[论文阅读] (13)英文论文模型设计(Model Design)如何撰写及精句摘抄——以入侵检测系统(IDS)为例

2023-11-13

《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座,并分享给大家,希望您喜欢。由于作者的英文水平和学术能力不高,需要不断提升,所以还请大家批评指正,非常欢迎大家给我留言评论,学术路上期待与您前行,加油。

前一篇从个人角度介绍英文论文引言如何撰写。这篇文章将从个人角度介绍英文论文模型设计(Model Design)如何撰写,并以入侵检测系统为例(Intrusion Detection System)。一方面自己英文太差,只能通过最土的办法慢慢提升,另一方面是自己的个人学习笔记,并分享出来希望大家批评和指正。希望这篇文章对您有所帮助,这些大佬是真的值得我们去学习,献上小弟的膝盖~fighting!

在这里插入图片描述

这里选择的论文多数为近三年的CCF A和二区以上为主,尤其是顶会顶刊。当然,作者能力有限,只能结合自己的实力和实际阅读情况出发,也希望自己能不断进步,每个部分都会持续补充。可能五年十年后,也会详细分享一篇英文论文如何撰写,目前主要以学习和笔记为主。大佬还请飘过O(∩_∩)O

前文赏析:


一.模型设计或方法如何撰写

论文如何撰写因人而异,作者仅分享自己的观点,欢迎大家提出意见。然而,坚持阅读所研究领域最新和经典论文,这个大家应该会赞成,如果能做到相关领域文献如数家珍,就离你撰写第一篇英文论文更近一步了。在模型设计中,重点是模型如何与需要解决的问题结合,让人觉得确实该模型能解决类似的问题,一个好的故事是论文成功的关键。同时,多读多写是基操,共勉!

1.论文总体框架及方法撰写

该部分回顾和参考周老师的博士课程内容,感谢老师的分享。典型的论文框架包括两种(The typical “anatomy” of a paper),如下所示:

第一种格式:理论研究

  • Title and authors
  • Abstract
  • Introduction
  • Related Work (可置后)
  • Materials and Methods
  • Results
  • Acknowledgements
  • References

第二种格式:系统研究

  • Title and authors
  • Abstract
  • Introduction
  • Related Work (可置后)
  • System Model
  • Mathematics and algorithms
  • Experiments
  • Acknowledgements
  • References

System Model(系统模型)

  • 应该足够详细,让另一个科学家来理解这个问题
  • Objective(客观)
  • Constraints(约束)
  • Difficulties and Challenges

Mathematics and algorithms(算法)

  • 这些部分是论文的技术核心
  • 通过阅读高质量论文来学习对应的框架

注意,阅读理解该部分是前提,在阅读算法实现前,我们需要注意以下几点:

  • restate unclear points in your own words
    用自己的语言重申不明确的观点
  • fill in missing details (assumptions, algebraic steps, proofs, pseudocode)
    填写缺失的详细信息(假设、代数步骤、证明、伪代码)
  • annotate mathematical objects with their types
    使用对应的类型注释数学对象
  • come up with examples that illustrate the author’s ideas, and examples that would be problematic for the author
    给出一些例子来说明作者的想法,以及对作者有问题的例子
  • draw connections to other methods and problems you know about
    绘制连接到您所知道的其他方法和问题
  • ask questions about things that aren’t stated or that don’t make sense
    问一些没有陈述或没有明确的问题
  • challenge the paper’s claims or methods dream up followup work that you (or someone) should do
    质疑你(或某人)论文应该做的主张或方法

2.方法或模型设计撰写

该部分主要是学习易莉老师书籍《学术写作原来是这样》,具体如下:

“通常,我会指导学生从方法和结果部分开始一篇论文的写作。方法和结果相比于论文其他部分来说比较好写,学生参照文献‘依葫芦画瓢’,也能快速掌握。一般就是按部就班地写,实验是怎么做的,方法部分就怎么写;发现了什么,结果部分就写什么。”

个人而言,感觉不太赞同这个观点。私以为方法或系统设计非常重要,至少在计算机领域,尤其方法对应的框架图,一定程度上能决定您论文的观点、创新及贡献,也决定论文最终的层次。其次,如果想投顶会或顶刊,一个好的故事,或者一个与您贡献吻合的方法描述至关重要。当然,初学者写作从模型设计开始是可以的。

在方法部分的写作中,需要注意:

