pytrch手写数字识别

2023-11-12

使用Pytorch实现手写数字识别

目标

  1. 知道如何使用Pytorch完成神经网络的构建
  2. 知道Pytorch中激活函数的使用方法
  3. 知道Pytorch中torchvision.transforms中常见图形处理函数的使用
  4. 知道如何训练模型和如何评估模型

1. 思路和流程分析

流程:

  1. 准备数据,这些需要准备DataLoader
  2. 构建模型,这里可以使用torch构造一个深层的神经网络
  3. 模型的训练
  4. 模型的保存,保存模型,后续持续使用
  5. 模型的评估,使用测试集,观察模型的好坏

2. 准备训练集和测试集

准备数据集的方法前面已经讲过,但是通过前面的内容可知,调用MNIST返回的结果中图形数据是一个Image对象,需要对其进行处理

为了进行数据的处理,接下来学习torchvision.transfroms的方法

2.1 torchvision.transforms的图形数据处理方法

2.1.1 torchvision.transforms.ToTensor

把一个取值范围是[0,255]PIL.Image或者shape(H,W,C)numpy.ndarray,转换成形状为[C,H,W]

其中(H,W,C)意思为(高,宽,通道数),黑白图片的通道数只有1,其中每个像素点的取值为[0,255],彩色图片的通道数为(R,G,B),每个通道的每个像素点的取值为[0,255],三个通道的颜色相互叠加,形成了各种颜色

示例如下:

from torchvision import transforms
import numpy as np

data = np.random.randint(0, 255, size=12)
img = data.reshape(2,2,3)
print(img.shape)
img_tensor = transforms.ToTensor()(img) # 转换成tensor
print(img_tensor)
print(img_tensor.shape)

输出如下:

shape:(2, 2, 3)
img_tensor:tensor([[[215, 171],
                 [ 34,  12]],

                [[229,  87],
                 [ 15, 237]],

                [[ 10,  55],
                 [ 72, 204]]], dtype=torch.int32)
new shape:torch.Size([3, 2, 2])

注意:

transforms.ToTensor对象中有__call__方法,所以可以对其示例能够传入数据获取结果

2.1.2 torchvision.transforms.Normalize(mean, std)

给定均值:mean,shape和图片的通道数相同(指的是每个通道的均值),方差:std,和图片的通道数相同(指的是每个通道的方差),将会把Tensor规范化处理。

即:Normalized_image=(image-mean)/std

例如:

from torchvision import transforms
import numpy as np
import torchvision

data = np.random.randint(0, 255, size=12)
img = data.reshape(2,2,3)
img = transforms.ToTensor()(img) # 转换成tensor
print(img)
print("*"*100)

norm_img = transforms.Normalize((10,10,10), (1,1,1))(img) #进行规范化处理

print(norm_img)

输出如下:

tensor([[[177, 223],
         [ 71, 182]],

        [[153, 120],
         [173,  33]],

        [[162, 233],
         [194,  73]]], dtype=torch.int32)
***************************************************************************************
tensor([[[167, 213],
         [ 61, 172]],

        [[143, 110],
         [163,  23]],

        [[152, 223],
         [184,  63]]], dtype=torch.int32)

注意:在sklearn中,默认上式中的std和mean为数据每列的std和mean,sklearn会在标准化之前算出每一列的std和mean。

但是在api:Normalize中并没有帮我们计算,所以我们需要手动计算

  1. 当mean为全部数据的均值,std为全部数据的std的时候,才是进行了标准化。

  2. 如果mean(x)不是全部数据的mean的时候,std(y)也不是的时候,Normalize后的数据分布满足下面的关系
    KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ &new\_mean = \…

2.1.3 torchvision.transforms.Compose(transforms)

将多个transform组合起来使用。

例如

transforms.Compose([
     torchvision.transforms.ToTensor(), #先转化为Tensor
     torchvision.transforms.Normalize(mean,std) #在进行正则化
 ])

2.2 准备MNIST数据集的Dataset和DataLoader

准备训练集

import torchvision

#准备数据集,其中0.1307,0.3081为MNIST数据的均值和标准差,这样操作能够对其进行标准化
#因为MNIST只有一个通道(黑白图片),所以元组中只有一个值
dataset = torchvision.datasets.MNIST('/data', train=True, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ]))
#准备数据迭代器                          
train_dataloader = torch.utils.data.DataLoader(dataset,batch_size=64,shuffle=True)

