],
              [1, 3, 5, 7], [3, 4, 7, 11]])

print(A)
# [[ 1  2  3  4]
#  [ 2  3  5  8]
#  [ 1  3  5  7]
#  [ 3  4  7 11]]

print(np.linalg.norm(A, ord=1))  # 30.0
print(np.max(np.sum(A, axis=0)))  # 30

print(np.linalg.norm(A, ord=2))  
# 20.24345358700576
print(np.max(np.linalg.svd(A, compute_uv=False)))  
# 20.24345358700576

print(np.linalg.norm(A, ord=np.inf))  # 25.0
print(np.max(np.sum(A, axis=1)))  # 25

print(np.linalg.norm(A, ord='fro'))  
# 20.273134932713294
print(np.sqrt(np.trace(np.dot(A.T, A))))  
# 20.273134932713294

方阵的行列式

  • numpy.linalg.det(a) 计算行列式。

【例】计算行列式。

import numpy as np

x = np.array([[1, 2], [3, 4]])
print(x)
# [[1 2]
#  [3 4]]

print(np.linalg.det(x))
# -2.0000000000000004

矩阵的秩

  • numpy.linalg.matrix_rank(M, tol=None, hermitian=False) 返回矩阵的秩。

【例】计算矩阵的秩。

import numpy as np

I = np.eye(3)  # 先创建一个单位阵
print(I)
# [[1. 0. 0.]
#  [0. 1. 0.]
#  [0. 0. 1.]]

r = np.linalg.matrix_rank(I)
print(r)  # 3

I[1, 1] = 0  # 将该元素置为0
print(I)
# [[1. 0. 0.]
#  [0. 0. 0.]
#  [0. 0. 1.]]

r = np.linalg.matrix_rank(I)  # 此时秩变成2
print(r)  # 2

矩阵的迹

  • numpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None) 方阵的迹就是主对角元素之和。

【例】计算方阵的迹。

import numpy as np

x = np.array([[1, 2, 3], [3, 4, 5], [6, 7, 8]])
print(x)
# [[1 2 3]
#  [3 4 5]
#  [6 7 8]]

y = np.array([[5, 4, 2], [1, 7, 9], [0, 4, 5]])
print(y)
# [[5 4 2]
#  [1 7 9]
#  [0 4 5]]

print(np.trace(x))  # A的迹等于A.T的迹
# 13
print(np.trace(np.transpose(x)))
# 13

print(np.trace(x + y))  # 和的迹 等于 迹的和
# 30
print(np.trace(x) + np.trace(y))
# 30

解方程和逆矩阵

逆矩阵(inverse matrix)

设 A 是数域上的一个 n 阶矩阵,若在相同数域上存在另一个 n 阶矩阵 B,使得:AB=BA=E(E 为单位矩阵),则我们称 B 是 A 的逆矩阵,而 A 则被称为可逆矩阵。

  • numpy.linalg.inv(a) 计算矩阵a的逆矩阵(矩阵可逆的充要条件:det(a) != 0,或者a满秩)。

【例】计算矩阵的逆矩阵。

import numpy as np

A = np.array([[1, -2, 1], [0, 2, -1], [1, 1, -2]])
print(A)
# [[ 1 -2  1]
#  [ 0  2 -1]
#  [ 1  1 -2]]

# 求A的行列式,不为零则存在逆矩阵
A_det = np.linalg.det(A)  
print(A_det)
# -2.9999999999999996

A_inverse = np.linalg.inv(A)  # 求A的逆矩阵
print(A_inverse)
# [[ 1.00000000e+00  1.00000000e+00 -1.11022302e-16]
#  [ 3.33333333e-01  1.00000000e+00 -3.33333333e-01]
#  [ 6.66666667e-01  1.00000000e+00 -6.66666667e-01]]

x = np.allclose(np.dot(A, A_inverse), np.eye(3))
print(x)  # True
x = np.allclose(np.dot(A_inverse, A), np.eye(3))
print(x)  # True

A_companion = A_inverse * A_det  # 求A的伴随矩阵
print(A_companion)
# [[-3.00000000e+00 -3.00000000e+00  3.33066907e-16]
#  [-1.00000000e+00 -3.00000000e+00  1.00000000e+00]
#  [-2.00000000e+00 -3.00000000e+00  2.00000000e+00]]