  • 抓住重点。初学者容易花最多的篇幅写自己实验的预处理、数据筛选等。其实其中大量的细节可以笼统地写,或者放到补充材料中。如果文章中这些无助于读者理解科学发现的细节过多,必然分散读者的注意力,消耗他们过多的能量,从而影响他们对文章最重要部分的理解。同时,该写的内容没有写清,不该写的内容却写得太多。

该部分有一个重要的问题——谋篇布局:怎么讲好一个故事

  • 对于一篇文章来说,不管语法多正确,用词多精确,句子多有逻辑,如果没有把故事讲好,它很难成为一篇好的文章。故事是整篇文章的灵魂,它奠定了文章的主要贡献和创新点。大纲是一篇文章的骨架,大纲的写法能将故事呈现出来,它决定了整篇文章的组织架构的合理性和逻辑性。

第一个问题:什么样的故事是好故事?

在评估一个科研成果的科学价值时,最重要的是创新性和研究意义。创新性是指研究者不是单纯地跟随或重复别人的研究,而是有自己的独到的新贡献。据说,研究要经历三个阶段:“me too”、“me better”、“me only”。同样,创新性也可以套用三个阶段描述。

  • 旧范式新条件
    发现某一现象在不同条件下有不一样的表现,这类创新多体现于用了新样本,结语“me too”和“me better”之间
  • 旧范式新技术
    属于“me better”级别创新,新方法比原来方法好
  • 新的数据处理方法
    统计学和人工智能发展催生很多新的数据处理方法,用这些模型处理旧数据得出新结论,解决新问题,属于“me better”级别创新
  • 新范式
    用一种全新的方法来研究问题,介于“me better”和“me only”之间
  • 新问题
    提出新问题的研究属于“me only”层面,提出一个全新问题的同时往往伴随着一种新的研究方法,提出的新问题的价值应该是非常重要的和需要被论证的,当然也存在风险

同时,创新不是天马行空。科研中的创新都是有边界的,创新是有研究意义的。总之,在开始写论文之前,我们需要考虑这篇文章大概要投稿给什么期刊,是小领域的专业期刊,还是一般的心理学期刊,这个决定会影响你的文章思路以及讲故事要达到的层次。

比起其他的写作技能,讲故事的能力更难掌握,因为这是一种“只可意会不可言传”的神秘技能,甚至有不少人觉得这是写作的天花板。有些研究者在国外老板的大实验室里能做出非常漂亮的工作,回到柜内自己做PI时成果却平平无奇,多是因为国外大老板的研究视野(vision)和品味决定了文章的层次,而他们自己却没有学会提有前瞻性和创新性的科学问题。

个人想对上面的观点进行补充。确实国外的大老板能带给我们很大的视野,提升论文的层次。然而,我们大部分的科研工作者,尤其是博士生,很少能接触到这么厉害的科学家,甚至很多都需要独立的搞论文。此时,怎么办呢?

我觉得一方面我们需要多读论文,多看国外大佬们的分享,通过学习和对比他们的论文和方法来提升自己;另一方面我们要多写论文,多做实验,善于关注问题,当我们的论文故事叙述能写得像顶会、顶刊时,我们至少会中一些SCI二区、B会,如果再持之以恒的提升质量、想idea,最后肯定也能写出高质量论文。芸芸众生,虽然我们没有这些大佬的帮助,但我相信通过努力肯定能学会科研,提升自己。这也是我写这个专栏的目的,从零开始学习英文写作,用最土的方法学习写作。博士路上一起前行,相信自己,加油~

第二个问题:怎么将一个故事讲好?
有了故事内核,我们还需要把这个故事完美地呈现出来。为此,我们需要学习如何利用大纲(outline)来帮助文章布局。大纲是关于文章组织架构的写作计划,它可以帮助你思考文章的主要故事和框架,抓住核心科学问题,把文章的故事有顺序、有逻辑、有重点地呈现出来。

  • Title and authors
  • Abstract
  • Introduction
  • Related Work (可置后)
  • System Model
  • Mathematics and algorithms
  • Experiments
  • Acknowledgements
  • References