准备测试集

import torchvision

#准备数据集,其中0.1307,0.3081为MNIST数据的均值和标准差,这样操作能够对其进行标准化
#因为MNIST只有一个通道(黑白图片),所以元组中只有一个值
dataset = torchvision.datasets.MNIST('/data', train=False, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ]))
#准备数据迭代器                          
train_dataloader = torch.utils.data.DataLoader(dataset,batch_size=64,shuffle=True)

3. 构建模型

补充:全连接层:当前一层的神经元和前一层的神经元相互链接,其核心操作就是 y = w x ​ y = wx​ y=wx,即矩阵的乘法,实现对前一层的数据的变换

模型的构建使用了一个三层的神经网络,其中包括两个全连接层和一个输出层,第一个全连接层会经过激活函数的处理,将处理后的结果交给下一个全连接层,进行变换后输出结果

那么在这个模型中有两个地方需要注意:

  1. 激活函数如何使用
  2. 每一层数据的形状
  3. 模型的损失函数

3.1 激活函数的使用

前面介绍了激活函数的作用,常用的激活函数为Relu激活函数,他的使用非常简单

Relu激活函数由import torch.nn.functional as F提供,F.relu(x)即可对x进行处理

例如:

In [30]: b
Out[30]: tensor([-2, -1,  0,  1,  2])

In [31]: import torch.nn.functional as F

In [32]: F.relu(b)
Out[32]: tensor([0, 0, 0, 1, 2])

3.2 模型中数据的形状(【添加形状变化图形】)

  1. 原始输入数据为的形状:[batch_size,1,28,28]
  2. 进行形状的修改:[batch_size,28*28] ,(全连接层是在进行矩阵的乘法操作)
  3. 第一个全连接层的输出形状:[batch_size,28],这里的28是个人设定的,你也可以设置为别的
  4. 激活函数不会修改数据的形状
  5. 第二个全连接层的输出形状:[batch_size,10],因为手写数字有10个类别

构建模型的代码如下:

import torch
from torch import nn
import torch.nn.functional as F

class MnistNet(nn.Module):
    def __init__(self):
        super(MnistNet,self).__init__()
        self.fc1 = nn.Linear(28*28*1,28)  #定义Linear的输入和输出的形状
        self.fc2 = nn.Linear(28,10)  #定义Linear的输入和输出的形状

    def forward(self,x):
        x = x.view(-1,28*28*1)  #对数据形状变形,-1表示该位置根据后面的形状自动调整
        x = self.fc1(x) #[batch_size,28]
        x = F.relu(x)  #[batch_size,28]
        x = self.fc2(x) #[batch_size,10]
  

可以发现:pytorch在构建模型的时候形状上并不会考虑batch_size

3.3 模型的损失函数

首先,我们需要明确,当前我们手写字体识别的问题是一个多分类的问题,所谓多分类对比的是之前学习的2分类

回顾之前的课程,我们在逻辑回归中,我们使用sigmoid进行计算对数似然损失,来定义我们的2分类的损失。

  • 在2分类中我们有正类和负类,正类的概率为 P ( x ) = 1 1 + e − x = e x 1 + e x P(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{1+e^x} P(x)=1+ex1=1+exex,那么负类的概率为 1 − P ( x ) ​ 1-P(x)​ 1P(x)

  • 将这个结果进行计算对数似然损失 − ∑ y l o g ( P ( x ) ) ​ -\sum y log(P(x))​ ylog(P(x))就可以得到最终的损失

那么在多分类的过程中我们应该怎么做呢?

  • 多分类和2分类中唯一的区别是我们不能够再使用sigmoid函数来计算当前样本属于某个类别的概率,而应该使用softmax函数。

  • softmax和sigmoid的区别在于我们需要去计算样本属于每个类别的概率,需要计算多次,而sigmoid只需要计算一次

softmax的公式如下:
σ ( z ) j = e z j ∑ k = 1 K e z K , j = 1 ⋯ k \sigma(z)_j = \frac{e^{z_j}}{\sum^K_{k=1}e^{z_K}} ,j=1 \cdots k σ(z)j=k=1KezKezj,j=1k

例如下图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3M089XE5-1613563231741)(…/images/1.2/softmax.png)]

