一看就懂的网络协议五层模型(一)

2023-11-14

我们每天使用互联网,你是否想过,它是如何实现的?

全世界几十亿台电脑,连接在一起,两两通信。上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗?

互联网的核心是一系列协议,总称为"互联网协议"(Internet Protocol Suite)。它们对电脑如何连接和组网,做出了详尽的规定。理解了这些协议,就理解了互联网的原理。

下面就是我的学习笔记。因为这些协议实在太复杂、太庞大,我想整理一个简洁的框架,帮助自己从总体上把握它们。为了保证简单易懂,我做了大量的简化,有些地方并不全面和精确,但是应该能够说清楚互联网的原理。

一、概述

1.1 五层模型

互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。

用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。

如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释。

在这里插入图片描述

如上图所示,最底下的一层叫做"实体层"(Physical Layer),最上面的一层叫做"应用层"(Application Layer),中间的三层(自下而上)分别是"链接层"(Link Layer)、“网络层”(Network Layer)和"传输层"(Transport Layer)。越下面的层,越靠近硬件;越上面的层,越靠近用户。

它们叫什么名字,其实并不重要。只需要知道,互联网分成若干层就可以了。

1.2 层与协议

每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。

大家都遵守的规则,就叫做"协议"(protocol)。

互联网的每一层,都定义了很多协议。这些协议的总称,就叫做"互联网协议"(Internet Protocol Suite)。它们是互联网的核心,下面介绍每一层的功能,主要就是介绍每一层的主要协议。

二、实体层

我们从最底下的一层开始。

电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。

在这里插入图片描述

这就叫做"实体层",它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

三、链接层

3.1 定义

单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?

这就是"链接层"的功能,它在"实体层"的上方,确定了0和1的分组方式。

3.2 以太网协议

早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做"以太网"(Ethernet)的协议,占据了主导地位。

以太网规定,一组电信号构成一个数据包,叫做"帧"(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。

在这里插入图片描述

"标头"包含数据包的一些说明项,比如发送者、接受者、数据类型等等;"数据"则是数据包的具体内容。

"标头"的长度,固定为18字节。"数据"的长度,最短为46字节,最长为1500字节。因此,整个"帧"最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。

3.3 MAC地址

上面提到,以太网数据包的"标头",包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?

以太网规定,连入网络的所有设备,都必须具有"网卡"接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。

在这里插入图片描述

每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。

在这里插入图片描述

前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

3.4 广播

定义地址只是第一步,后面还有更多的步骤。

首先,一块网卡怎么会知道另一块网卡的MAC地址?

回答是有一种ARP协议,可以解决这个问题。这个留到后面介绍,这里只需要知道,以太网数据包必须知道接收方的MAC地址,然后才能发送。

其次,就算有了MAC地址,系统怎样才能把数据包准确送到接收方?

回答是以太网采用了一种很"原始"的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机发送,让每台计算机自己判断,是否为接收方。

在这里插入图片描述

上图中,1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的"标头",找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做"广播"(broadcasting)。

有了数据包的定义、网卡的MAC地址、广播的发送方式,"链接层"就可以在多台计算机之间传送数据了。

四、网络层

4.1 网络层的由来

以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。

但是,这样做有一个重大的缺点。以太网采用广播方式发送数据包,所有成员人手一"包",不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。

互联网是无数子网络共同组成的一个巨型网络,很像想象上海和洛杉矶的电脑会在同一个子网络,这几乎是不可能的。

在这里插入图片描述

因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用"路由"方式发送。("路由"的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。

这就导致了"网络层"的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做"网络地址",简称"网址"。

于是,"网络层"出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。

网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

4.2 IP协议

规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。

目前,广泛采用的是IP协议第四版,简称IPv4。这个版本规定,网络地址由32个二进制位组成。

习惯上,我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。

互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。比如,IP地址172.16.254.1,这是一个32位的地址,假定它的网络部分是前24位(172.16.254),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说172.16.254.2应该与172.16.254.1处在同一个子网络。

但是,问题在于单单从IP地址,我们无法判断网络部分。还是以172.16.254.1为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。

那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数"子网掩码"(subnet mask)。

所谓"子网掩码",就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。

知道"子网掩码",我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

比如,已知IP地址172.16.254.1和172.16.254.233的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,结果都是172.16.254.0,因此它们在同一个子网络。

总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

4.3 IP数据包

根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。

但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?