求解线性方程组

  • numpy.linalg.solve(a, b) 求解线性方程组或矩阵方程。

【例】求解线性矩阵方程

#  x + 2y +  z = 7
# 2x -  y + 3z = 7
# 3x +  y + 2z =18

import numpy as np

A = np.array([[1, 2, 1], [2, -1, 3], [3, 1, 2]])
b = np.array([7, 7, 18])
x = np.linalg.solve(A, b)
print(x)  # [ 7.  1. -2.]

x = np.linalg.inv(A).dot(b)
print(x)  # [ 7.  1. -2.]

y = np.allclose(np.dot(A, x), b)
print(y)  # True

参考文献

  • https://www.cnblogs.com/moon1992/p/4960700.html
  • https://www.cnblogs.com/moon1992/p/4948793.html

练习题

计算两个数组a和数组b之间的欧氏距离。

  • a = np.array([1, 2, 3, 4, 5])
  • b = np.array([4, 5, 6, 7, 8])

【知识点:数学函数、线性代数】

  • 如何计算两个数组之间的欧式距离?
import numpy as np

a = np.array([1, 2, 3, 4, 5])
b = np.array([4, 5, 6, 7, 8])

# 方法1
d = np.sqrt(np.sum((a - b) ** 2))
print(d)  # 6.708203932499369

# 方法2
d = np.linalg.norm(a - b)
print(d)  # 6.708203932499369
6.708203932499369
6.708203932499369

计算矩阵的行列式和矩阵的逆

np.diag([5,5,5,5,5])
array([[5, 0, 0, 0, 0],
       [0, 5, 0, 0, 0],
       [0, 0, 5, 0, 0],
       [0, 0, 0, 5, 0],
       [0, 0, 0, 0, 5]])
 result=np.diag([5,5,5,5,5])
np.linalg.det(result)
3124.999999999999
np.linalg.inv(result)
array([[0.2, 0. , 0. , 0. , 0. ],
       [0. , 0.2, 0. , 0. , 0. ],
       [0. , 0. , 0.2, 0. , 0. ],
       [0. , 0. , 0. , 0.2, 0. ],
       [0. , 0. , 0. , 0. , 0.2]])
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

第九章 numpy之线性代数+练习题 的相关文章

随机推荐

  • OpenGL GLFW入门篇 - 画矩形

    效果图 主体代码 void DrawRectangle void GLfloat xl yt xr yb w h glPushMatrix glLoadIdentity glTranslatef 0 0 0 0 0 f w 1 2 h 1
  • osgEarth中opengl版本的确定

    osgEarth VirtualProgram if defined OSG GLES2 AVAILABLE define GLSL VERSION 100 define GLSL VERSION STR 100 define GLSL D
  • 聚类算法总结

    最近整理一下聚类相关的东西 数据说明 凸集 在欧氏空间中 凸集是对于集合内的每一对点 连接该对点的直线段上的每个点也在该集合内 非凸 non convex 数据 类比上述可知 距离 相似度 首先我们要了解衡量对象间差异的方法对象可能是一个值
  • 关于带MinGW版本的codeblocks

    MinGW就是Windows移植版的GCC编译器 Codeblocks是IDE 这个软件的特点是可以让你自由选择想要使用的编译器 Code Blocks是一个免费 开源 跨平台的C C IDE 支持Windows Linux MacOSX
  • Boost电路的结构及工作原理

    Boost电路定义 Boost升压电路的英文名称为 theboostconverter 或者叫 step upconverter 是一种开关直流升压电路 它能够将直流电变为另一固定电压或可调电压的直流电 也称为直流 直流变换器 DC DCC
  • COPU陆首群教授应邀在开放原子全球开源峰会上做主旨演讲

    各位领导 各位专家 同志们 朋友们 大家下午好 祝贺开放原子开源基金会首届全球开源峰会成功举办 1970年是为人们称道的UNIX元年 也是开源在全球诞生之日 开源在全球流行至今已有52年了 自从1991年我国引进UNIX现代计算系统以来 中
  • DS内排—直插排序

