针对序列级和词元级应用微调BERT(需修改)

2023-11-13

  • 对于序列级和词元级自然语言处理应用,BERT只需要最小的架构改变(额外的全连接层),如单个文本分类(例如,情感分析和测试语言可接受性)、文本对分类或回归(例如,自然语言推断和语义文本相似性)、文本标记(例如,词性标记)和问答。

  • 在下游应用的监督学习期间,额外层的参数是从零开始学习的,而预训练BERT模型中的所有参数都是微调的。

  • 我们可以针对下游应用对预训练的BERT模型进行微调,例如在SNLI数据集上进行自然语言推断。

  • 在微调过程中,BERT模型成为下游应用模型的一部分。仅与训练前损失相关的参数在微调期间不会更新。

来自Transformers的双向编码器表示(BERT)_流萤数点的博客-CSDN博客中,我们介绍了一个名为BERT的预训练模型,该模型可以对广泛的自然语言处理任务进行最少的架构更改。一方面,在提出时,BERT改进了各种自然语言处理任务的技术水平。另一方面,原始BERT模型的两个版本分别带有1.1亿和3.4亿个参数。因此,当有足够的计算资源时,我们可以考虑为下游自然语言处理应用微调BERT。

下面,我们将自然语言处理应用的子集概括为序列级词元级。在序列层次上,介绍了在单文本分类任务和文本对分类(或回归)任务中,如何将文本输入的BERT表示转换为输出标签。在词元级别,我们将简要介绍新的应用,如文本标注和问答,并说明BERT如何表示它们的输入并转换为输出标签。在微调期间,不同应用之间的BERT所需的“最小架构更改”是额外的全连接层。在下游应用的监督学习期间,额外层的参数是从零开始学习的,而预训练BERT模型中的所有参数都是微调的。

1.单文本分类

单文本分类将单个文本序列作为输入,并输出其分类结果。语言可接受性语料库(Corpus of Linguistic Acceptability,COLA)是一个单文本分类的数据集,它的要求判断给定的句子在语法上是否可以接受。 (Warstadt et al., 2019)。例如,“I should study.”是可以接受的,但是“I should studying.”不是可以接受的。

来自Transformers的双向编码器表示(BERT)_流萤数点的博客-CSDN博客描述了BERT的输入表示。BERT输入序列明确地表示单个文本和文本对,其中特殊分类标记“<cls>”用于序列分类,而特殊分类标记“<sep>”标记单个文本的结束或分隔成对文本。如 图15.6.1所示,在单文本分类应用中,特殊分类标记“<cls>”的BERT表示对整个输入文本序列的信息进行编码。作为输入单个文本的表示,它将被送入到由全连接(稠密)层组成的小多层感知机中,以输出所有离散标签值的分布。

2.文本对分类或回归

自然语言推断属于文本对分类,这是一种对文本进行分类的应用类型。

自然语言推断(natural language inference)主要研究 假设(hypothesis)是否可以从前提(premise)中推断出来, 其中两者都是文本序列。 换言之,自然语言推断决定了一对文本序列之间的逻辑关系。这类关系通常分为三种类型:

  • 蕴涵(entailment):假设可以从前提中推断出来。

  • 矛盾(contradiction):假设的否定可以从前提中推断出来。

  • 中性(neutral):所有其他情况。

自然语言推断也被称为识别文本蕴涵任务。 例如,下面的一个文本对将被贴上“蕴涵”的标签,因为假设中的“表白”可以从前提中的“拥抱”中推断出来。

前提:两个女人拥抱在一起。

假设:两个女人在示爱。

下面是一个“矛盾”的例子,因为“运行编码示例”表示“不睡觉”,而不是“睡觉”。

前提:一名男子正在运行Dive Into Deep Learning的编码示例。

假设:该男子正在睡觉。

第三个例子显示了一种“中性”关系,因为“正在为我们表演”这一事实无法推断出“出名”或“不出名”。

前提:音乐家们正在为我们表演。

假设:音乐家很有名。

自然语言推断一直是理解自然语言的中心话题。它有着广泛的应用,从信息检索到开放领域的问答。

以一对文本作为输入但输出连续值,语义文本相似度是一个流行的“文本对回归”任务。 这项任务评估句子的语义相似度。例如,在语义文本相似度基准数据集(Semantic Textual Similarity Benchmark)中,句子对的相似度得分是从0(无语义重叠)到5(语义等价)的分数区间 (Cer et al., 2017)。我们的目标是预测这些分数。来自语义文本相似性基准数据集的样本包括(句子1,句子2,相似性得分):