3.模型设计撰写之个人理解

个人感觉:模型设计非常重要,通常我的写法如下。

  • 首先,阅读大量相关方向的论文,只有多读才会写,然后总结现有方法的优缺点,找到你需要解决的问题或方法(idea难),如果能发现新问题并提出解决方法最好。
  • 其次,我会结合自己的方法进行简单实验,实验证明成功之后构建论文或模型的框架(论文的“龙骨”),接着也会融入一些类似于剪枝的细节处理算法。
  • 接着,我会叙述模型的整体框架,可以将Overview放到Model Design第一部分叙述,也可以置于前作为一大块叙述。
  • 再次,根据整体框架分别实现各个部分,以深度学习为例,通常包括数据采集、数据预处理、特征选择、模型构建、分类任务等。最重要的是你提出的算法或具有贡献的部分应该进行详细描述,通过算法、公式或图表,当然也包括一些约束。
  • 最后,整个故事应该围绕文章贡献、观点及实验叙述,更好地突出论文的卖点。

以入侵检测(intrusion detection)为例,简单介绍几篇经典论文的模型设计写法及组成,通常都是论文框架或算法如何实现的,包括框架图、算法、公式、表格、约束等。

(1) Chuanpu Fu, et al. Realtime Robust Malicious Traffic Detection via Frequency Domain Analysis. CCS.

4 DESIGN DETAILS

  • 4.1 Frequency Feature Extraction Module
  • 4.2 Automatic Parameters Selection Module
  • 4.3 Statistical Clustering Module

在这里插入图片描述

在这里插入图片描述

(2) Sunwoo Ahn, et al. Hawkware: Network Intrusion Detection based on Behavior Analysis with ANNs on an IoT Device. DAC

III. HAWKWARE DESIGN

  • A. Overview
  • B. Threat models and assumptions
  • C. Monitor Module
  • D. Detector Module

在这里插入图片描述

在这里插入图片描述

(3) Ning Wang, et al. MANDA: On Adversarial Example Detection for Network Intrusion Detection System. IEEE Infocom.

III. SYSTEM MODEL AND THREAT MODEL

  • A. Notations
  • B. System Model
  • C. Threat Model

IV. THE MANDA SYSTEM

  • A. Problem-Space AE Attack for IDS
  • B. Properties of AE
  • C. MANDA

在这里插入图片描述

(4) Mohammed A. Ambusaidi, et al. Building an Intrusion Detection System Using a Filter-Based Feature Selection Algorithm. IEEE TRANSACTIONS ON COMPUTERS

4 INTRUSION DETECTION FRAMEWORK BASED ON LEAST SQUARE SUPPORT VECTOR MACHINE

  • 4.1 Data Collection
  • 4.2 Data Preprocessing
  • 4.3 Classifier Training
  • 4.4 Attack Recognition

在这里插入图片描述

(5) Jun Zeng, et al. WATSON: Abstracting Behaviors from Audit Logs via Aggregation of Contextual Semantics. NDSS.

III. WATSON DESIGN

  • A. Approach Overview
  • B. Knowledge Graph Construction
  • C. Event Semantics Inference
  • D. Behavior Summarization
  • E. Behavior Semantics Aggregation
  • F. Behavior Clustering

在这里插入图片描述

(6) Ron Bitton, et al. A Machine Learning-Based Intrusion Detection System for Securing Remote Desktop Connections to Electronic Flight Bag Servers. IEEE TDSC.

3 AN OVERVIEW OF THE PROPOSED NIDS FOR SECURING RDP CONNECTIONS

  • 3.1 Anomaly Detection for RFB Protocol
  • 3.2 Illustrating the Proposed Fine-Grained Algorithm

4 ADETAILED DESCRIPTION OF THE PROPOSED NIDS FOR SECURING RDP CONNECTIONS

  • 4.1 Network Monitoring
  • 4.2 Feature Extraction
  • 4.3 Anomaly Detection
    – 4.3.1 Model Construction
    – 4.3.2 Detecting Anomalous TCP Packets

在这里插入图片描述


4.整体结构撰写补充

同时,模型设计整体结构和写作细节补充几点:(引用周老师博士课程,受益匪浅)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

实验部分同样有很多细节,下一篇文章我们再详细介绍。

在这里插入图片描述

在这里插入图片描述


二.入侵检测系统论文引言句子

个人习惯将模型设计结合框架图进行描述,也欢迎大家批评指正。下面主要以CCF A会议和期刊论文为主进行介绍,重点以入侵检测系统(Intrusion Detection System,IDS)领域为主。

第0部分:引入

该部分主要是模型设计板块的引入,介绍这部分的核心内容组成。

在这里插入图片描述

In this section, we present the design details of Whisper, i.e., the design of three main modules in Whisper.

  • Chuanpu Fu, et al. Realtime Robust Malicious Traffic Detection via Frequency Domain Analysis. CSS.