回答是不需要,我们可以把IP数据包直接放进以太网数据包的"数据"部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。

具体来说,IP数据包也分为"标头"和"数据"两个部分。

在这里插入图片描述

"标头"部分主要包括版本、长度、IP地址等信息,"数据"部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样。

在这里插入图片描述

IP数据包的"标头"部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。因此,理论上,一个IP数据包的"数据"部分,最长为65,515字节。前面说过,以太网数据包的"数据"部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。

4.4 ARP协议

关于"网络层",还有最后一点需要说明。

因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的(后文会解释),但是我们不知道它的MAC地址。

所以,我们需要一种机制,能够从IP地址得到MAC地址。

这里又可以分成两种情况。第一种情况,如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的"网关"(gateway),让网关去处理。

第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个"广播"地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。

总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。

五、传输层

5.1 传输层的由来

有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。

接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?

也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做"端口"(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

"端口"是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。

**"传输层"的功能,就是建立"端口到端口"的通信。相比之下,“网络层"的功能是建立"主机到主机"的通信。只要确定主机和端口,我们就能实现程序之间的交流。**因此,Unix系统就把主机+端口,叫做"套接字”(socket)。有了它,就可以进行网络应用程序开发了。

5.2 UDP协议

现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。

UDP数据包,也是由"标头"和"数据"两部分组成。

在这里插入图片描述

"标头"部分主要定义了发出端口和接收端口,"数据"部分就是具体的内容。然后,把整个UDP数据包放入IP数据包的"数据"部分,而前面说过,IP数据包又是放在以太网数据包之中的,所以整个以太网数据包现在变成了下面这样:

在这里插入图片描述

UDP数据包非常简单,"标头"部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

5.3 TCP协议

UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。

为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。

因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。

TCP数据包和UDP数据包一样,都是内嵌在IP数据包的"数据"部分。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

六、应用层

应用程序收到"传输层"的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。

"应用层"的作用,就是规定应用程序的数据格式。

举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了"应用层"。

这是最高的一层,直接面对用户。它的数据就放在TCP数据包的"数据"部分。因此,现在的以太网的数据包就变成下面这样。

在这里插入图片描述

至此,整个互联网的五层结构,自下而上全部讲完了。这是从系统的角度,解释互联网是如何构成的。下一篇,反过来,从用户的角度,自上而下看看这个结构是如何发挥作用,完成一次网络数据交换的。

原文链接:http://www.ruanyifeng.com/blog/2012/05/internet_protocol_suite_part_i.html

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

一看就懂的网络协议五层模型(一) 的相关文章

随机推荐

  • 关于HttpClient请求获取数据

    httpClient请求获取网站数据 今天一网友问我 他写的httpClient请求为什么获取不到数据 他写的代码如下 StringBuffer buffer new StringBuffer String url1 http api ji
  • 深入云存储系统Swift核心组件:Ring实现原理剖析

    深入云存储系统Swift核心组件 Ring实现原理剖析 简介 OpenStack是一个美国国家航空航天局和Rackspace合作研发的开源云计算项目 并成为Apache下的一个重要开源项目 目前已经发展到了180家公司参与其中 OpenSt
  • MySQL学习笔记

    Windows服务 启动MySQL net start mysql 创建Windows服务 sc create mysql binPath mysqld bin path 注意 等号与值之间有空格 连接与断开服务器 mysql h 地址 P
  • 改造QTabWidget的QTabBar,自绘随意控制样式,不同颜色

    1 简介 本文介绍通过自绘 随意定制QTabWidget的 TabBar的方法 可设置不同Tab页的不同背景色 前景色 边框 鼠标三态色 尺寸 以及绘制其他自定义内容 如角标 2 效果 3 主要思路 继承QTabBar 改尺寸就是重写 ta
  • CSDN周赛60期简要题解

    一转眼 周赛都举办了60期了 还以为可以 寿终正寝 了 结果61期又安排上了 打开一看 还是 计算之魂 主题的周赛 还是这种 4 非编程 2 编程 的题型 可能目前就指望着 计算之魂 主持大局 了 C 站的有生力量全扑在研发 开发各种各样酷
  • Remix 以太坊Solidity IDE搭建与初步使用

    以太坊 因为以太坊为开源社区 虽然东西很优秀 但是组件十分的杂乱 因此首先简单介绍下以太坊的一些常用组件 1 Geth Geth是由以太坊基金会提供的官方客户端软件 用Go编程语言编写的 2 Parity Parity 是对以太坊协议的另一
  • Centos7安装后没有图形界面