假如softmax之前的输出结果是2.3, 4.1, 5.6,那么经过softmax之后的结果是多少呢?
Y 1 = e 2.3 e 2.3 + e 4.1 + e 5.6 Y 2 = e 4.1 e 2.3 + e 4.1 + e 5.6 Y 3 = e 5.6 e 2.3 + e 4.1 + e 5.6 Y1 = \frac{e^{2.3}}{e^{2.3}+e^{4.1}+e^{5.6}} \\ Y2 = \frac{e^{4.1}}{e^{2.3}+e^{4.1}+e^{5.6}} \\ Y3 = \frac{e^{5.6}}{e^{2.3}+e^{4.1}+e^{5.6}} \\ Y1=e2.3+e4.1+e5.6e2.3Y2=e2.3+e4.1+e5.6e4.1Y3=e2.3+e4.1+e5.6e5.6

对于这个softmax输出的结果,是在[0,1]区间,我们可以把它当做概率

和前面2分类的损失一样,多分类的损失只需要再把这个结果进行对数似然损失的计算即可

即:
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ & J = -\sum Y …
最后,会计算每个样本的损失,即上式的平均值

我们把softmax概率传入对数似然损失得到的损失函数称为交叉熵损失

在pytorch中有两种方法实现交叉熵损失

  1. criterion = nn.CrossEntropyLoss()
    loss = criterion(input,target)
    
  2. #1. 对输出值计算softmax和取对数
    output = F.log_softmax(x,dim=-1)
    #2. 使用torch中带权损失
    loss = F.nll_loss(output,target)
    

带权损失定义为: l n = − ∑ w i x i l_n = -\sum w_{i} x_{i} ln=wixi,其实就是把 l o g ( P ) log(P) log(P)作为 x i x_i xi,把真实值Y作为权重

4. 模型的训练

训练的流程:

  1. 实例化模型,设置模型为训练模式
  2. 实例化优化器类,实例化损失函数
  3. 获取,遍历dataloader
  4. 梯度置为0
  5. 进行向前计算
  6. 计算损失
  7. 反向传播
  8. 更新参数
mnist_net = MnistNet()
optimizer = optim.Adam(mnist_net.parameters(),lr= 0.001)
def train(epoch):
    mode = True
    mnist_net.train(mode=mode) #模型设置为训练模型
    
    train_dataloader = get_dataloader(train=mode) #获取训练数据集
    for idx,(data,target) in enumerate(train_dataloader):
        optimizer.zero_grad() #梯度置为0
        output = mnist_net(data) #进行向前计算
        loss = F.nll_loss(output,target) #带权损失
        loss.backward()  #进行反向传播,计算梯度
        optimizer.step() #参数更新
        if idx % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, idx * len(data), len(train_dataloader.dataset),
                       100. * idx / len(train_dataloader), loss.item()))

5. 模型的保存和加载

5.1 模型的保存

torch.save(mnist_net.state_dict(),"model/mnist_net.pt") #保存模型参数
torch.save(optimizer.state_dict(), 'results/mnist_optimizer.pt') #保存优化器参数

5.2 模型的加载

mnist_net.load_state_dict(torch.load("model/mnist_net.pt"))
optimizer.load_state_dict(torch.load("results/mnist_optimizer.pt"))

6. 模型的评估

评估的过程和训练的过程相似,但是:

  1. 不需要计算梯度
  2. 需要收集损失和准确率,用来计算平均损失和平均准确率
  3. 损失的计算和训练时候损失的计算方法相同
  4. 准确率的计算:
    • 模型的输出为[batch_size,10]的形状
    • 其中最大值的位置就是其预测的目标值(预测值进行过sotfmax后为概率,sotfmax中分母都是相同的,分子越大,概率越大)
    • 最大值的位置获取的方法可以使用torch.max,返回最大值和最大值的位置
    • 返回最大值的位置后,和真实值([batch_size])进行对比,相同表示预测成功
def test():
    test_loss = 0
    correct = 0
    mnist_net.eval()  #设置模型为评估模式
    test_dataloader = get_dataloader(train=False) #获取评估数据集
    with torch.no_grad(): #不计算其梯度
        for data, target in test_dataloader:
            output = mnist_net(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.data.max(1, keepdim=True)[1] #获取最大值的位置,[batch_size,1]
            correct += pred.eq(target.data.view_as(pred)).sum()  #预测准备样本数累加
    test_loss /= len(test_dataloader.dataset) #计算平均损失
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
        test_loss, correct, len(test_dataloader.dataset),
        100. * correct / len(test_dataloader.dataset)))

7. 完整的代码如下:

import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
import torchvision

train_batch_size = 64
test_batch_size = 1000
img_size = 28

def get_dataloader(train=True):
    assert isinstance(train,bool),"train 必须是bool类型"