We will first describe the design goals of our provenance-based intrusion detection system, then we elaborate (详细描述) the details on design and implementation of this system.

  • Yulai Xie, et al. Pagoda: A Hybrid Approach to Enable Efficient Real-Time Provenance Based Intrusion Detection in Big Data Environments. IEEE TDSC.

In this section, we outline our SDN-based system to enforce MUD policies and dynamically inspect exception traffic which is a small fraction of total packets to/from IoT devices. Our system uses as input MUD profiles of 28 consumer IoT devices that we have automatically generated by the MUDgee tool [9] using packet traces collected over several months. We next begin with the architecture of our system.

  • Ayyoob Hamza, et al. Combining MUD Policies with SDN for IoT Intrusion Detection. IOT S&P.

In this section, we present the design of MANDA, the proposed AE detector for ML-based IDS, and explain the rationale behind each design choice. The valid input to an IDS system is real network traffic flows in the problem-space. Therefore, the generated AE should also lie in the same problem-space of IDS. We adapt existing feature-space AE generation algorithms to problem-space algorithms in order to generate AEs that can map back to valid real network events. The key insight for detecting AEs is to identify the discrepancy between true benign samples and AEs. Such an intuition motivates us to investigate AE’s position to the decision-boundary of the IDS model and its position in the traffic manifolds formed by training samples.

  • Ning Wang, et al. MANDA: On Adversarial Example Detection for Network Intrusion Detection System. IEEE Infocom.

In this section, the sensor data are analyzed in the frequency domain based on the NPGF. First, the second-order NPGF is introduced in Section III-A to reconstruct the IoT sensor data. To conduct the frequency-domain analysis for the sensor data reconstruction, GFT and its inverse transform are presented in Section III-B, and the frequency-domain analysis for the second-order NPGF is presented in Section III-C.

  • Zhenlong Xiao, et al. Anomalous IoT Sensor Data Detection: An Efficient Approach Enabled by Nonlinear Frequency-Domain Graph Analysis. IEEE INTERNET OF THINGS JOURNAL.

In this section, we describe how the disagreement-based semi-supervised learning works, and introduce how to use it to construct a false alarm filter (simply called DASSL false alarm filter). Then, we present the framework of DAS-CIDS and show how to combine semi-supervised learning with CIDSs.

  • Wenjuan Li, et al. Enhancing collaborative intrusion detection via disagreement-based semi-supervised learning in IoT environments. Journal of Network and Computer Applications.

In this section, we first present the intuition of a conventional LSTM architecture. Then, we explain in detail the bidirectional LSTM (BiDLSTM) architecture. We further describe the NSL-KDD dataset used to train our model.

  • Yakubu Imrana, et al. Adversarial machine learning in Network Intrusion Detection Systems. Expert Systems With Applications.

In this section, we give a technical description of the features in the data sets used in our experiments. We then explain the details of the techniques employed for adversarial example generation. This leads to the layout of our computational setting.

  • Elie Alhajjar, et al. Adversarial machine learning in Network Intrusion Detection Systems. Expert Systems With Applications.

第1部分:System Model / Overview

该部分主要介绍模型的总体框架和主要实现方法,有些论文也将Overview放入模型设计的第一部分,当然很多论文将Overview置于模型设计前单独叙述。

The overall architecture of Hawkware is depicted in Figure 1. Hawkware is divided into two main modules: the monitor module (MM) and the detection module (DM). MM monitors both the network and device behaviors and extracts the relevant features for the ANN named as Hawknet. DM detects any suspicious behaviors indicating network intrusions by utilizing Hawknet.

Hawkware consists of five components and their functions are summarized as follows: (1) the packet analyzer (PA) analyzes network packet headers and extracts relevant features; (2) the system call logger (SCL) records the device behavior and extracts features related to incoming/outgoing network packets; (3) the feature preprocessor (FP) aggregates both extracted features and transfer them as inputs to Hawknet; (4) the Hawknet controller (HC) examines the Hawknet’s outputs and determines the existence of intrusions; (5) the Hawknet quantifies the degree of anomaly.

  • Sunwoo Ahn, et al. Hawkware: Network Intrusion Detection based on Behavior Analysis with ANNs on an IoT Device. DAC

The proposed anomaly detection method is designed to prevent malicious entities from exploiting vulnerabilities in the remote desktop server. The proposed solution specifically focuses on the remote framebuffer protocol [1], which is one of the common protocols used for connecting and interacting with computers remotely.