  • “A plane is taking off.”(“一架飞机正在起飞。”),”An air plane is taking off.”(“一架飞机正在起飞。”),5.000分;

  • “A woman is eating something.”(“一个女人在吃东西。”),”A woman is eating meat.”(“一个女人在吃肉。”),3.000分;

  • “A woman is dancing.”(一个女人在跳舞。),”A man is talking.”(“一个人在说话。”),0.000分。

与 图15.6.1中的单文本分类相比, 图15.6.2中的文本对分类的BERT微调在输入表示上有所不同。对于文本对回归任务(如语义文本相似性),可以应用细微的更改,例如输出连续的标签值和使用均方损失:它们在回归中很常见。

3.文本标注 

现在让我们考虑词元级任务,比如文本标注(text tagging),其中每个词元都被分配了一个标签。在文本标注任务中,词性标注为每个单词分配词性标记(例如,形容词和限定词)。 根据单词在句子中的作用。如,在Penn树库II标注集中,句子“John Smith‘s car is new”应该被标记为“NNP(名词,专有单数)NNP POS(所有格结尾)NN(名词,单数或质量)VB(动词,基本形式)JJ(形容词)”。

 图15.6.3中说明了文本标记应用的BERT微调。与 图15.6.1相比,唯一的区别在于,在文本标注中,输入文本的每个词元的BERT表示被送到相同的额外全连接层中,以输出词元的标签,例如词性标签。

4.问答

作为另一个词元级应用,问答反映阅读理解能力。 例如,斯坦福问答数据集(Stanford Question Answering Dataset,SQuAD v1.1)由阅读段落和问题组成,其中每个问题的答案只是段落中的一段文本(文本片段) (Rajpurkar et al., 2016)。举个例子,考虑一段话:“Some experts report that a mask’s efficacy is inconclusive.However,mask makers insist that their products,such as N95 respirator masks,can guard against the virus.”(“一些专家报告说面罩的功效是不确定的。然而,口罩制造商坚持他们的产品,如N95口罩,可以预防病毒。”)还有一个问题“Who say that N95 respirator masks can guard against the virus?”(“谁说N95口罩可以预防病毒?”)。答案应该是文章中的文本片段“mask makers”(“口罩制造商”)。因此,SQuAD v1.1的目标是在给定问题和段落的情况下预测段落中文本片段的开始和结束。

为了微调BERT进行问答,在BERT的输入中,将问题和段落分别作为第一个和第二个文本序列。为了预测文本片段开始的位置,相同的额外的全连接层将把来自位置i的任何词元的BERT表示转换成标量分数s_{i}。文章中所有词元的分数还通过softmax转换成概率分布,从而为文章中的每个词元位置i分配作为文本片段开始的概率p_{i}。预测文本片段的结束与上面相同,只是其额外的全连接层中的参数与用于预测开始位置的参数无关。当预测结束时,位置i的词元由相同的全连接层变换成标量分数ei。 图15.6.4描述了用于问答的微调BERT。 

对于问答,监督学习的训练目标就像最大化真实值的开始和结束位置的对数似然一样简单。当预测片段时,我们可以计算从位置i到位置j的有效片段的分数s_{i}+e_{j}(i≤j),并输出分数最高的跨度。

5.自然语言推断:微调BERT

现在,我们通过微调BERT来解决SNLI数据集上的自然语言推断任务。斯坦福自然语言推断语料库(Stanford Natural Language Inference,SNLI)是由500000多个带标签的英语句子对组成的集合 (Bowman et al., 2015)。我们可以在路径https://nlp.stanford.edu/projects/snli/snli_1.0.zip中下载并存储提取的SNLI数据集。自然语言推断是一个序列级别的文本对分类问题,而微调BERT只需要一个额外的基于多层感知机的架构,如 图15.7.1中所示。

本节将下载一个预训练好的小版本的BERT,然后对其进行微调,以便在SNLI数据集上进行自然语言推断。

pip install mxnet==1.7.0.post1
pip install d2l==0.17.0
import json
import multiprocessing
import os
from mxnet import gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