    目录 题目描述 思路分析 AC代码 题目描述 给定一组数据 使用直插排序完成数据的升序排序 程序要求 若使用C 只能include一个头文件iostream 若使用C语言只能include一个头文件stdio 程序中若include多过一个
  • 在java中重复一个字符串n次的几种方法

    方法一 String format 0 n d 0 replace 0 s 方法二 new String new char n replace 0 s 方法三 JAVA 8 String join Collections nCopies n
  • (三)Unity开发Vision Pro——入门

    3 入门 1 入门 本节涵盖了几个重要主题 可帮助您加快visionOS 平台开发速度 在这里 您将找到构建第一个 Unity PolySpatial XR 应用程序的分步指南的链接 以及 PolySpatial XR 开发时的一些开发最佳
  • 目标检测数据集PASCAL VOC笔记

    PASCAL VOC 数据集的应用领域有Object Classification Object Detection Object Segmentation Human Layout Action Classification等 它的常用版
  • Acwing 116. 飞行员兄弟

    枚举所有开关的状态 0 2 16 1 16位二进制数 若某一位为1表示按一下 为0表示不按 按照该方案 对所有灯泡进行操作 所在行 所在列全部按一下 判断灯泡是否全亮 如果全亮的话 记录方案 include
  • 美团客户端技术团队招人啦

    非广告哈 帮好友发一则招聘 美团客户端团队在北京招人了 性能优化 基础组件相关的岗位都有 在看机会的或者想了解一下的 都可以通过文章最后面的联系方式进行联系 或者私信我 我拉个群你们细聊 想必大家都看过美团技术团队的博客 美团技术团队 1
  • SQL中DML语句(数据操作语言)

    表示数据操作语言 凡是对表当中的数据进行增删改的都是DML 目录 insert 插入数据 update 修改数据 delete 删除数据 insert 插入数据 语法格式 insert into 表名 字段名1 字段名2 字段名3 valu
  • 如何用burpsuite进行攻击

    一 使用Burpsuite进行攻击 1 第一步打开burpsuite 2 第二部点击Repeater 3 第三步点击粉笔形状的按钮 4 输入要攻击目标的ip地址与端口号 5 添加攻击报文 进行攻击 6 查看响应结果 完整界面展示如下 注意
  • 今日头条2017校招(出题数目)

    题目描述 头条的2017校招开始了 为了这次校招 我们组织了一个规模宏大的出题团队 每个出题人都出了一些有趣的题目 而我们现在想把这些题目组合成若干场考试出来 在选题之前 我们对题目进行了盲审 并定出了每道题的难度系数 一场考试包含3道开放
  • 使用共享 MVI 架构实现高效的 Kotlin Multiplatform Mobile (KMM) 开发

    使用共享 MVI 架构实现高效的 Kotlin Multiplatform Mobile KMM 开发 文章中探讨了 Google 提供的应用架构指南在多平台上的实现 通过共享视图模型 View Models 和共享 UI 状态 UI St
  • Python3 面向对象

    文章目录 面向对象基础 类及类的定义 对象的创建 成员变量 定义格式一 常用 定义格式二 不常用 区别 成员方法 定义格式一 定义格式二 init 方法 str 方法 成员方法调成员 成员 方法 调成员 变量 成员 方法 调成员 方法 手机
  • 【WebSocket】WebSocket使用,看这篇就行

    一 WebSocket连接的建立 消息的接收和回复 当涉及到WebSocket框架的深度使用时 一个流行的选择是使用Java的Spring框架来实现 下面是一个基本的示例 演示了如何使用Spring WebSocket框架进行深度使用 首先
  • 经纬度绘图_Python气象绘图教程(七)——Cartopy

    Python地理信息库包 Cartopy 一 简介 在前面的教程中 我们已经讲解了常用的二维型数据的可视化方法 但是在日常研究中 由于大气科学属于地学系统 和地球地理信息的结合十分密切 大多数时间 需要在图形中添加地理信息 作为胶水语言 在
  • 第九章 numpy之线性代数+练习题

    线性代数 Numpy 定义了 matrix 类型 使用该 matrix 类型创建的是矩阵对象 它们的加减乘除运算缺省采用矩阵方式计算 因此用法和Matlab十分类似 但是由于 NumPy 中同时存在 ndarray 和 matrix 对象