  • Ron Bitton, et al. A Machine Learning-Based Intrusion Detection System for Securing Remote Desktop Connections to Electronic Flight Bag Servers. IEEE TDSC.

The framework of the proposed intrusion detection system is depicted in Fig. 1. The detection framework is comprised of four main phases: (1) data collection, where sequences of network packets are collected, (2) data preprocessing, where training and test data are preprocessed and important features that can distinguish one class from the others are selected, (3) classifier training, where the model for classification is trained using LS-SVM, and (4) attack recognition, where the trained classifier is used to detect intrusions on the test data.

Support Vector Machine is a supervised learning method [38]. It studies a given labeled dataset and constructs an optimal hyperplane in the corresponding data space to separate the data into different classes. Instead of solving the classification problem by quadratic programming, Suykens and Vandewalle [39] suggested re-framing the task of classification into a linear programming problem. They named this new formulation the Least Squares SVM (LS-SVM). LS-SVM is a generalized scheme for classification and also incurs low computation complexity in comparison with the ordinary SVM scheme [40]. One can find more details about calculating LS-SVM in Appendix B, available in the online supplemental material. The following sections explain each phase in detail.

  • Mohammed A. Ambusaidi, et al. Building an Intrusion Detection System Using a Filter-Based Feature Selection Algorithm. IEEE TRANSACTIONS ON COMPUTERS

Figure 1 summarises the MAGPIE architecture. Its collection phase captures and decodes the data coming from cyber (computation, communication) or physical feeds (e.g., audio, signal strength). It can dynamically activate or deactivate interfaces and decode the corresponding raw feeds, such as sensor readings or network datagrams.

Smart homes generate large volumes of usually encrypted data [24] that may differ considerably between different environments. In the transcription phase, MAGPIE considers only meta-data that are consistent across different smart homes. … Moreover, by reading only smart home network communication flow meta-data, MAGPIE is better positioned to preserve privacy. MAGPIE extracts meta-data streams (MDS) based on specific interface datastream parsing logic (e.g., communication/application/sensor protocol) (Figure 2).

  • Ryan Heartfield, et al. Self-Configurable Cyber-Physical Intrusion Detection for Smart Homes Using Reinforcement Learning. IEEE TIFS.

Fig. 1 shows the architecture of Pagoda. It consists of six components, namely, Provenance collection, Provenance pruning, Provenance storage and maintenance, Rule building and deduplication, Detection process andForensic analysis. The Provenance collection component (部分) is responsible for monitoring the behaviors of the normal/intrusion applications, intercepting the system calls invoked by them and translate these system calls to causality-based provenance records. Then the provenance pruning module omits the provenance records that are not related to intrusion detection to improve the detection accuracy and save the storage space simultaneously. The Provenance storage and maintenance component uses key-value memory database (e.g., Redis [37]) to store rule database and run the provenance-based intrusion detection algorithm to make real-time detection. The Rule building and deduplication module constructs the rule sets for intrusion detection and removes the duplicated strings to make the rule database as small as possible. The Detection process component judges whether the intrusion has happened according to the rule sets and also updates the rule sets according to the detection results. At last, the Forensic analysis module looks for the system vulnerability and intrusion sources by making forward and backward queries.

  • Yulai Xie, et al. Pagoda: A Hybrid Approach to Enable Efficient Real-Time Provenance Based Intrusion Detection in Big Data Environments. IEEE TDSC.

Fig. 3 illustrates the overall process of applying the proposed fine-grained algorithm for evaluating an incoming packet. As can be seen, the process starts with a new incoming packet. First, two types of features, contextual and content-based, are extracted from the packet (step 1). The contextual features are extracted from the header of the packet, and the content-based features are extracted from the packet’s payload. Next, for dimensionality reduction, as well as for improving detection rate, a ‘message type classification’ PCA model is applied on the content-based features (step 2). The resulting PCA features, along with the contextual features, are used as the input vector to a decision tree model.

The decision tree model is applied on the packet’s feature vector to classify the packet based on its message type (step 3). Note that in the example provided in Fig. 3 the packet is classified by the decision tree model as a ‘Pointer Event’ packet.

Based on the derived message type (‘Pointer Event’), in the next step (step 4) a second PCA model which was initially created for each specific message type, is applied on the original content-based features of the packet.