5.1加载预训练的BERT

我们已经在 预训练BERT_流萤数点的博客-CSDN博客WikiText-2数据集上预训练BERT(请注意,原始的BERT模型是在更大的语料库上预训练的)。正如其中所讨论的,原始的BERT模型有数以亿计的参数。在下面,我们提供了两个版本的预训练的BERT:“bert.base”与原始的BERT基础模型一样大,需要大量的计算资源才能进行微调,而“bert.small”是一个小版本,以便于演示。

d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.zip',
                             '7b3820b35da691042e5d34c0971ac3edbd80d3f4')
d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.zip',
                              'a4e718a47137ccd1809c9107ab4f5edd317bae2c')

两个预训练好的BERT模型都包含一个定义词表的“vocab.json”文件和一个预训练参数的“pretrained.params”文件。我们实现了以下load_pretrained_model函数来加载预先训练好的BERT参数。

def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens,
                          num_heads, num_layers, dropout, max_len, devices):
    data_dir = d2l.download_extract(pretrained_model)
    # 定义空词表以加载预定义词表
    vocab = d2l.Vocab()
    vocab.idx_to_token = json.load(open(os.path.join(data_dir,
         'vocab.json')))
    vocab.token_to_idx = {token: idx for idx, token in enumerate(
        vocab.idx_to_token)}
    bert = d2l.BERTModel(len(vocab), num_hiddens, ffn_num_hiddens,
                         num_heads, num_layers, dropout, max_len)
    # 加载预训练BERT参数
    bert.load_parameters(os.path.join(data_dir, 'pretrained.params'),
                         ctx=devices)
    return bert, vocab

为了便于在大多数机器上演示,我们将在本节中加载和微调经过预训练BERT的小版本(“bert.small”)。在练习中,我们将展示如何微调大得多的“bert.base”以显著提高测试精度。

devices = d2l.try_all_gpus()
bert, vocab = load_pretrained_model(
    'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4,
    num_layers=2, dropout=0.1, max_len=512, devices=devices)
Downloading ../data/bert.small.zip from http://d2l-data.s3-accelerate.amazonaws.com/bert.small.zip...

5.2微调BERT的数据集

对于SNLI数据集的下游任务自然语言推断,我们定义了一个定制的数据集类SNLIBERTDataset。在每个样本中,前提和假设形成一对文本序列,并被打包成一个BERT输入序列,如 图15.6.2所示。回想来自Transformers的双向编码器表示(BERT)_流萤数点的博客-CSDN博客,片段索引用于区分BERT输入序列中的前提和假设。利用预定义的BERT输入序列的最大长度(max_len),持续移除输入文本对中较长文本的最后一个标记,直到满足max_len。为了加速生成用于微调BERT的SNLI数据集,我们使用4个工作进程并行生成训练或测试样本。

class SNLIBERTDataset(gluon.data.Dataset):
    def __init__(self, dataset, max_len, vocab=None):
        all_premise_hypothesis_tokens = [[
            p_tokens, h_tokens] for p_tokens, h_tokens in zip(
            *[d2l.tokenize([s.lower() for s in sentences])
              for sentences in dataset[:2]])]

        self.labels = np.array(dataset[2])
        self.vocab = vocab
        self.max_len = max_len
        (self.all_token_ids, self.all_segments,
         self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens)
        print('read ' + str(len(self.all_token_ids)) + ' examples')

    def _preprocess(self, all_premise_hypothesis_tokens):
        pool = multiprocessing.Pool(4)  # 使用4个进程
        out = pool.map(self._mp_worker, all_premise_hypothesis_tokens)
        all_token_ids = [
            token_ids for token_ids, segments, valid_len in out]
        all_segments = [segments for token_ids, segments, valid_len in out]
        valid_lens = [valid_len for token_ids, segments, valid_len in out]
        return (np.array(all_token_ids, dtype='int32'),
                np.array(all_segments, dtype='int32'),
                np.array(valid_lens))

    def _mp_worker(self, premise_hypothesis_tokens):
        p_tokens, h_tokens = premise_hypothesis_tokens
        self._truncate_pair_of_tokens(p_tokens, h_tokens)
        tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens)
        token_ids = self.vocab[tokens] + [self.vocab['<pad>']] \
                             * (self.max_len - len(tokens))
        segments = segments + [0] * (self.max_len - len(segments))
        valid_len = len(tokens)
        return token_ids, segments, valid_len

    def _truncate_pair_of_tokens(self, p_tokens, h_tokens):
        # 为BERT输入中的'<CLS>'、'<SEP>'和'<SEP>'词元保留位置
        while len(p_tokens) + len(h_tokens) > self.max_len - 3:
            if len(p_tokens) > len(h_tokens):
                p_tokens.pop()
            else:
                h_tokens.pop()

    def __getitem__(self, idx):
        return (self.all_token_ids[idx], self.all_segments[idx],
                self.valid_lens[idx]), self.labels[idx]

    def __len__(self):
        return len(self.all_token_ids)