    #准备数据集,其中0.1307,0.3081为MNIST数据的均值和标准差,这样操作能够对其进行标准化
    #因为MNIST只有一个通道(黑白图片),所以元组中只有一个值
    dataset = torchvision.datasets.MNIST('/data', train=train, download=True,
                                         transform=torchvision.transforms.Compose([
                                         torchvision.transforms.ToTensor(),
                                         torchvision.transforms.Normalize((0.1307,), (0.3081,)),]))
    #准备数据迭代器
    batch_size = train_batch_size if train else test_batch_size
    dataloader = torch.utils.data.DataLoader(dataset,batch_size=batch_size,shuffle=True)
    return dataloader

class MnistNet(nn.Module):
    def __init__(self):
        super(MnistNet,self).__init__()
        self.fc1 = nn.Linear(28*28*1,28)
        self.fc2 = nn.Linear(28,10)

    def forward(self,x):
        x = x.view(-1,28*28*1)
        x = self.fc1(x) #[batch_size,28]
        x = F.relu(x)  #[batch_size,28]
        x = self.fc2(x) #[batch_size,10]
        # return x
        return F.log_softmax(x,dim=-1)

mnist_net = MnistNet()
optimizer = optim.Adam(mnist_net.parameters(),lr= 0.001)
# criterion = nn.NLLLoss()
# criterion = nn.CrossEntropyLoss()
train_loss_list = []
train_count_list = []

def train(epoch):
    mode = True
    mnist_net.train(mode=mode)
    train_dataloader = get_dataloader(train=mode)
    print(len(train_dataloader.dataset))
    print(len(train_dataloader))
    for idx,(data,target) in enumerate(train_dataloader):
        optimizer.zero_grad()
        output = mnist_net(data)
        loss = F.nll_loss(output,target) #对数似然损失
        loss.backward()
        optimizer.step()
        if idx % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, idx * len(data), len(train_dataloader.dataset),
                       100. * idx / len(train_dataloader), loss.item()))

            train_loss_list.append(loss.item())
            train_count_list.append(idx*train_batch_size+(epoch-1)*len(train_dataloader))
            torch.save(mnist_net.state_dict(),"model/mnist_net.pkl")
            torch.save(optimizer.state_dict(), 'results/mnist_optimizer.pkl')


def test():
    test_loss = 0
    correct = 0
    mnist_net.eval()
    test_dataloader = get_dataloader(train=False)
    with torch.no_grad():
        for data, target in test_dataloader:
            output = mnist_net(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.data.max(1, keepdim=True)[1] #获取最大值的位置,[batch_size,1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_dataloader.dataset)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
        test_loss, correct, len(test_dataloader.dataset),
        100. * correct / len(test_dataloader.dataset)))


if __name__ == '__main__':

    test()  
    for i in range(5): #模型训练5轮
        train(i)
        test()
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

pytrch手写数字识别 的相关文章

随机推荐

  • 穆土 的学习和生活网站

    前端学习 哔哩哔哩 哔哩哔哩中有很多的 up 主 都有学习的资源 你可以学到等多东西 个人关注的 up 主 pink 老师 黑马培训的一位老师 他带领了很多人进入了前端的领域 我看他的 html css js 的入门商品 珠峰培训官方 周萧
  • 任意版本pytorch-gpu环境搭建方法

    任意版本pytorch gpu环境搭建方法 tortorish的博客 CSDN博客 网上关于pytorch gpu环境搭建的教程非常多 但若在国内 直接使用pytorch官网上的命令 经常会遇到下载过慢的情况 而若使用清华源 阿里源等网站
  • WindowBuilder for Eclipse 3.7

    http download eclipse org windowbuilder WB integration 3 7 MyEclipse10 7 1和MyEclipse10 7的下载地址 http downloads myeclipseid
  • 深聊自动化测试之:10年小鱼给你10条建议,让你在自动化界占据一个墙角

    10年小鱼的自动化建议 1 哪一刻 让你想起了自动化 1 1 执行回归测试 1 2 压测场景执行并发 1 3 UI稳定 接口不断升级 2 七问 是否了解自动化风险 2 1 团队成员的资历 2 2 自动化成本投入产出比 2 3 慎重对待UI级
  • Python中eval()函数的使用

    今天给大家分享一下Python中的eval 函数 如果感觉博主的文章还不错的话 希望大家点赞支持一下博主 文章目录 eval 函数 语法 实例 实例1 实例2 实例3 eval 函数 eval 函数用来执行一个字符串表达式 并返回表达式的值
  • 【Spring传播机制底层原理】