Finally, the resulting PCA features are used by a k-means algorithm and CBLOF model of the specific message type (‘Pointer Event’) in order to assign an anomaly score for the packet.

  • Ron Bitton, et al. A Machine Learning-Based Intrusion Detection System for Securing Remote Desktop Connections to Electronic Flight Bag Servers. IEEE TDSC.

A typical architecture of a ML-based IDS is shown in Fig. 1. Usually, IDS is a passive infrastructure which rarely interferes with the network traffic under monitoring. An IDS sniffs the internal interface of the firewall in a read-only mode and sends alerts to an IDS management server via a read-and-write network interface [33], [34]. As Fig. 1 shows, a ML-based IDS is composed of the following modules [3]:

  • Network Traffic Monitor keeps tracking the ongoing network traffic of a communication and networking system.

  • Feature Extractor processes the raw traffic data as feature vectors in a pre-defined form.

  • Training Phase. In the training phase, an ML model is trained with both benign and malicious traffic instances. We refer to the ML model as IDS model.

  • Detection Phase. In the detection phase, processed runtime traffic instances are fed into the learned model. An alert will be generated if an input instance is classified as positive by IDS model.

  • Ning Wang, et al. MANDA: On Adversarial Example Detection for Network Intrusion Detection System. IEEE INFOCOM.


第2部分:数据预处理

The data obtained during the phase of data collection are first processed to generate the basic features such as the ones in KDD Cup 99 dataset [41]. This phase contains three main stages shown as follows.

Data Transferring. The trained classifier requires each record in the input data to be represented as a vector of real number. Thus, every symbolic feature in a dataset is first converted into a numerical value. For example, the KDD CUP 99 dataset contains numerical as well as symbolic features. These symbolic features include the type of protocol (i.e., TCP, UDP and ICMP), service type (e.g., HTTP, FTP, Telnet and so on) and TCP status flag (e.g., SF, REJ and so on). The method simply replaces the values of the categorical attributes with numeric values.

Data Normalisation. An essential step of data preprocessing after transferring all symbolic attributes into numerical values is normalisation. Data normalisation is a process of scaling the value of each attribute into a well-proportioned range, so that the bias in favor of features with greater values is eliminated from the dataset. Data used in Section 5 are standardised. Every feature within each record is normalised by the respective maximum value and falls into the same range of [0-1]. The transferring and normalisation process will also be applied to test data.

  • Mohammed A, et al. Building an Intrusion Detection System Using a Filter-Based Feature Selection Algorithm. IEEE TRANSACTIONS ON COMPUTERS.

As mentioned in Section 4.3 above, the NSL-KDD dataset comes with 38 numeric and 3 non-numeric features. However, just as any RNN, the proposed BiDLSTM model only handles numerical data inputs. As a result, there is a need for us to convert all non-numeric features to numeric representations. The features (protocol type, service and flag) are the non-numeric features in the NSL-KDD dataset that require transformation into numeric form. These three features are encoded and assigned integer values unique to each of them. After successfully transforming these features into numeric form, the next appropriate thing is feature scaling. Feature scaling ensures that the dataset is in the normalized form. The values of some features in the NSL-KDD dataset (e.g., src_bytes and dst_bytes) have uneven distribution, so we scale every feature’s values within the range of (0, 1) using Min–Max scaling. By this, we ensure that our classifier does not produce biased outcomes. The expression for the Min–Max feature scaling is as follows:

  • Yakubu Imrana, et al. A bidirectional LSTM deep learning approach for intrusion detection. Expert Systems With Applications.

Note that we apply PCA transformation twice in the overall proposed process. In the first task, namely the message type classification, we apply the PCA transformation on all packet payloads in order to bring out the patterns that are useful for differentiating packets by its message types, as well as for dimensionality reduction. In the second task, namely the fine-grained anomaly detection, we apply the PCA transformation on subsets of packets belonging to the same message type; this is performed separately for each message type.

  • Ron Bitton, et al. A Machine Learning-Based Intrusion Detection System for Securing Remote Desktop Connections to Electronic Flight Bag Servers. IEEE TDSC.

第3部分:本文提出的核心算法(特征选择)

Thus, we need a measure capable of analysing the relation between two variables no matter whether they are linearly or nonlinearly dependent. For these reasons, this work intends to explore a means of selecting optimal features from a feature space regardless of the type of correlation between them.