下载完SNLI数据集后,我们通过实例化SNLIBERTDataset类来生成训练和测试样本。这些样本将在自然语言推断的训练和测试期间进行小批量读取。

# 如果出现显存不足错误,请减少“batch_size”。在原始的BERT模型中,max_len=512
batch_size, max_len, num_workers = 512, 128, d2l.get_dataloader_workers()
data_dir = d2l.download_extract('SNLI')
train_set = SNLIBERTDataset(d2l.read_snli(data_dir, True), max_len, vocab)
test_set = SNLIBERTDataset(d2l.read_snli(data_dir, False), max_len, vocab)
train_iter = gluon.data.DataLoader(train_set, batch_size, shuffle=True,
                                   num_workers=num_workers)
test_iter = gluon.data.DataLoader(test_set, batch_size,
                                  num_workers=num_workers)
Downloading ../data/snli_1.0.zip from https://nlp.stanford.edu/projects/snli/snli_1.0.zip...
read 549367 examples
read 9824 examples

5.3微调BERT

如 图15.6.2所示,用于自然语言推断的微调BERT只需要一个额外的多层感知机,该多层感知机由两个全连接层组成(请参见下面BERTClassifier类中的self.hiddenself.output)。这个多层感知机将特殊的“<cls>”词元的BERT表示进行了转换,该词元同时编码前提和假设的信息为自然语言推断的三个输出:蕴涵、矛盾和中性。

class BERTClassifier(nn.Block):
    def __init__(self, bert):
        super(BERTClassifier, self).__init__()
        self.encoder = bert.encoder
        self.hidden = bert.hidden
        self.output = nn.Dense(3)

    def forward(self, inputs):
        tokens_X, segments_X, valid_lens_x = inputs
        encoded_X = self.encoder(tokens_X, segments_X, valid_lens_x)
        return self.output(self.hidden(encoded_X[:, 0, :]))

在下文中,预训练的BERT模型bert被送到用于下游应用的BERTClassifier实例net中。在BERT微调的常见实现中,只有额外的多层感知机(net.output)的输出层的参数将从零开始学习。预训练BERT编码器(net.encoder)和额外的多层感知机的隐藏层(net.hidden)的所有参数都将进行微调。

net = BERTClassifier(bert)
net.output.initialize(ctx=devices)

回想一下,在 来自Transformers的双向编码器表示(BERT)_流萤数点的博客-CSDN博客中,MaskLM类和NextSentencePred类在其使用的多层感知机中都有一些参数。这些参数是预训练BERT模型bert中参数的一部分,因此是net中的参数的一部分。然而,这些参数仅用于计算预训练过程中的遮蔽语言模型损失和下一句预测损失。这两个损失函数与微调下游应用无关,因此当BERT微调时,MaskLMNextSentencePred中采用的多层感知机的参数不会更新(陈旧的,staled)。

为了允许具有陈旧梯度的参数,标志ignore_stale_grad=Truestep函数d2l.train_batch_ch13中被设置。我们通过该函数使用SNLI的训练集(train_iter)和测试集(test_iter)对net模型进行训练和评估。由于计算资源有限,训练和测试精度可以进一步提高:我们把对它的讨论留在练习中。

lr, num_epochs = 1e-4, 5
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
    devices, d2l.split_batch_multi_inputs)

如果您的计算资源允许,请微调一个更大的预训练BERT模型,该模型与原始的BERT基础模型一样大。修改load_pretrained_model函数中的参数设置:将“bert.small”替换为“bert.base”,将num_hiddens=256ffn_num_hiddens=512num_heads=4num_layers=2的值分别增加到768、3072、12和12。通过增加微调迭代轮数(可能还会调优其他超参数),你可以获得高于0.86的测试精度吗?

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

针对序列级和词元级应用微调BERT(需修改) 的相关文章

  • 问CHAT很繁琐的问题会不会有答案呢?