    一 Spring的事务传播机制 Spring的事务传播机制是Spring框架中最核心的机制之一 它能够灵活地控制多个事务方法的执行顺序 提交或回滚等行为 在Spring中 事务是通过TxManager来管理的 TxManager是一个接口
  • Hyper-V:无法打开虚拟机,因为虚拟机监控程序未运行

    管理员权打开 cmd 窗口 输入 bcdedit set hypervisorlaunchtype Auto 前提是机器已经开启了 虚拟化和开启了虚拟机监控程序
  • kafka 应用实战

    一 Java 中使用 kafka 进行通信 依赖
  • 孟岩谈通证(11):通证所代表的多维价值观

    通证Token都有那些多维价值观呢 我还是你举一个特别具体的例子来说明 我有一个朋友他开了一个社区 是专门做中小学教育课外辅导老师之间交流的 社区里大家互相交换教学资料 试题等等材料 你说这个东西有没有价值 教书育人 然后帮助孩子们成长 这
  • ssh远程连接Ubuntu(局域网和非局域网)

    文章目录 前言 1 局域网 远程连接 2 非局域网 远程连接 3 Zerotier常用命令 4 远程桌面控制 总结 前言 我们通常使用ssh连接虚拟机中的Ubuntu 方便学习 但是当在项目中遇到远程控制主机的时候 发现ssh连接不到外网主
  • Vue中实现电子围栏/围栏(高德地图)功能:

    1 思路 大部分与车辆轨迹相同 1 先获取key gt 官网 https lbs amap com ref https console amap com 2 下载并导入依赖 npm install vue amap S 3 使用 2 官网
  • 加速乐-AAencode-ob混淆

    加速乐 AAencode ob混淆 多层响应 Cookie 逆向 前言 本次案例是对加速乐 AAEncode OB 混淆方式的破解 破解出多层响应 Cookie 逆向 声明 本文章中所有内容仅供学习交流 相关链接做了脱敏处理 若有侵权 请联
  • Eclipse安装LomBok插件

    1 使用LomBok的好处在于实体类不用手动去生成set get方法了 类会在编译时自动生成 是代码简洁节省工作量 2 maven项目的pom文件添加坐标下载
  • 程序员进阶架构师的必备——思维导图

    架构师是什么 要做什么 架构师 是一个既需要掌控整体又需要洞悉局部瓶颈并依据具体的业务场景给出解决方案的团队领导型人物 架构师不是一个人 他需要建立高效的体系 带领团队去攻城略地 在规定的时间内完成项目 1 确认需求 架构师要懂得用户需求
  • 什么是面向对象思想

    面向对象是一种思想 是基于面向过程而言的 就是说面向对象是将功能等通过对象来实现 将功能封装进对象之中 让对象去实现具体的细节 这种思想是将数据作为第一位 而方法或者说是算法作为其次 这是对数据一种优化 操作起来更加的方便 简化了过程 面向
  • 人工智能作业homework2--------A*算法解决八数码

    1 启发式搜索算法A 启发式搜索算法A 一般简称为A算法 是一种典型的启发式搜索算法 其基本思想是 定义一个评价函数f 对当前的搜索状态进行评估 找出一个最有希望的节点来扩展 评价函数的形式如下 f n g n h n 其中n是被评价的节点
  • 全网最详细中英文ChatGPT接口文档(五)30分钟快速入门ChatGPT——手把手示例教程:如何建立一个人工智能回答关于您的网站问题,小白也可学

    30分钟开始使用ChatGPT Models模型 How to build an AI that can answer questions about your website 如何建立一个人工智能 回答有关您的网站的问题 Getting
  • 整理了27个Python人工智能库,建议收藏

    为了大家能够对人工智能常用的 Python 库有一个初步的了解 以选择能够满足自己需求的库进行学习 对目前较为常见的人工智能库进行简要全面的介绍 1 Numpy NumPy Numerical Python 是 Python的一个扩展程序库
  • ssd m.2接口详解

    ssd有两种接口 一种是sata 一种是m 2 这里主要深入讲解一下m 2接口的ssd 1 ssd 尺寸与规格 我们在买ssd的时候 商家都会说什么ssd是2280还是2242规格的 这里的规格实际上就是代表的ssd的大小 M 2模组的尺寸
  • pytrch手写数字识别

    使用Pytorch实现手写数字识别 目标 知道如何使用Pytorch完成神经网络的构建 知道Pytorch中激活函数的使用方法 知道Pytorch中torchvision transforms中常见图形处理函数的使用 知道如何训练模型和如何