Even though every connection in a dataset is represented by various features, not all of these features are needed to build an IDS. Therefore, it is important to identify the most informative features of traffic data to achieve higher performance. In the previous section using Algorithm 1, a flexible method for the problem of feature selection, FMIFS, is developed. However, the proposed feature selection algorithms can only rank features in terms of their relevance but they cannot reveal the best number of features that are needed to train a classifier. Therefore, this study applies the same technique proposed in [12] to determine the optimal number of required features. To do so, the technique first utilises the proposed feature selection algorithm to rank all features based on their importance to the classification processes.

Then, incrementally the technique adds features to the classifier one by one. The final decision of the optimal number of features in each method is taken once the highest classification accuracy in the training dataset is achieved.

The selected features for all datasets are depicted in Tables 1 [a, b, c], where each row lists the number and the indexes of the selected features with respect to the corresponding feature selection algorithm. In addition, for KDD Cup 99 and to make a comparison with those systems that have been evaluated on different types of attacks (discussed in Sections 5.5 and 5.6), we construct five classes. One of these classes contains purely the normal records and the other four hold different types of attacks (i.e., DoS, Probe, U2R, R2L), respectively. The proposed feature selection algorithm is applied to the aforementioned classes. The selected features are shown in Table 3.


第4部分:模型实现详解

The proposed solution (i.e., the fine-grained anomaly detection algorithm) for detecting anomalous TCP packets in RFB traffic combines supervised classification techniques, together with unsupervised cluster analysis and anomaly detection methods. The solution consists of two primary phases, the Model Construction Phase in which we utilize legitimate RFB traffic to construct a predictive model which represents the normal protocol behavior; and the Detection Phase in which we apply these models in order to detect anomalous protocol behavior.

  • Ron Bitton, et al. A Machine Learning-Based Intrusion Detection System for Securing Remote Desktop Connections to Electronic Flight Bag Servers. IEEE TDSC.

Now we utilize the statistical clustering algorithm to learn the patterns of the frequency domain features obtained from the feature extraction module with the selected parameters. We train the statistical clustering algorithm with only benign traffic. In the training phase, this module calculates the clustering centers of the frequency domain features and the averaged training loss. In order to improve the robustness of Whisper and reduce false positive caused by the extreme values, we segment the frequency domain feature matrix R with a sampling window of length. We use … to denote the number of samples and … to denote the start points. We average the sampling window on the dimension of the feature sequence and use … to indicate the input of the clustering algorithm. We can obtain:

In this module, we extract the frequency domain features from high speed traffic. We acquire the per-packet features of

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

[论文阅读] (13)英文论文模型设计(Model Design)如何撰写及精句摘抄——以入侵检测系统(IDS)为例 的相关文章

随机推荐

  • STM32使用SPI通信驱动2.4G无线射频模块发送数据

    目录 SPI介绍 SPI接口原理 SPI工作原理 SPI特征 引脚配置 结构体 库函数 SPI配置过程 SPI h SPI c NRF24L01无线射频模块 NRF24L01厂家驱动代码移植 NRF24L01 h NRF24L01 c ma
  • 分析一个别人的qt+opengl例子

    Qt5 OpenGL学习笔记 用Qt封装的QOpenGL系列绘制有颜色有深度的三角形 最近学习OpenGL 虽然说Qt可以使用原生OpenGL的API 但是Qt也提供了封装的QOpenGL系列 我用原生的和封装的分别实现了一次简单渲染 都是
  • 竞赛 基于卷积神经网络的乳腺癌分类 深度学习 医学图像

    文章目录 1 前言 2 前言 3 数据集 3 1 良性样本 3 2 病变样本 4 开发环境 5 代码实现 5 1 实现流程 5 2 部分代码实现 5 2 1 导入库 5 2 2 图像加载 5 2 3 标记 5 2 4 分组 5 2 5 构建
  • Python Web系列学习2-Django

    1 django admin Django项目管理工具 建立一个Django项目用 django admin startproject xxx 生成的站点目录结构为 2 进入站点目录 建立一个应用 python manage py star
  • Qt基础篇:Qt读取路径下所有文件或指定类型文件(含递归、判断是否为空、创建路径)

    文件路径的拆解 QFileInfo fileinfo QString file full ui gt m AlgorithmFilePathLineEdit gt text qDebug lt lt file full 输出1 filein
  • Java框架体系架构的知识,分享一点面试小经验

    前言 当前我们都会说SpringBoot是Spring框架对 约定优先于配置理念的最佳实践的产物 一个典型的SpringBoot应用本质上其实就是一个基于Spring框架的应用 而如果大家对Spring框架已经了如指掌 那么 在我们一步步揭
  • Python实现截图——附完整源码