    问CHAT 什么已有的基于极值理论的极端温度重现期主要针对极端高温事件 对极端低温事件研究较少 CHAT 回复 为这主要可能是由于以下几个原因 1 气候变化与全球变暖 当前 全球变暖和气候变化的问题备受关注 这导致科研者更加关注极端高温事件
  • 让CHAT介绍下V2ray

    CHAT回复 V2Ray是一个网络工具 主要用于科学上网和保护用户的网络安全 它的名字源自Vmess Ray 光线 通过使用新的网络协议 为用户提供稳定且灵活的代理服务 下面是一些V2Ray的主要特性 1 多协议支持 V2Ray 提供了大量
  • 扬帆证券:三只松鼠去年扣非净利预增超1.4倍

    在 高端性价比 战略驱动下 三只松鼠 300783 重拾增势 1月15日晚间 三只松鼠发布成绩预告 预计2023年度净赢利为2亿元至2 2亿元 同比增加54 97 至70 47 扣非后净赢利为1亿元至1 1亿元 同比增速达146 9 至17
  • 基于opencv的大米计数统计(详细处理流程+代码)

    在我每周的标准作业清单中 有一项是编写计算机视觉算法来计算该图像中米粒的数量 因此 当我的一个好朋友M给我发了一张纸上的扁豆照片 显然是受到上述转发的启发 请我帮他数一下谷物的数量时 它勾起了我怀旧的回忆 因此 我在我的旧硬盘上寻找很久以前
  • 毕业设计- 基于深度学习的小样本时间序列预测算法 - Attention

    目录 前言 课题背景与意义 课题实现 一 数据集 二 设计思路 三 相关代码示例 最后 前言 大四是整个大学期间最忙碌的时光 一边要忙着准备考研 考公 考教资或者实习为毕业后面临的就业升学做准备 一边要为毕业设计耗费大量精力 近几年各个学校
  • 无人机视角、多模态、模型剪枝、国产AI芯片部署

    无人机视角 多模态 模型剪枝 国产AI芯片部署是当前无人机技术领域的重要研究方向 其原理和应用价值在以下几个方面进行详细讲述 一 无人机视角 无人机视角是指在无人机上搭载摄像头等设备 通过航拍图像获取环境信息 并进行图像处理和分析 这种技术
  • 台积电再被坑,2纳米光刻机优先给Intel和三星,美国太霸道了

    外媒指出今年ASML的10台2纳米光刻机分配已经基本确定了 Intel拿到6台 三星获得3台 台积电只能得到一台 考虑到美国对ASML的强大影响力 外媒的这些消息应该有较高的可信性 Intel在先进工艺制程方面 自从2014年量产14纳米之
  • 性能大减80%,英伟达芯片在华“遇冷”,我方霸气回应:不强求

    中国这么大一块市场 谁看了不眼馋 在科技实力大于一切的今天 高端芯片的重要性不言而喻 作为半导体产业发展过程中不可或缺的一环 芯片技术也一直是我国技术发展的一大 心病 在美西方等国的联手压制下 我国芯片技术发展处处受阻 至今也未能在高端芯片
  • 作物叶片病害识别系统

    介绍 由于植物疾病的检测在农业领域中起着重要作用 因为植物疾病是相当自然的现象 如果在这个领域不采取适当的护理措施 就会对植物产生严重影响 进而影响相关产品的质量 数量或产量 植物疾病会引起疾病的周期性爆发 导致大规模死亡 这些问题需要在初
  • 做大模型也有1年多了,聊聊这段时间的感悟!

    自ChatGPT问世以来 做大模型也有1年多了 今天给大家分享这一年后的感悟 过去一年应该是AI圈最万千瞩目的一年了 大家对大模型 OpenAI ChatGPT AI Native Agent这些词投入了太多的关注 以至于有一年的时间好像经
  • 用通俗易懂的方式讲解:使用 LlamaIndex 和 Eleasticsearch 进行大模型 RAG 检索增强生成

    检索增强生成 Retrieval Augmented Generation RAG 是一种结合了检索 Retrieval 和生成 Generation 的技术 它有效地解决了大语言模型 LLM 的一些问题 比如幻觉 知识限制等 随着 RAG
  • 如何用GPT进行论文润色与改写?