    Centos7虚拟机安装好后重启只能进到命令行不能进入图形界面 原因 安装时没有安装图形界面 选择了Minimal Install 解决方法 安装过程中将设置SOFTWARE SELECTION勾选GNOME Desktop gt Deve
  • 如何创建React项目

    前言 构建React项目的几种方式 create react app 脚手架快速搭建 react 项目 推荐 yeoman 脚手架搭建 react 项目 webpack 一步一步构建 react 项目 脚手架是什么 脚手架是一种约定和规范
  • MOS管的作用及原理介绍

    MOS管的英文全称叫MOSFET Metal Oxide Semiconductor Field Effect Transistor 即金属氧化物半导体型场效应管 属于场效应晶体管中的绝缘栅型 因此 MOS管有时被称为场效应管 在一般电子电
  • Modbus RTU 工业通讯技术实现

    Modbus 是一个工业上常用的通讯协议 一种通讯约定 ModBus 协议是应用层报文传输协议 OSI 模型第7层 它定义了一个与通信层无关的协议数据单元 PDU 即PDU 功能码 数据域 ModBus 协议能够应用在不同类型的总线或网络
  • javaWeb中如何防止两个人同时操作同一条记录(限制单人操作),使用redis的解决方式

    最近在做demo的时候 碰到这么一个问题 当页面上同一角色有两个人登录的时候 他们同时操作统一条记录 简言之就是 同一记录同一时刻多人操作 这种情况在我的业务中回导致数据的冗余 干扰正常的程序运行 当时想到的解决办是锁表或者使用缓存 当然其
  • h0105 (10 分) c/c++

    c 代码 include
  • 互联网摸鱼日报(2023-03-29)

    互联网摸鱼日报 2023 03 29 InfoQ 热门话题 阿里再启组织变革 六大业务集团全面独立经营 张勇 具备条件的业务都可能独立上市 新一代Serverless事件中间件EventMesh正式毕业为Apache顶级项目 杭银消金基于
  • AVR单片机ATemga328P中断原理的介绍

    1 一AVR单片机中断原理的介绍 ATmega328P微控制器具有两个外部中断引脚 分别是INT0和INT1 外部中断0 INT0 它对应的引脚是PD2 数字引脚2 INT0可以用于响应外部信号的边沿触发 上升沿 下降沿或任意边沿 并触发相
  • 深聊全链路压测之:第二十讲

    日志隔离落地方案 1 引言 2 Demo预演 2 1 技术方案选型 2 2 Demo系统预演 2 3 扩展知识 日志分离 3 总结 1 引言 这节课 我们来学习如何基于微服务技术落地日志隔离 从第14讲开始 我们就详细的落地了基于微服务技术
  • linux服务器怎么添加路由,linux系统中添加路由的方法

    linux系统中添加路由的方法 发布时间 2020 06 17 11 38 59 来源 亿速云 阅读 95 作者 Leah 这篇文章将为大家详细讲解有关linux系统中添加路由的方法 小编觉得挺实用的 因此分享给大家做个参考 希望大家阅读完
  • Android webview实现h5视频全屏播放兼容Android7.0,自己添加webview库兼容全部版本

    2017年Android5 0主流机型webview的兼容性出现大问题导致很多公司app都不使用h5播放视频 关于谷歌自带的webview有各种兼容问题 最典型的的就是视频全屏onShowCustomView经常会点击不回调 可能是谷歌推崇
  • sonar scanner配置

    sonar scanner配置 这里记录如何配置sonar scanner扫描C C 项目代码 话不多说 先上官网链接 文章目录 sonar scanner配置 1 环境 1 1 SonarSource Build Wrapper 1 2
  • UDP及TCP通信对比讲解

    概述 TCP是面向连接的协议 也就是说在通信发送数据前 必须和对方建立连接 以数据流的模式传播 传输过程中不会有数据丢失 速率上比UDP要慢不少 适用于对数据准确性要求高 速度可以相对慢的场景 如发送或接收邮件 打电话 微信消息传输等等 U
  • 一看就懂的网络协议五层模型(一)

    我们每天使用互联网 你是否想过 它是如何实现的 全世界几十亿台电脑 连接在一起 两两通信 上海的某一块网卡送出信号 洛杉矶的另一块网卡居然就收到了 两者实际上根本不知道对方的物理位置 你不觉得这是很神奇的事情吗 互联网的核心是一系列协议 总