    Python实现截图 附完整源码 为了能在日常工作中方便地截取并保存屏幕截图 我们可以利用Python编写一段代码实现这个功能 本文将介绍基于Windows平台下的Python截图实现方法 包括如何使用Python的Pillow模块以及py
  • YOLO8添加facial landmark和Head Pose的评价逻辑

    目录 TOC 目录 前言 一 如何在val py中添加NME的逻辑 二 在val py中添加Angle Eorror的逻辑 1 引入库 三 将AFLW2000转为yolo格式 1 参考ultralyticsFaceMark process3
  • JAVA开发环境JDK安装及配置

    一 安装JDK 获取JDK的安装包 1 通过官网下载 2 打开安装包 开始安装JDK和JRE 1 打开JDK安装包 2 点击下一步开始JDK安装 3 更改安装路径 接下来以我的电脑为例安装到E盘 其他盘同理 4 将文件夹路径改到E盘新建的文
  • 用js动态创建svg

    吃水不忘挖井人 svg基础教程https www bilibili com video BV1Pt411y7V6 p 1 要实现的效果 svg文件的写法
  • 【LSTM回归】基于粒子群优化注意力机制的长短时记忆神经网络PSO-attention-LSTM实现数据回归预测附matlab代码

    作者简介 热爱科研的Matlab仿真开发者 修心和技术同步精进 matlab项目合作可私信 个人主页 Matlab科研工作室 个人信条 格物致知 更多Matlab完整代码及仿真定制内容点击 智能优化算法 神经网络预测 雷达通信 无线传感器
  • MySQL之分表分库分区

    数据库分表可以解决单表海量数据的查询性能问题 分库可以解决单台数据库的并发访问压力问题 分表 分表分为水平分表和垂直分表 水平分表原理 分表策略通常是用户ID取模 如果不是整数 可以首先将其进行hash获取到整 水平分表遇到的问题 1 跨表
  • Hadoop序列化案例

    Hadoop序列化案例 统计每一个手机号耗费的总上行流量 总下行流量 总流量 数据 1 13736230513 192 196 100 1 www baidu com 2481 24681 200 2 13846544121 192 196
  • Kafka3.0.0版本——Leader Partition自动平衡

    目录 一 Leader Partition自动平衡的概述 二 Leader Partition自动平衡的相关配置参数 三 Leader Partition自动平衡的示例 一 Leader Partition自动平衡的概述 正常情况下 Kaf
  • 代码审计练习题

    代码审计练习题 源码 方法 简单记录一下姿势 源码 判断var1和var2是否为对象 用弱不等号判断 分别判断md5
  • 将CSDN文章导出为.md、HTML、pdf格式

    将CSDN文章导出为 md HTML pdf格式 一 将CSDN文章导出为 md文件 二 将CSDN文章导出为HTML文件 三 把 md文件转换为pdf格式 一 将CSDN文章导出为 md文件 1 打开一篇CSDN文章 点击上方的 导出 按
  • 后端(五):JVM

    目录 JVM 中的内存区域划分 JVM 的类加载机制 1 加载 2 验证 3 准备 4 解析 5 初始化 JVM 中的垃圾回收策略 找 确认垃圾 1 引用计数 2 可达行分析 释放 垃圾 对象 1 标记清除 2 复制算法 3 标记整理 分代
  • Ubuntu18.04搭建VSCode编译环境

    确认ubuntu 18 04 uname a 添加root帐户密码 sudo passwd root 第一步 配置C 编译环境 安装gcc 和 g gcc v g v sudo apt install gcc sudo apt instal
  • 【maven】maven settings.xml 中 mirror 和 repository 的区别

    一 概述 maven的settings xml文件里面有proxy server repository mirror的配置 在配置仓库地址的时候容易混淆 proxy是服务器不能直接访问外网时需要设置的代理服务 不常用 server是服务器要
  • [论文阅读] (13)英文论文模型设计(Model Design)如何撰写及精句摘抄——以入侵检测系统(IDS)为例

    娜璋带你读论文 系列主要是督促自己阅读优秀论文及听取学术讲座 并分享给大家 希望您喜欢 由于作者的英文水平和学术能力不高 需要不断提升 所以还请大家批评指正 非常欢迎大家给我留言评论 学术路上期待与您前行 加油 前一篇从个人角度介绍英文论文