    详情点击链接 如何用GPT GPT4进行论文润色与改写 一OpenAI 1 最新大模型GPT 4 Turbo 2 最新发布的高级数据分析 AI画图 图像识别 文档API 3 GPT Store 4 从0到1创建自己的GPT应用 5 模型Ge
  • 人工智能 AI 如何让我们的生活更加便利

    每个人都可以从新技术中获益 一想到工作或生活更为便利 简捷且拥有更多空余时间 谁会不为之高兴呢 借助人工智能 每天能够多一些空余时间 或丰富自己的业余生活 为培养日常兴趣爱好增添一点便利 从电子阅读器到智能家居 再到植物识别应用和智能室内花
  • AI帮助终结全球饥饿问题

    全球饥饿问题是牵动人心的头等大事 5月28日是 世界饥饿日 这一问题更值得关注 让人人都能吃饱的想法不仅令人向往 而且很快就会变成现实 与大多数新事物引进一样 对于在控制世界粮食供应这样复杂的任务中AI究竟应该发挥多大的作用 人们还踟蹰不前
  • CorelDRAW2024官方中文版重磅发布更新

    35年专注于矢量设计始于1988年并不断推陈出新 致力为全球设计工作者提供更高效的设计工具 CorelDRAW 滋养并见证了一代设计师的成长 在最短的时间内交付作品 CorelDRAW的智能高效会让你一见钟情 CorelDRAW 全称 Co
  • 史上最全自动驾驶岗位介绍

    作者 自动驾驶转型者 编辑 汽车人 原文链接 https zhuanlan zhihu com p 353480028 点击下方 卡片 关注 自动驾驶之心 公众号 ADAS巨卷干货 即可获取 点击进入 自动驾驶之心 求职交流 技术交流群 本
  • 深度学习:人脸识别系统 Tensorflow 人脸检测 Python语言 facenet人脸识别算法 毕业设计(源码)✅

    博主介绍 全网粉丝10W 前互联网大厂软件研发 集结硕博英豪成立工作室 专注于计算机相关专业 毕业设计 项目实战6年之久 选择我们就是选择放心 选择安心毕业 感兴趣的可以先收藏起来 点赞 关注不迷路 毕业设计 2023 2024年计算机毕业
  • 基于节点电价的电网对电动汽车接纳能力评估模型研究(Matlab代码实现)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 3 参考文献 4 Matlab代码 数据
  • 考虑光伏出力利用率的电动汽车充电站能量调度策略研究(Matlab代码实现)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 3 参考文献 4 Matlab代码 数据
  • 两个月进口猛增10倍,买近百台光刻机,难怪ASML不舍中国市场

    据统计数据显示 2023年11月和12月 中国从荷兰进口的光刻机设备同比猛增10倍 进口金额超过19亿美元 让ASML赚得盆满钵满 ASML早前表示中国客户在2023年订购的光刻机全数交付 2023年11月中国进口的光刻机达到42台 进口金

随机推荐

  • Matlab中的FCM算法代码及中文详解

    Matlab中的FCM算法代码及中文详解 转自 http xiaozu renren com xiaozu 106512 336681453 function center U obj fcn FCMClust data cluster n
  • 实习僧-竞品分析报告

    找工作是应届毕业生们绕不开的话题 本文从PEST分析 行业概况 用户体验等角度 做了一份实习僧vs前程无忧的竞品分析报告 一 报告概述 1 体验环境 产品体验 软件版本 实习僧 4 14 0 前程无忧学生版1 2 0 手机系统 Harmon
  • cadence OrCAD原理图输出-pdf文件和bom表

    软件版本 16 6 一 输出pdf文件 生成pdf文件前 需要首先安装好pdf虚拟打印机 在打印时选择pdf打印机即可 在项目管理中 选择dsn文件 主菜单file gt print 选项 出现打印机对话框 默认 scale to pape
  • R语言-ggplot2图形语法

    简介 在R里 主要有两大底层图层系统 一是base图形系统 二是gird图形系统 lattice包与ggplot2包正是基于gird图形系统构建的 他们都有自己独特的图形语法 ggplot2有着自己独特的图形语法 这套语法归纳起来包括 数据
  • 魅族满载诚意强势回归,重启全胜时代?

    3月30日魅族在上海梅赛德斯 奔驰文化中心举办了史上最大规模的新品发布会 吸引了众多媒体 行业人士和魅友的关注 在发布会上 魅族正式推出了魅族20系列旗舰手机 以及Flyme 10系统 Flyme Auto车机系统等全场景融合体验产品 全方
  • JS 随机生成十个带颜色的li

    html和css部分
  • 量化投资学习-37:底部涨停板操作

    涨停板选股 1 异动 主力的拉升前的筹码集中度和压力试盘 金针探底 拉升回落 2 时间 10 00之前涨停最佳 10 30之前凑合 下午不可 3 空间 底部第一个涨停 后续还有较大的涨幅空间 4 缺口 通过缺口 快速脱离主力的成本区和价格底
  • java注解开发

    用xml配置文件方式是Servlet2 5版本规范的 经过逐步演变注解来时流行 因为更方便了 Servlet3 0以后也支持注解开发了 自动注解实现步骤 创建JavaWeb工程 并移除web xml 编写Servlet 继承HttpServ
  • react学习笔记-从井字棋开始(3)

    函数函组件 如果你想写的组件只包含一个 render 方法 并且不包含 state 那么使用函数组件就会更简单 我们不需要定义一个继承于 React Component 的类 我们可以定义一个函数 这个函数接收 props 作为参数 然后返
  • 120种小狗图像傻傻分不清?用fastai训练一个分类器

    作者 一杯奶茶的功夫 链接 https www jianshu com p ab35ed21df87 程序员转行学什么语言 https edu csdn net topic ai30 utm source csdn bw 这篇文章会讲解如何
  • windows xp 驱动开发(四) USB开发技术概述

    转载请标明是引用于 http blog csdn net chenyujing1234 欢迎大家提出意见 一起讨论 参考文章 http blog csdn net xxxluozhen article details 4882121 1 概
  • 远程桌面协议(RDP)介绍

    远程桌面协议 RDP 允许您远程访问计算机 多年来 它免除了许多系统管理操作 无疑是一项非常有用的技术 RDP 长期以来一直提供远程访问支持 而且越来越好 该协议于 1998 年在 Windows NT 4 0 Terminal Serve
  • Linux系统简介

    文章目录 1 UNIX与Linux发展史 1 1 UNIX发展史 1 2 Linux发展史 1 2 1 Linux内核版本 1 2 2 Linux主要发行版本 2 开源软件简介 2 1 典型的开源软件 2 2 开源软件的特点 2 3 支撑互
  • MATLAB实现多分类预测结果混淆矩阵(Confusion matrix)可视化

    对于多分类问题 如何对预测结果进行可视化分析是性能对比的关键 在实际多分类问题 除了简单展示模型预测精度外 如何理解不同类别之间的预测结果对于分析样本相关性和属性区别具有重要意义 在MATLAB中一般通过混淆矩阵confusion matr
  • Uber和它的规则&算法

    私以为 Uber这家公司的出现 标志着 科技重构资源的时代正式来临 这才是大数据真正的使命啊 enjoy 这个改变 以下信息来源 网络上流传的中文Uber解读 Uber的算法 均可以随着数据量的不断增加进行学习 所以只会越来越准 只会越来越
  • MySQL将一张表的数据copy到另一张表中

    1 复制旧表的数据到新表 假设两个表结构一样 INSERT INTO 新表 SELECT FROM 旧表 INSERT INTO tbl user copy SELECT FROM tbl user 2 复制表结构及数据到新表 CREATE
  • Keil不能正确生成.bin文件的解决办法

    1 打开keil IDE 然后打开help gt uVison Help 搜索fromelf关键字如下图1 然后再进入到右下角的索引找到fromelf命令行的语法和选项 找到 bin的说明如下 如红色标注所说 正是症结所在 即如果链接文件中
  • 安装ubuntu20.04(安装vim、gcc、VMtools、中文输入法、汉化、修改IP、无法连网问题)

    目录 ubuntu安装包获取 ubuntu的安装 安装网络配置命令ifconfig 连接网络 解决ubuntu无法连网问题 如何修改IP地址 安装VMtools 解决VMware Tools选项灰色 VMtools安装 安装中文 汉化 添加
  • 时间序列预测——GRU

    本文展示了使用GRU进行时间序列预测的全过程 包含详细的注释 整个过程主要包括 数据导入 数据清洗 结构转化 建立GRU模型 训练模型 包括动态调整学习率和earlystopping的设置 预测 结果展示 误差评估等完整的时间序列预测流程
  • 针对序列级和词元级应用微调BERT(需修改)

    对于序列级和词元级自然语言处理应用 BERT只需要最小的架构改变 额外的全连接层 如单个文本分类 例如 情感分析和测试语言可接受性 文本对分类或回归 例如 自然语言推断和语义文本相似性 文本标记 例如 词性标记 和问答 在下游应用的监督学习